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Queue Evolution on Freeways Leading to a Single Core City

During the Morning Peak
Masao Kuwahara and Gordon F. Newell

ABSTRACT

The benefits of urban highway projects derive mainly from reduction of
delays in traffic queues. However, current static network analysis ignores
the fact queues develop on a network. The objective of this research is to
obtain the cumulative arrival curves at a finite number of bottlenecks
around a single core city during the wmorning peak. It is necessary,
therefore, to identify when and which bottleneck each commuter passes, given
commuters’ home location and desired arrival times (work schedules). Each
commuter is assumed to have a common form of trip cost function which
congists of a static cost of free flow travel time, a time~dependent
congestion cost due to queueing delay in a queue, and schedule delay (the
difference between his actual and desired arrival times). Commute trips are
assigned spatially and temporally to bottlenecks, so as to establish an
equilibrium in which each commuter seeks to minimize his trip cost. This
analysis employs graphical queueing and spatial assignment techniques on a
continuum demand space with a many-to-one origin-destination pattern. Some
queueing patterns for a two-bottleneck geometry are analysed in detail.

1.0. INTRODUCTION

In conventional network analysis, peak traffic flow on a network is
estimated by assigning a certain fraction of the daily traffic uniformly
over a peak period. This leads to traffic flow patterns which are
unrealistic in two major respects. First, the analysis is static, so it
does not consider commuters’ departure time choices. Second, it ignores the
existence of queues on the network.

On a freeway, delays caused by queues are typically much larger than
delays outside of queues. Indeed, the travel speed on a freeway is almost
independent of the traffic flow until the flow is close to saturation.
Furthermore, typical commute trip lengths are so short - an average is

less than ten miles per trip -~ that any decrease in speed except in a queue
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does not create significant delay. Delays due to other minor road
congestion also typically give a negligible contribution to individual trip
costs, since flows on minor roads are likely to be well below capacity.

One effect of queues is that they cause schedule delay during the
morning peak, defined as the difference between a commuter’s actual and
desired arrival times at work (Hurdle[6]). The cost due to this schedule
delay should be included the network analysis.

Departure time choices at a single bottleneck have been analysed by
several researchers such as Vickrey [12], Henderson (4], Hendrickson, et al.
[5], Hurdle [7], Fargier [3], and DePalma, et al. [2]. They developed
methods to estimate the cumulative arrival curve at a single bottleneck
during' the morning and evening peaks, given commuters’ desired departure
times from the bottleneck in the morning peak or arrival times at the
bottleneck in the evening peak. Each commuter was assumed to pay a cost due
to queueing and schedule delays. Commuters were then assigned temporally so
as to establish an equilibrium in which no one can find a better choice than
the one assigned.

The following research can be considered as an extension of the above
single bottleneck analyses to a geometry such as in Fig.1l-1 with more than
one bottlenecks. In a single core city, a residential area ,where homes of
commuters are distributed approximately continuously, surrounds a
concentrated working place. The working place is so concentrated that the 0
D(origin—destination) pattern can be treated as many-to-one (a point working
place). The network consists of two types of roads: many finely spaced minor
roads and a few major roads (freeways) leading to the working place. The
function of the minor roads is to carry traffic between homes and the major
roads; while the major roads gather traffic from the minor roads, bring it
near the destination, and release it to other minor roads.

The major road network is typically not very complicated. It consists
of a few "tree" type structures in which one tree may intersect another
tree. Here the bottlenecks
are assumed to be on the

trunks of the trees possibly

Working

at junctions of the major Place

roads. Each commuter is

assumed to pass only one

bottleneck on his way to the

city core.

Our objective is to . Bottleneck

construct the cumulative

arrival curves at bottlenecks .
. . Fig.1-1. Tree Structures of a Major
during the morning peak so as Road Network.

to establish an equilibrium,
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given commuters’ work schedules and home locations. The problem involves
both temporal and spatial assignments, that is, we must determine when and
which bottleneck each commuter chooses.

1.1. AN OUTLINE OF THE PROCEDURE

Home locations and work schedules of commuters are represented in a
three-dimensional space (Fig.1-2) with the horizontal plane showing home
locations x=(xy,x5) and the vertical axis showing work schedule time ty
Each commuter can be represented as a point in this demand space. The set
of all such points are assumed to be distributed approximately continuously
over some region of this three-dimensional space with a rate density
p(x,t,).

To determine a commuter’s choice of departure time and bottleneck, a
trip cost function is introduced. BEach commuter is assumed to have a common
form of the trip cost function which consists of a cost of free flow travel
time and a bottleneck cost due to queueing and schedule delays. Since the
travel speed on the network is assumed to be (nearly) independent of the
flow, the cost of free fiow travel time is static, depending on only a home
location. The bottleneck cost is time-dependent, but it depends only on the
bottleneck behayior (independent of home locations). These assumptions
simplify the analysis tremendously, because, to update the trip cost
temporally, we need only know the queueing and schedule delays at
bottlenecks. We do not need to know the flows on every link of the network.

Work Schedule (t,)

%2

Boundary L This point shows

home location x and
work schedule ty,.

7 X

Fig. 1-2. The Three-Dimensional Demand Space.
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We decompose the problem into two parts: spatial and temporal
assignments. If we knew which bottleneck each commuter chose, the three-
dimensional demand space could be partitioned into regions served by the
same bottleneck, with boundaries as in Fig.1-2 (the spatial assignment). In
each subset of the demand space, we recognize that the evaluation of
departure times 4is the same as for a single bottleneck (the temporal
assignment). Once we temporally assign points in each subset, we can then
know when and which bottleneck each commuter uses. Thus, we can draw the
cumulative arrival curves at all bottlenecks, and evaluate the trip costs
for every commuter. Evaluation of trip cost for everyone, in turn, allows us
to split the demand space into subsets.

Consequently, . the structure of the problem forms a loop. As the
following sections show, to close the loop is equivalent to solving two sets
of differential equations simultaneously: one for the temporal assignment
and another for the spatial assignment.

2.0. FORMULATION

For each bottleneck j, j=1,2,..... ,J, let
Aj(t) = cumulative number of commuters arriving at bottleneck j by time t,
Dj(t) = cumulative mmber of commuters departing from bottleneck j by time t,
Wj(t) = cumulative number of commuters passing bottleneck j whose work
) starting time is earlier than time t,
as illustrated in Fig.2-1.

wj(t)

Cumlative Count

Schedule Delay

Wj(toj) 1 f

Fig.2-1. A Queveing Pattern in the Morning Peak
at Bottleneck j.
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Although these curves are presently unknown, we assume that there
exists some times t0j when a queue first forms at bottleneck j, times tlj
when the queue finally terminates, and that

‘Aj(t) = Dj(t) = W(t), TFor t <ty tpj < t.

For tOj <t < tlj when there is a positive queue, the flow through the

bottleneck is assumed to have a given constant value dDJ(t)/dt = K

Commuters are served in order of their arrivals: FIFO (First In First Out),
so the queueing delay w?(td) of a commuter who departs from bottleneck j at
time t4 is the horizontal distance ty - Af%(Dj(td)) between the curves A;

J
and Dj.

If a commuter has home location x and work starting time t,, we assume
that he chooses bottleneck j and departure time from the bottleneck tg , so
as to minimize a trip cost function of the form (the same form for
everyone) |,

0% (tq 12,6 = £10m;(0)) + fa{wi(t ) + £3(t, - tg} (2.1)

= f1{m; 0} + phltg, t)s
where:

mj(x) = travel time from home location x to the
working place via bottleneck j,

ty — tq = schedule delay for a commuter with work starting time

W
t,, who departs from bottleneck j at time ty ,

p¥{tg,ty,} = folwi(tq)} + f3lt, - tq} = bottleneck cost.

The f£y(m), fy(w), and f3(s) are specified functions. The travel cost
function fj(m) and the queueing cost function fo(w) are both assumed to be
monotone increasing and positive form > 0 or w > 0. The cost f3(s) for
schedule delay is assumed to be positive and comvex with f3(0) = 0. The
schedule delay could be either positive or negative.

This trip cost function consists of three separable components. Travel
time is the time consumed for a trip without congestion delay, obtained from
the travel distance between a home and the working place, and the free flow
travel speed. Travel speed is assumed to be independent of link flow, so
the travel cost fl{mj(x)} is static and a function only of the bottleneck J
and home location x. Queueing delay depends on departure time ty but is
independent of the work schedule tys because of the FIFO queue discipline.
Schedule delay can be considered to depend on departure time ty and work

3
schedule t. )

The bottleneck cost depends on the commuters work
schedule t,, and the queueing situation at bottlemeck j but is independent of

his home location x.
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2.1. TEMPORAL EQUILIBRIUM CONDITION

Since the bottleneck cost is the same for all commuters who choose the
same bottleneck j (independent of x), the temporal equilibrium condition for
those commuters who choose bottleneck j is the same as that described by
Smith{11] and Daganzo[l] for a single bottleneck and a given work schedule
curve Wj(t). Tt is convenient here, however, to describe this condition in
a somewhat different form than they gave.

Fach commuter with work starting time t., knowing the bottleneck cost
pg(td,tw), would choose to pass the bottlenmeck at such time t4(t,) as to
minimize his trip cost. Thus, for given t,, his ty should satisfy

arcX(tg Ix,t,)/8bg = WHtgt /Aty = 0 .
The derivative of the trip cost with respect to t is therefore
dp¥(tq(ty), ) /dt, = B¥(ta, 6, /8L, + Bp¥(tg, b)) /Bty dty(t,)/dty
= 8p¥(tq, t,) /8, (2.2)

since the second term is zero at his departure time ty = td(tw). Thus, we

obtain the temporal equilibrium condition:l)

P (gt o) = BA(ta(ty) b/, = F3(t, - ta(t}.  (2.3)

Smith [11] and Daganzo [1] also showed that commuters arrive and leave
the queue in the same order as their work starting times, under the
assumptions we have made. 2) This we call the TFIFW (First In First Work)
discipline. Under this discipline, ty and t, are explicitly related to each
other in that:

Dy(ty) = Wilt,) , g = t(ty) = Dj(H;(E)) (2.4)
Thus, the trip cost function can be expressed in terms of only x and t,

TC;(x,ty) = f{mCa} + falw; (b} + f3{s;(t,)}

= f1{m;00} + pj(ty) (2.5)
where:  TC;(x,t,) = ek (ta(ty) 1%t
wilty) = wiltg(t)),
sj(ty) =ty talty),
pjlty) = PY(ta(ty),t,) = falwj(t)) + f3s;(t).

As a result, the temporal equilibrium conditions for bottleneck Jj is 4)

pj(t) = f3{s;(t)}. (2.8)

If the schedule delay sj(t) were known, we could integrate this
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equation and evaluate the bottleneck cost

t
pj(t) = g fé{sj(x)}dx . . 2.7)
0j
In most of the following illustrations, however, we will assume that
fg(s) is piecewise linear in s,

cis, s20, c1>0,
fz(s) = { (2.8)
—Czs, s < 0, Cz > 0.

In this case Eq.(2.6) becomes

Ps(t) = Cl ] sj(t) >0 E]
~cg £ p3(t) £ ¢, s;(t) =0, (2.9)
pj(t) = —cg , s5(t) <0 .

Thus pj(t) increases or decreases at a rate independent of sj(t) as long as
sj(t) remains positive or negative.

2.2. A SINGLE BOTTLENECK

If there is only one bottleneck or if the geometry of the network has
some. symmetry such as shown in Fig. 2-2 so that we knew ahead of time (by
symmetry) which bottleneck each commuter chooses, then we would also know
the total number of commuters from all locations x with work starting time
before t who choose bottleneck j, Wj(t).

Working Place

Major Road

X Bottleneck

Fig. 2-2. A Symmetric Geometry.




If, with the known Wj(t), we also knew the time tOj when a queue
formed, we could also draw the curve Dj(t) as a straight line from (tOJ’
wj(tOJ)) with a slope pjas shown in Fig. 2-1. From the curves Wj(t) and
Dj(t), we could also evaluate the schedule delay sj(t) =t - D_g(wj(t)) for
tOj < tg tlj' Equation (2.7) would then determine the bottleneck cost
pj(t). Knowing the total bottleneck cost pj(t) and the cost of schedule
delay, we can evaluate that part of the cost due to queueing delay and thus
determine wj(t) and Aj(t).

However, tOj is not known in advance. We must choose tOj so that pj(t)
and sj(t) vanish simultaneously at time tlj' It has been proved thgt, if
Wj(t) has a shape shown in Fig.2-1, then Pj(tlj) is a monotone decreasing
function of tOj’ and there exists a unique value of tOj so that Pj(tlj) is
zero when sj(t) vanishes, provided that fo(w) is monotone increasing in w
[1,8,11}.

We have thus seen that if the Wj(t) are known, the evaluation of the
Aj(t) is the same as for a single bottleneck. The complication in the
general theory comes from the fact that the domain of attraction of the j th
bottleneck may move as the queues evolve. Which bottleneck a commuter

chooses will depend on the pj(t).

a({1},t) da{1,2},t)

2.3. SPATIAL EQUILIBRIUM CONDITION
Suppose that for a certain work schedule time t, bottleneck costs
pj(t)’s are known at all bottlenecks. This means that if the three-
dimensional demand space Q is sliced horizontally at time t, we can evaluate
the trip cost TCj(x,t) = fl(mj(x)} + pj(t) for every point on this sliced
f f

(a) (b}

Fig. 2-3. Domain of Attractions

ZAY c N\
! N Major Road 1 ¢
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surface Q(t), and identify which point is attracted to which bottleneck on
the surface Q(t).

Some points having a unique preferred bottleneck are called interior
points. A point set d({j},t) is defined as the subset of Q(t), which
contains only points uniquely attracted to bottleneck j. - Fig. 2-3 shows an
example of partitions of Q(t) for a geometry with a ring major road "ad" and
two major radial roads leading to the working place in a quarter circular
city. Finely spaced ring roads are provided around the working place as a
center. If bottleneck costs pj(t) and pp(t) are nearly the same at time t,
we expect a domain of attraction such as in Fig.2-3(a). Bottleneck 1
attracts points in the shaded area (interior region d({1},t)) and bottleneck
2 attracts points in the unshaded area (interior region d({2},t)).

On the other hand, some points have more than one equally good
bottlenecks. These points, called boundary points, usually form lines. 1In
Fig.2-3(a), bottlenecks 1 and 2 are equally preferred for points on line
"a B". This boundary line is similarly denoted as the set d({1,2},t).
However, if fl(m) is a linear function, boundary points can also form a
region due to a junction of major roads. In Fig.2-3(b), a junction of major
roads "ac" and "ad" creates a boundary region d({1,2},t), when the travel
cost between bottlenecks 1 and 2 is equal to py(t) - pa(t). The cheapest
route between a home and the working place via different bottlenecks passes
the common junction.

In general, at any moment t, the two-dimensional sliced demand surface
can be partitioned into either interior or boundary points. This partition
will change with time if differences in costs pj(t) for different j vary
temporally.

If the partitions of Q(t) do not contain any boundary regions, and
there is a rate density p(x,t) in the demand space Q, the demand rate,
W&(t), attracted to bottleneck j can be represented as

W:j(t) = 1d({3},t) | p(x,t) dx . (2.10)

Since the partitions d({j},t) are determined by the costs pj(t),
3=1,2,...,J, the W3(t) are essentially functions of the pj(t) and the total
demand W’ (t) which is a given function of t,

Wi(t) = g5(p1(t), ..o ,pz(E)5t), (2.11)

where the functions g; depend on the demand space and network geometry. From
the general relationship between curves Dj(t) and Wj(t), it follows also
that

$3(8) = 1 - (1/kyegey(t),...,p5(t);t). (2.12)

This equation is the spatial equilibrium condition.
If some boundary regions exist, for example d({i,j},t), then wi(t)




30

would also include part of the demand from the boundary region. In Section
4.0, we will discuss how this demand must be split between two bottlenecks.

3.0. THE MORNING PEAK, WITH NO BOUNDARY REGIONS

For any particular network geometry and rate density p(x,t), one could,
in principle, determine the functions £; in Eq.(2.12). The temporal
equilibrium equations (2.6) and the spatial equilibrium equations (2.12)
would then determine the time derivatives p3(t) and s3(t) as known functions
of the sj(t) and pj(t) whenever wj(t) 5> 0. Thus, we would have a system of
ordinary differential equations for the pj(t) and sj(t). _If, however, wj(t)
= 0, we know that pj(t) = sj(t) = 0.

If we knew when (or if) a queue first forms at each bottleneck, we
could pumber the bottlenecks in order of the queue starting times

tor < toz < s--e0 < toge (3.1)

For t £ tp] » RO queue exists at any bottlenecks, so pj(t) = sj(t) = 0 for
all j.  For tgy <t < oo only pj(t) and si(t) are non-zero, and they
satisfy the equatipns

1

pi(t) = F3{s1 (1)) ,

s (3.2)
si(¢v) =1~ (1/;11)g1(p1(t),0,0,...,O;t).

Since we know that P1<t01) = sl(t01) = 0, we can solve these equations
(numerically) and determine pl(t) and sl(t) until time tgg.

For tgg < t < to3» pj(t) and sj(t) are non-zero only for j = 1, 2, so
we need integrate Eq.’s (2.8) and (2.12) only for j = 1, 2 with known values
pl(toz), 51(t02)’ pz(toz), and sz(toz). In the next time interval tgg < t £
tgg, Wwe must solve the equations for j =1, 2, 3, etc. Thus, for given
values of the tOJ’ one could, in principle, evaluate the pj(t) and sj(t) for
all t.

As in the single bottleneck case, the tOj must finally be determined so
that when sj(t) vanishes at time tlj’ Pj(tlj) also vanishes {for each j).
We presume that a solution of these equations exists, but do not give a
proof. If there were several bottlenecks, we expect that it would be
computationally quite difficult to determine the tOj so as to satisfy these
conditions.

3.1. EXAMPLES — QUEUEING PATTERNS FORJ = 2
In order to illustrate some of the qualitative features of this model,

particularly how the boundary motion affects the queueing pattern, we
consider some special cases with two bottlenecks (J=2) and some special
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forms for the fg(s) and g; in Eq.’s (2.6) and (2.12).

Suppose that there are two major roads 1 and 2 leading to a working
place in a single core city, and bottlenecks exist on each of the two roads.
Finely spaced minor roads are provided (Fig.3-1). The work starting time
distribution of commuters is assumed to be the same everywhere; 1i.e., the

rate density of trips has a product form,
p(x,t) = W(t) p*x) , (3.3)

where p*(x) = probability density of trips at location x.

Cross Over Link

Bottleneck 2

Working
Place

Bottleneck 1

Junction

Major Road
Fig. 3-1. A Two-Bottleneck Geometry. i

The function gj(pl(t),pz(t);t) depends on the pj(t) only through the
difference py(t) - po(t). Furthermore, for many types of network geometries
or for a sufficiently small pj(t) - pg(t), we can approximate

gj(p1(t),p(t);t) as linear in py(t) - po(t),

sj(t) =1 - [(W(t)/ pylla - B{p1(t) — pa(8)}], (3.4)

il

sh(t) = 1 = (W (t)/ pall(Q-a) + B{p1(t) - pa(t)}], (3.5)

0<a<l,ad 8 >0,

for wy(t) > 0 and wo(t) > 0.

If no queue exists at either bottlemeck, pj(t) = pp(t) = 0, a fraction
a« of trips is assigned to bottleneck 1, and (l-a) to bottleneck 2. We
assume that a/ux) > (1-a)/ugy: bottleneck 1 is more critical than bottleneck
2, and fg(s) is piecewise linear as in Eq.(2.8).

If g = 0, the two bottlenecks behave independently of each other. Each
has a stationary domain of attraction and the queue behavior is as described
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as in Section 2.2. For 8 > 0, there are no queues until some time tgy, but
there are several types of subsequent queueing patterns depending on queue
starting times tOj’ B, and cg.

If uq is sufficiently large, no queue forms at bottlemeck 2, py(t) = 0,
for all t. After a queue forms at bottleneck 1, p)(t) can be evaluated from
Eq.(2.9)

p1(t)

si(t) = 1 - [(W(t)/plla - Bey(t - tgy)].

c1(t - top)

and (3.6)

From this we see that the effect of g > 0 is to increase s'1(t), which means
a reduction .in Wy{t). Thus, trips divert from bottleneck 1 to 2 as t
increases.

If schedule delay sj(t) vanishes for the first time at some time tgj
and sj(t) < 0 at t = tg;, then, s)(t) becomes negative for t > tgy). The
pj{t) switches from ¢y to —cg and remains at -cg until time tjy when sl(t)
vanishes again, and presumably stays equal to zero thereafter. For tg; <t <
ty1s si(t) will have the form

sj(t) = 1 - [W(t)/ pgll{a - Bpy(tad} + Beg(t - ta1)). (3.7

If tgy were known, the right hand side of Eq.(3.6) would be known and
the equation for si(t) could be integrated to give sj(t). By observing when
sj(t) =0, we could determine to; and pl(t21), so the right hand side of
Eg.(3.7) can also be evaluated. We can continue to integrate sj(t) to
obtain sy(t). The tgy, however, must be chosen so that py(tyy) = 0 at the
time ty; when sl(tll) = 0.

A hypothetical queueing pattern is illustrated in Fig.3-2. Figure 3-2
(b) shows pj(t) increasing linearly with t for tg; < t < to] and decreasing
linearly for to; < t < ty3, with slopes ¢ and -y respectlively. This
causes the boundary to move as illustrated in Fig. 3-2 (c). The vertical
height is the total area of a sliced demand surface | Qe 1. It is

divided into two partitions here: a partition for bottleneck 1,
]d({1},t) | ; and for bottleneck 2, |d({2},t) | . For t < t gy the
domain of attraction of bottleneck 1, |d({1},t) |, stays constant, since
pi(t) = pgoft) = 0. For tg; <t £ toy, d({1},t) { decreases

because p1(t) increases. For toy < t £ £33, ]4({1},t) | increases
because pl(t) decreases; and it returns to the original size at time tyy.
This motion of the boundary, in turn, determines the Wl(t) in Fig. 3-2 (a)
and queueing delay wy(t) and thus the curve Aj(t) in Fig. 3-2 (a).

This is the type of queueing pattern that one would expect for
sufficiently small value of Bcg with a sufficiently large ugq. If the
boundary moves only slightly and sufficiently slowly, the pattern should be
similar to that for B = 0 with each bottleneck serving a (nearly) specified
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demand.

If fcg is too large, however, one cannot construct a solution of the
above type because there is a constraint on the rate at which the boundary
can move after time to7. In order for sl(t) to vanish for the second time
at tiwe tyq, given that s1(t) = 0 and sj(t) < 0 at time tgy, it is necessary
that sj(t) > 0 at time t;;. For sufficiently large Bcg, however, the last
term of Eq.(3.7) will dominate and cause sj(t) to be increasingly negative.
Thus s7(t) will not return to zero at any time ty; > tgj.

4J
5 A, ()
S D, (&)
o
2 (a)
&
u Wl(l:) Hz(r.)
g d
:01 521 :11 time
e, (£
(b)
4
S t21 1 e
sl(t)
d({2},r}
ace) (e
d({1},)
Fo1 a1 11

Fig.3-2. A Queueing Pattern for J=2, where
Only Bottleneck 1 has a Queue--Pattern 1.

The only possible equilibrium in this case is for sj(t) and si(t) to
vanish simultaneously at time tgy, and for s1(t) to stay equal to zero for a
while as shown in Fig.3-3. The pj(t) for tg; < t < ty) is now determined by
Eq.(3.4),

n

sj(t) =0 =1~ [W(t)/ ulla - Bp1(V)],

al/B - uy/{BW (1)}

py(t)




In this period, pl(t) is independent of tg3, tgy, and ¢y, provided pi(t) > -
cg. The tp; and ty; must be determined so that sq(t) and si(t) both vanish
at time tg;.

The time tj;; when the queue vanishes is the time when Wi(t) = uj; that
ig, the time when the demand on bottlemeck 1 at the original location of the
boundary is equal to the maximum service rate of bottleneck 1. This time
ty) can be known in advance from w(t).

This evolution of the queueing pattern with a large gcp is aquite
different from that in the single bottleneck case. For a single bottleneck,
there ' is no time period when the schedule delay stays equal to zero. This
difference comes from the motion of the boundary. A queue cannot dissipate
suddenly at time tg;, because this would cause the domain of attraction
d({1},t) to increase suddenly, Wi(t) to exceed the maximum service rate ujq,
and s7(t) to become negative.

Al(:)
g
(] D, (t) (a)
2 t (X8
g "1“)
- ! L time
Fo1 fa fu
pl(!)
(b)
time
t t t
50 oL 21 11
(e)
d((1h,e)
L ~

o1 fa 11

Fig.3-3. A Queueing Pattern for J=2, where
Only Bottleneck 1 has a Queue--Pattern 2.
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Figures 3-4 and 3-5 illustrate some typical queueing patterns if a
queue forms at both bottlenecks .l and 2. As was true when only one
bottleneck has a queue, there will be a critical value of ﬁcz at which the
pattern changes. Figure 3-4 shows a pattern for fcp less than the critical
value; FPFig. 3-5 for Bcy above the critical value. The details of how one
can construct these and other patterns are described in more detail in
reference (8].

(a)

Cumulative Count

time

' ®)
pj(t)

time

s, (t) s,(t)

I (c)

d({1},¢

l t22
I} 1, -} i 1.

ty  toz tatiz

Fig.3-4. A Queueing Pattern for J=2, where
Both Bottlenecks have Queues--Pattern 1.

If, in Fig.3-4, one know the times tg) and tgp when the queue first -

forms and the times tyy and ty9 when they end, one could evaluate pj(t) and
pg(t), which are piecewise linear curves with slopes cj or —cy as shown in
Fig. 3-4 (b). This would then determine the motion of the boundary which
depends on pj(t) - pz(t). When pl(t) and py(t) are both increasing or
decreasing at rates cj or -cg, the boundary is stationary as illustrated in
Fig. 3-4 for the times tgp < t < tgpg and tpy < t < tjp. Onme obtains
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different patterns, however, depending on the relative ordering of the times

tzz, t21 and tlz.
In Fig. 3-5, a large value of Bcg forces sg(t) and s)(t) to wvanish
il simultaneously at times tgoy and tgy and to remain zero between these times.

| Also g¢(t) and s}(t) must vanish simultaneously at some time toy and remain
1 1 31
I zero thereafter. There are well--defined procedures for evaluating the

J various times tOl’ ..... »E11-

|
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Fig.3-5. A Queueing Pattern for J=2, where
Both Bottlenecks have Queues--Pattern 2.
4.0. THE MORNING PEAK, WITH BOUNDARY REGIONS

It is quite likely that some road network containing two or more major
roads leading to the city center would also have roads over which traffic
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could be diverted from one bottleneck to another. Suppose, for example,
that there was a cross over link between two major roads as illustrated in
Fig. 3-1.

If fl(m) is linear, the travel cost of a commuter who normally would
pass the junction with the cross over link on his way to bottleneck 1 is the
sum of the travel cost from his home to the junction and the travel cost
from the junction to the work place. If the travel cost from the junction
to the work place via the cross over link and bottleneck 2 is larger than
via bottleneck 1 by an amount €, such a commuter would actually choose
bottleneck 1 only if py(t) - pa(t) < €, independent of his home location.
If , however, . pj(t) — po(t) = C, all commuters who pass the junction would
find the cost equal via bottlenecks 1 and 2, thus there would be a boundary
region d({1,2},t) as illustrated in Fig. 3-1.

If a queue forms first at bottleneck 1 at some time tpy, py(t) - pa(t)
= pl(t) will increase at least until time tpy when a queue forms also at
bottleneck 2. If py(t) - po(t) should reach the value C the boundary region
will form and we expect that it will persist for some time as commuters
shift so as to maintain this condition.

There is a slight complication if f3(s) is piecewise linear as in
Eq.(2.8) because, with this fg(s), py(t) - pg(t) will remain constant after
a queue forms at bottleneck 2 (whether or not there is a boundary region).
If, however, fs(s) is strictly convex, pj(t) - po(t) will continue to
increase even after time tgpy until it has the value C. If py(t) - po(t)
remains equal to C, then pi(t) = ph(t). It is still necessary, however, that
theb temporal equilibrium condition Eq.(2.8) be satisfied at both
bottlenecks. Thus it is necessary that

4051 (1)) = £3{s5 (1)}, (4.1)

while there is a boundary region.
If fg(s) is convex and f3(s) monotone increasing, f4(s) has a unique
inverse 5) and consequently

s1(t) = sg(t) . (4.2)

This condition may seem rather surprising since the sj(t) is certainly
increasing for some time after iy while sg(t) = 0. So, this condition
cannot be satisfied until after a queue forms at bottleneck 2. Furthermore,
the tg) and tgo must be chosen in such a way that by the time pl(t) - pa(t)
reaches the value C, so(t) has increased to the value sy(t).

While the boundary region exists, Eq.(4.2) implies that the demand
must split between the two bottlenecks so that W’(t) is divided proportional
to the 2 i.e.

Wilt) = W (t)puy/(uy + pg)s §=1, 2. (4.3
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The integration of the equations for pj(t) and sj(t) is quite
straightforward if a boundary region forms. As in the previous cases, the
main problem is to determine times tpy, tpp etc when queues form or pattern
switches. Some examples are given in reference [8].

5.0. CONCLUSION

This research develops methods to predict time-dependent traffic flow
during the morning peak when queues on freeways cause major delays.

In general, time-dependent network analysis becomes very complicated if
we simply extend current static network analysis methods to time--dependent
situations. To reduce the analysis to a manageable size, we proposed
several assumptions such as a flow independent travel speed, a many-to-one
0D table, a common form of trip cost function, a point queue, only one
bottleneck traversed by each trip, and so on. Particularly, the assumption
vof flow independent travel speed allows us to focus on only bottleneck
sites. As long as freeways are major facilities for commuting, this
assumption is reasonable.

Based on these assumptions, we propose a method to obtain the
cumulative arrival curves at more than one bottleneck, given commuters’ home
locations and work schedules. This method is, in  principle,
straightforward: the problem reduces to solving first order differential
equations for schedule delays and bottleneck costs (costs due to queueing
and schedule delays) simultaneously. These differential equations cannot be
solve analytically in general; however, they can be solved numerically.

The assumptions made here limit the applicability of the results, but
it is possible to relax some of these assumptions for more realistic models.
Particularly, it seems to be useful future works Lo study a case where the
trip cost function is no longer common [10]}, and a tandem bottleneck case
where commuters may enter bottlenecks more than once. Extensions of the
method discussed here to more realistic models do not appear to be
prohibitively difficult.

FOOTNOTES

1) If fg(s) is not continuously differentiable at s, particularly at s = 0:
£3(0-) < p’(t,) < £3(04).

2) It can be shown that if fgq(s) is convex in s, there is a unique arrival
curve A(t); and if f3(s) is strictly convex in s, not only the arrival curve
but the assignment are unique. Even if the convexity is not strict, FIFW is
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one of the equilibrium assignments.

3) Because the travel time between one particular bottleneck and the point
working place is the same for everyone who passes the bottleneck, we can
order a commuter’s travel pattern as follows without changing his trip cost.
Everyone spends the whole travel cost first, then joins the back of a queue,
waits in the queue, and finally spends the schedule delay at his office.

4) The notation t is used from now on instead of t.

5) If fg(s) is piecewise linear in s as in Eq.(2.8), Eq.{(4.2) 1is not
necessary in order to satisfy Eq.(4.1). However, the spatial assignment
satisfying Eq.(4.2) is one of the equilibrium spatial assignments.
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