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Abstract

For the operation of a pretime multi-program signal, we have to decide
in advance not only each program (a set of cycle time and green splits) but also
times of day when one program should be switched to the next. Given
time-dependent demand flow at an isolated undersaturated intersection, the
present paper discusses the problems of (1) what should be the optimal signal
parameters of each program and (2) when one program should be switched to
another. For the first problem (1), based on several previous studies, the
convex optimization programming is formulated with the cycle time and green
splits as unknown variables so as to minimize the total delay during a given time
period to which the program is applied. For the second problem (2), the
decision of timings of program switching has largely relied on engineers’ field
experiences and few theoretical analyses on the decision have been reported.
To theoretically analyse the structure of the switching decision problem, we
-Show that the problem is reduced to the dynamic programming so as to
minimize the total delay of all programs throughout a day, given the number of
programs available. We examine some questions for practical applications such
as the computation time and the delay reduction through a simple example.
Then, we briefly discuss the extensions to other signal controls holding the
similar problem structures such as the traffic responsive program selection
control where the number of programs is limited but a program can be
switched to another as many times as necessary.

1. Introduction

A pretime multi-program signal is operated in such a way that program ]
(a set of cycle time and green splits) is used, for instancé, from 0:00 to 6:15,
program 2 from 6:15 to 10:45, program 3 from 10:45 to 15:30, and so on, as
shown in Fig.l. Traffic engineers, therefore, have to decide in advance not
only each of the programs but also times of day when one program should be
switched to the next. The present paper deals with an isolated undersaturated
intersection with given time-dependent demand flows.

We divide the whole problem separately into two parts :
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(1) what are the optimal signal parameters of a program, given a time period
for which the program is used, and ’
(2) how the time periods of different programs should be determined.

In the first part, the optimal signal parameters of a program are
determined so as to minimize the total delay during a given time period to
which the program is applied. There have been several studies on the
determination of signal parameters for an isolated intersection such as Allsop
[1.2], Zuzarte [3], Hydecker et. al. [4], Gallivan et. al. [5], Improta et.al, [6],
and Cantarella et. al. [7]. These studies have proposed methods to determine
durations of green times and cycle time and/or sequences of green times.
Particularly, in references 4, 5, 6, and 7, convex programs were formulated
to simultaneously obtain sequences of greens and durations of green and cycle
times by introducing the starting times of green times, their durations, and the
inverse of a cycle time as unknown variables. Several kinds of objectives
were discussed in these programs such as the optimization of delay per unit
time, the reserved capacity, and so on. Depending on the-types of the
objective functions, these convex programs can sometimes be reduced to
linear programs and solved by the simplex method. For other objective
functions, we would apply a standard non-linear optimization technique to
solve the convex programs. In this paper, we adopt the formulation
following the previous studies.

Program 1 Program 2 Program 3 Program 4 Program 5
0:00 6:15 10:45 15:30 20:00 24:00
. ' 3
k=0 [ / : : k=K
T T
2 3 Unit Interval
Boundary

- Figure 1, - Signal Programs on a Discrete Time Axis
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In the second part, the core part of this paper, we discuss how to
determine the time periods of different programs so as to minimize the total
delay of all programs throughout a day, given the number of programs
available. In current practice, the decision of timings of program
switching has largely relied on engineers' field experiences and few
theoretical analyses on the decision have been reported. The purpose of this
paper is to disclose the essential structure of the problem of switching
decisions.

We formulate the second part of the problem in the dynamic
programming based on the Bellman's optimality principle assuming that each
program is used in only one time period just for the sake of simplicity,
and theoretically analyse the efficient way of the calculation. For future
extensions, we briefly mention some other signal controls which are
recognized to have the same structure as this switching problem such as a
pretime control in which the same program is used not only in a unique time
period but also two or more different time periods, and the traffic
responsive program selection control where the number of programs is limited

but a program can be switched to another as many times as necessary.
2, Optimal Signal Parameters of Each Program
2.1. Discrete Time Axis and Time-Dependent Traffic Demand

In general, traffic demand vary time-dependently through a day. To
describe the flow variations, we divide the 24-hour time of a day into a
number of unit intervals of equal length as shown in Fig.l. The time
boundaries are denoted k, k=0, 1, 2, ....., K, and the k th interval is written as
[k-1, k]. Practically, the length of a unit interval would be about 15 minutes
resulting in K = 96 intervals a day, so that traffic demand can be considered as
stationary during an interval.

Traffic flow demand is classified according to the vehicle maneuver
such as turning right or left and going straight. These segments of traffic
are called streams. For each of the time intervals, the average traffic volume
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of each stream i, i = 1, 2, ...., I is assumed to be given:

x; = an average normalized traffic flow of stream i in interval [k-1,k].

2.2. Optimal Signal Parameters for a Program

In the first part of the problem, the optimal signal parameters of a
program is determined so as to minimize the total delay during a given time
period to which the program is applied. In this section, we assume that the
switching timings of programs have been determined such that program j, j =

1,2, ..., J, is operated from time T}, to T; as shown in Fig.1.
Let us define signal parameters of program j as follows :

G; =an effective green time of stream i in program j [sec]

»”

; = a cycle time of program J [sec],

g;; = a green split of stream i in program j =G/ C;.

From the results of previous studies mentioned above, we similarly
formulate the minimization programming which determines the optimal signal
parameters so as to minimize the total delay during a time period [T; ;,T;]. For
the objective function, the total delay of stream i during the k th interval, T, <
k < T}, is described as a function of signal parameters of C; and g;, given x;'s:
D{xy, g, C;}. Therefore, the total delay associated with program j, TD(T;/

T; ), is written as

T; I
TD(T; | Tp) = X X Dixy g G- @1
k=Tj.1+l =l

We could employ several proposed delay functions such as the Webster's

2-term delay formula which is known as a convex function in 8ij and 1 /Cj.
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Although it is difficult to analytically show the convexity for other
formulae such as the Webster's 3-term formula and the HCM . delay formula,
these functions are practically also convex in g; and 1/C; at the proximity of the
optimal solution.

The convexity of the feasible region depends on constraints employed.
Usually, the green splits and cycle time are optimized given the phase plan that
is a sequence of green times of streams. But for different formulations,
sometimes the green time sequence is also unknown and simultaneously
determined as well as g; and Cj. However, for both types of formulations, it
has been known that the feasible region is convex in gy and 1/C;.

Therefore, the determination of signal parameters is generally reduced to
a convex problem and the optimal signal parameters could be determined
using a standard non-linear optimization technique. The optimized value of
the objective function (= total delay for program j) can be also evaluated.

As an example, a convex program is formulated for a simple four-leg
intersection shown in Fig.2. A three-phase plan is assumed to be determined
in advance for the total of ten streams as in the figure.

Green split g; and cycle time C jmust be determined within the
feasible region bounded by several constrains. First, since we consider the
undersaturated traffic condition, a sufficient green time must be given to each
stream.

8> Xy i=1,2,...,10, 2.2)

Second, relationships of green splits of streams and phases are defined
according to the pre-determined phase plan as in Fig.2.

815 = 827 = 83 = 84 = $1j»
&8s = 86 = $2j» 2.3)

87; = 88 = 89 = 810 = 3
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where  ¢,;= a time length of phase p of program j divided by C;,
called a phase split here.

A sum of the green times and lost time per cycle, L;, must be equal to

the cycle time:
Gij+ O+ 05+ L/ Ci=1, (24)

where L;= a given lost time per cycle of program j.

The objective function of Eq.(2.1) should be minimized subject to the
constraints of Eq.(2.2), (2.3), and (2.4). As mentioned before, the
feasible region bounded is convex in g;; and 1/C;, since all the constraints are

linear functions of the unknown variables.

910
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Fig. 2. A Four-Leg Intersection with a Three-Phase Control
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3. Decision of Timings of Signal Program Switching
3.1. Outline of the Approach

We have discussed how to determine the optimal signal parameters for a
particular program j assuming that switching timings T;;and T; are given. In
this section, we consider the second part of the problem; that is, how the
switching timings should be determined so as to minimize the total delay of all
programs throughout a day. We assume that the number of programs used, J,
are given and each program is used in only one time period just for the sake of
simplicity. ‘This problem is equivalent to the determination of a. certain
number of boundaries on the discrete time axis shown in Fig.l, where a
program is applied to a time period between two adjacent boundaries.

’I“‘he second part problem is, thus, reduced to a combination problem.
For ins#ance, if five programs are used which means that we should determine
four boundaries on the discrete time axis, the number of possible

combinations of the switching plan in case of 96 unit intervals is 96.1C4 =

3,183,545 which is obviously too many to examine in practice. In order for us
to reduce the number of calculations, the following property of this
combination problem should be noticed; i.e., if the four boundaries in Fig.]
were oftimal for the 24-hour control by five programs, the first three
bounda ‘es must be also optimal for controlling up to 20:00 by four
programs, the first two boundaries must be optimal for controlling up to
15:30 t;‘y three programs, and so on. Otherwise, we can find the better
timings iifor the first three switching timings, for example, and then these
better timings are apparently better for the five-program operation for a
whole day, too. This property is famous as the Bellman’s optimality
principle, which allows us to apply the dynamic programming method to obtain
the solution of the second part.

3.2. Formulation of Dynamic Programming
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Let F{(T;) be the minimum total delay up to time T; that is, the
minimum total delay associated with programs I through j. Based on the
Bellman’s optimality principle, the F(T;) can be written as the following
recursive form:

F{T) = Min. [ TDXT; | T;;) + F; (T;;) ], (3.1)
Tj. 1
where TD*(T; [ T; ;) = the minimized total delay of program j which is used
‘ fromtime T, to T; .
The brackets [.] in the right hand side of Eq.(3.1) means that if program

J were used from time Tj_l until Tj, the minimum total delay from time 0 until
time T; would be the sum of the minimum total delay up to program j-I,
F;(T;;), and the minimized total delay associated with program j,
TD*(T{T; ;). We imagine that we have decided the switching timings of up to
program j-I and spent the past delay of F; (T, ;). Since, given T, our future
delay TD*(T;/ T; ;) is independent of the past switching timings, the recursive
form is guaranteed. In order to determine F (T, which is the minimum total
delay up to program j provided that program j ends at time 7, tﬁe ‘brackets [.]
should be thus minimized with respect to time T} ;.

The recursive relationships are written from the beginning:
j=1: FyT;)=TD¥(T;/0)+0 ,

J=2: FyT,) =Min. [TD¥(T,|T;) + F(T}) ],
T;

J=3: Fy(T3) = Min. [ TD¥(T3 | T;) + Fy(T,) ], . (3.2
T,

J=J: F(T;)=Min. [TD¥(T,[T,,) + Fp (T, ]
Ty.1
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Since program ] is assumed to start from time k = 0, the F 1(T,;) is evaluated
from TD*(T;/0) for every T;, 1 <T, < K-(J-1). Since programs 2 to J must
be allocated on the time axis after program I, it is sufficient to evaluate F 1(Ty)
until T; = K-(J-1). For program 2, the F,(T,) is evaluated for every T,, 2
< T, < K-(J-2), by minimizing the sum of TD*(T, / T;) and Fy(T;) with
respect to T;. In this minimization, the TD*(T, / T,) should be only
calculated, since F;(T;) has been already evaluated for all T,. That is, fixing
the ending time of program 2, T,, we need to calculate' TD*(T, | T,) for every
T; ( <T,). Then, choose time T; = T,(T,) when TD*(T, / T;) + F,(T,) takes
the minimum, where T,(T,) is the best starting time of program 2 provided
that program 2 ends at time T,. To find time T;(T,) for particular T, in the
dynamic optimiiation process, about T, times we need to compare the
TD*(Ty/T;) + Fy(T;). Therefore, to determine T,(T,) for all T,, we need
approximately the total of K?/2 dynamic optimizations (=comparisons of
TDX(T,[T,) + F(T,;)), if K >> J.

Repeating the process until j = J, we could finally obtain F ,( T;) and the

optimal switching timings of all programs. Since approximately K2/2
dynamic optimizations are necessary for each j, 2 <j < J-I, the total
dynamic optimizations required is (J-2)-K2/ 2.

Although the application of the dynamic programming reduces the
number of calculations substantially, it still requires a number of dynamic
optimizations of the total delay. However, traffic engineers usually have a
priori knowledge on times of switchings. For instance, if program I were
used for traffic demand before the morning peak and program 2 for the
morning peak traffic, we could roughly estimate that switching timing T,
would be around 6:20 to 8:20, etc. If this kind of a priori range of
switching timings is incorporated, the computation time can be further
saved.

If we apply non-overlapping a priori range of n intervals for each
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switching timing, the required number of dynamic optimizations would be
about (J-2)-nZ, Table 1 describes the number of dynamic optimizations by
several cases, where the total of 96 unit intervals (K=96) and the five-program
operation (J=5) are assumed such as shown in Fig.1.

We have discussed the computation time in terms of the number of
required dynamic optimizations. However, to complete the above procedure,
the minimized total delay, TD*( T;/ Tj ;) must be determined by implementing

the convex programming discussed in section 2. When a priori knowledge is

Table 1. Comparison of the Number of Calculations

# of Optimizations # of Minimizations

in the dynamic of the convex
programming programming
All Combinations 3,183,545 4,278
Dynamic Programming (DP) 12,927 4,278
a priori Range of n = 8 without DP 4,096 208
(2-hour range for each timing)
_a priori Range of n = 8 with DP 200 - 208

(2-hour range for each timing)

not used, we need to calculate TD*( Tj/ T} for almost all combinations of

T;;and T}, which are counted approximately K?/2 even if the dynamic

programming is applied. If, however, @ priori knowledge of switching

timings is incorporated, only a limited number of minimizations are required.
If a non-overlapping a priori range of n intervals is specified for each switching

timing, we need to evaluate TD*(T;/ T; ;) for combinations of » different T} ;'s
and n different T}'s; that is, n? minimizations are required for each j. Table I

also shows the number of necessary implementations of the convex
programming.
One plausible way to reduce the number of minimizations would be the

interpolation of the minimized total delays, where TD*(T;/ T;,;) are calculated

|
S
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for only certain time boundaries of T; and T}; , and the minimized total delays
for the rest of time boundaries are linearly interpolated. When we minimize

the total delay for every m time boundaries of Tj_ ;s and Tj's, the number of

required minimizations clearly decreases to //m?. The appropriateness of the
interpolation will be examined through a simple example in the next section.
Although we have so far implicitly assumed that program 1/ starts always
from time 0:00, it is not practical. For example, a program for night time
traffic would start from the late evening and last until the next early moring.
We should consider a circular time axis as shown in Fig.3 instead of the
straight time axis so that time 24:00 is followed by time 0:00 of the next
day. In this case, we simply repeat the same procedure as explained above but
shifting the starting time of program I from k = 0 to K. Thus, the total
number of required dynamic optimizations becomes (J-2)-K%/2, whichis still
considerably small number. compared with all possible combinations, xC;,

especially for large J.

K1 K

A3

Program 1

Program 2

Program 4

P_rogram 3

Fig. 3. Signal Programs on a Gircular Time Axis.
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3.3. Numerical Example

An example calculation is presented using an intersection of two
one-way streets with a two-phase operation during 96 time intervals (K=96) as
shown in Fig.4. The saturation flow rates are assumed 1500 [veh/hour] for

both streams and the total delay is estimated by the Webster's 2-term
formula. Time-dependent demand flows of two streams during the 96 intervals
are illustrated in Fig.5. Stream I is the major stream with the maximum
normalized flow of about 0.65 and stream 2 with about 0.25 during the
morning peak. We employ a four-program operation (J=4) such as in Fig.3
and a four-hour a priori range is assumed for each of the switching timings
as shown in Fig.5.

The results are summarized in Table 2 and the optimal switching timings
are also shown in Fig.5. We examine the interpolation method for the total
minimized delays explained above; that is, the interpolation of TD*(Tj/ T;))
from the minimized total delays at every two and four time boundaries (m = 2
and 4). The both interpolations seem appropriate, since not only the optimal
switching timings but also the signal parameters for programs . are very close

Phase 1 Phase 2

—> 1 >

Fig. 4 An Intersection of Two One-way Streets.
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Discrete Time

+—— : a priori range of switching

Fig. 5. Time-Dependent Demand Flows

)

to the optimum's obtained without using the interpolation. However, since
the result apparently depends on the time-dependent demand flow variations
and the signal phase plan, our conclusion cannot be firm but must be checked ,
further.

All possible combinations of switching timings within the a priori
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ranges are counted 64,009 in this example and Figure 6 illustrates
distributions of the minimized total delays associated with these 64,009
combinations. We see that the distributions are getting smoother when the
interpolation interval, m, increases from two to three and four. . For the
delays obtained without the interpolation, the minimum delay of 114.5
[hours] is given by the timings shown in Table 2 but the maximum delay is
about 127.5 [hours]. Although we can roughly anticipate the ranges of
switching vtimings from our experiences, we may have a chance to select
switching timings which yield the larger delay by at most about 12 [%].

Table 2. Optimal Signal Parameters and Switching Timings

Program Switching Cycle Green Green  Total Cumulative
Timings Time Time Time Delay/  Total
No. Streaml Stream2 Program Delay
Start  End [sec] [sec] [sec] [hours] [hours] :

23( 5:45) 31( 7:45) 108 72 26 21.43 21.43
1:22( 5:30) 32( 8:00) 106 70 26 24.94 24.94
24( 6:00) 32( 8:00) 108 72 26 22.12 22.12

31( 7:45) 62(15:30) 69 43 16 47.13 68.56
2 32( 8:00) 62(15:30) 66 41 15 44.80 69.74
32( 8:00) 64(16:00) 70 44 16 49.29 71.41

62(15:30)71(17:45) 93 63 20 20.36 88.92
3 62(15:30)72(18:00) 91 61 20 21.94 91.68
64(16:00)72(18:00) 93 63 20 17.61 89.02

71(17:45)23( 5:45) 41 21 10 25.55 114.47 '
4 72(18:00)22( 5:30) 39 19 10 23.12 114.80 |
72(18:00)24( 6:00) 42 22 10 25.99 115.01 f

Upper figures : Without using the interpolation.

Middle figures : Interpolation of the total delays at every two time boundaries.
Lower figures : Interpolation of the total delays at every four time boundaries.
Lost time per cycle = 10 [sec]
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Total Delay [hours]

Fig. 6. Distributions of the Total Delays by Several Interpolations

3.4. Discussion on the Extension

Based on the dynamic formulation, let us briefly discuss the following
two problems of the same structure as the above.
(1) The traffic engineers sometimes use the same program in two or more
different time periods in practice, although we have assumed that a program is
applied to a unique time period. We assume that at most J programs are
available but can be switched S times in a day (S > J). This is also a
combination problem but the total number of all possible combinations is
much larger than our original problem. Suppose that we have arbitrarily
chosen S time boundaries of switchings on the circular time axis, and then

want to allocate J pfograms to § different time periods provided that every




program must be used at least once. The total number of possible

allocations is ¢C,-J5/). In the original problem, this value is clearly I because
§ is equal toJ. Butif the number of switchings, S, gets increasing, we
could expect much larger number of combinations than the original
problem: approximately /0/4 combinations for K=96, J=35, and §=8.

This problem cannot be formulated in the dynamic programming in

the same manner as the original problem which uses time T; as the decision

variable. For instance, when we start the calculation from the beginning, j=1,
the minimized total delay associated with program I cannot be
determined because program / may be used twice or more in the different time
periods.

However, this problem has also the property of holding the Bellman's
optimality principle. Suppose that we have arbitrarily allocated programs /
through j-1 on the time axis, where one program is used several times just as
shown in Fig.7. The optimal signal parameters and the associated total
delays of programs / to j-/ can be determined, since all time periods for
these programs have been decided. We have to further allocate the remaining
programs to the rest of the time periods and determine the total future delay
associated with the remaining programs, but the future delay is clearly
independent of what we have done, given time periods of programs I to j-1.

Thus, this property can be again written in the recursive relationship

below using the variable P 'j which means a set of time periods for program j,

instead of T as in the original problem:

F{P)) = Min. [ TD*(P, | P;;) + F;,(P;}) ], (3.3)
Pj.1

where F (P)) = the minimized total delay of programs I through j,

TD*(P; | P; ;) = the minimized total delay of program j which is used in

time period P;, given time periods of P, to P
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P

j-2

Fig.7. Time Periods of Program Operations on the Circular Time Axis

(2) In-the prefime multi-program signal control, both the number of
programs and switching timings are constrained as we have seen so far.
However, we have a different type of signal control, the responsive program
selection control, in which programs can be switched as many .times as
necessary depending on time-dependent traffic demand, although the number
of available programs is limited. For this control, we do not have to consider
the switching timings but we must determine to what demand flows each of the
programs should be applied. Therefore, we must classify the demand flows so
that each of the programs corresponds to the cluster of demand flows. For
example, the ﬁme-dependent demand flows of streams / and 2 shown in Fig.5
are  described in the two-dimensional demand space as illustrated in Figé.
The demand space should be divided into J clusters for J available programs.
This clustering problem is also written in the recursive form just asin
Eq.(3.3), since the future delay of TD*(P;/ P; ;) is again independent of the

past delay of Fj_ I(Pj_l ), given P; to Pj__,. (Here, the PJ- is considered as a set of




demand flows controlled by program j.)

We recognize that the above two problems have the same structure as
our original one. However, they likely require enormous calculations even
if the dynamic programming is applied, since we must minimize the total
delay for a huge number of different P/s. Practically speaking, we may,
therefore, utilize some strong constraints just like a priori ranges of
switchings in the original problem to reduce the calculation in the

optimization process of the dynamic programming,.

Normalized Flow Xlk

Demand Cluster

Normglized Flow X2k

Fig.8. Flow Clusterings on' the Two-Dimensional Demand Space

4. Summary

We deal with a pretime multi-program signal control at an isolated
undersaturated intersection and discuss (1) what should be the optimal cycle
time and green splits of each program, given a time period to which the
program is applied, and (2) when one program should be switched to another.
The major remarks are summarized below:

(1) The optimum signal parameters of a program are determined so as to
minimize the total delay assuming that a time period of the program
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operation has been decided. Following the previous studies, this problem is
formulated in a minimization program which is convex in green splits and an
inverse of the cycle time.

(2) We discuss how to determine the time periods of different programs so
as to minimize the total delay of all programs throughout a day, given the
number of programs available. For the simplicity, a program is assumed to
be used only one time period. This problem is essentially the combination
problem of selecting the switching timings on the time axis. We show that the
problem can be reduced to the dynamic programming based on the Bellman's
optimality principle and solved systematically in a short computation time.
Furthermore, if we utilize a priori knowledge on times of switching; i.e., a
program for peak traffic would be applied for approximately from 6:20 until
8:20, the computation time can be saved so much that a personal computer can
handle the calculation.

(3) To apply the dynamic programming, however, the minimized total
delays must be -evaluated many times for various time periods of signal
program operations by solving the convex programming. For the reduction
of the computation time, we examine the interpolation of the total delays in
which the total delay value of a time period is interpolated from the total delay
values of the neighboring time periods. An examination of the interpolation
through a simple example shows that the switching timings and signal
parameters based on the interpolated delay values give a good agreement with
the optimum's obtained without using the interpolation.

(4) For the future extensions, we recognize that our problem still has the
same structure and could be reduced to the dynamic programming in principle,
even if we relax the assumption mentioned above so that a program can be
used two or more different time periods. We finally discuss the traffic
responsive program selection control where the number of programs is limited
but a program can be switched to another at any time. Namely, there is no
constraint on the number of switchings. For this control, we must cluster the
demand flows to which each of the programs is applied. This clustering
problem is also shown to have the same structure.
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