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ABSTRACT
We propose the model for estimating time-dependent OD matrices from traffic counts in a general network with

route choice activities.  The model consists of two parts : (1) construction of the relationship between the time-
dependent OD volumes and traffic counts at links and (2) estimation of a unique time-dependent OD matrices.  In the
first part, we define a three-dimensional network to relate OD matrices to traffic flow on links.  We then propose a
method of estimating route choice probabilities.  In the second part, we employ the Entropy Maximizing method for
the static OD matrices estimation and extend it to time-dependent model.  As an extension, we propose a simplified
method of estimating route choice probability and a method to utilize aggregated prior OD information.  At the last,
we apply the model to a test network and examine its validity.

INTRODUCTION
A model for estimating time-dependent OD(Origin-Destination) matrices is required to realize the optimum

traffic control and planning.  Many dynamic traffic simulation models have been developed in order to reproduce
traffic conditions and evaluate policies of traffic control, signal control, one-way traffic control and so on.  Such a
dynamic model needs a time-dependent OD, especially one composed of small OD zones.  However, it is hard to
estimate OD flows directly from OD survey.  In this study, we thus propose a dynamic estimator using time-dependent
traffic counts to obtain time-dependent OD volumes.  There has been some models estimating or updating time-
dependent OD matrices from traffic counts.  These models can be divided into two types, the Intersection models and
the Network models.  The Network model is more complicated than the former because of the consideration of route
choice behavior.  Nguyen et al.1) proposed the model on a general transit network.  Yang et al.2) estimated OD
matrices so as to minimize the integrated squared error between observed and predicted link traffic flows with an
efficient solution method developed based on Fourier transformation.  However, these models have not included time-
dependent driver’s route choice behavior.  In the model developed by Cascetta et al.3), although they consider the
driver’s route choice behavior, as enumeration of all routes is required to estimate route choice probabilities, calculation
does not seem to be applicable to a large network.  Ashok and Ben-Akiva4) have also proposed the on-line estimator
using the Kalman filtering.  However, a ratio of traffic flow on each route and prior OD flows are required in this
estimator.

TIME-DEPENDENT OD MATRICES ESTIMATION MODEL

Outline of the Model
This study develops the model to estimate time-dependent OD volumes in a general network, which consists of

links and nodes.  In this model, each link has time dependent link travel time which is however flow-independent and

must be input in advance based upon the field observation.  In the first part of the model, the relationship between OD

flow and link flow is established by introducing a route choice probability determined from the time dependent link

travel times.  In the second part, a time-dependent OD matrix is uniquely estimated by applying the entropy

maximizing method under constraints of the relationship between OD and observed link flows obtained in the first part.



Definition of Time Axis and Formulation
A vehicle trajectory on path k is drawn in the time-space graph as in Fig.1, in which time axis is divided into

discrete time-intervals of equal length ∆t, and time-interval h is defined as time interval [h∆t , (h+1)∆t].  Ta(h), travel

time at link a at time-interval h, is assumed to be a multiple of an integer ∆t.  Hence, ∆t must be sufficiently small so

that change of link travel time over time can be well described.  It is also assumed that Ta(h), va(h), link flow at link a

at time-interval h and qw(h), OD flow departing from origin node of OD pair w at time-interval h, do not vary during

each time-interval, which means that they stay constant values at the start of time-interval.

In Fig.1, a vehicle departing from an origin at time-interval hr passes through several links along the path k and

enters link a at time-interval τ
w

ak(hr), which is arrival time at link a when a traffic on path k of OD pair w generates from

a origin at the time hr.  Here, since Ta(h) is predetermined, arrival time at link a, τ
w

ak(hr), can be calculated by summing

link travel times along the trajectory.
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Figure 1  Time-Space Graph

(Descrete Time Axis)

If vehicles A and B actually travel as shown in Fig.1, we normally expect that trajectories of vehicles departing

origin r during time interval hr are spread between trajectories A and B. However, we have to note that, under the

assumption above, those trajectories stay between A and B’ because of the constant travel time in any time period of ∆t.

Using a network with the discrete time axis, a relationship between OD flow and link flow can be written as:

( ) ( )( ) ( )( )v h t p h q h ta kw ak
w

w ak
w

ak
w

kw

⋅ = ⋅ ⋅ ⋅− −∑∑∆ ∆τ τ δ
1 1

,
����������������������

(1)

where
pk(h) :probability that traffic flow of OD pair w departing from its origin during time-interval h uses path k,

τ
w

ak

-1

(h) :departure time-interval from an origin when a traffic flow on path k of OD pair w enters link a during
time-interval h,

δ
w

ak : 1 ; if path k of OD pair w passes through link a,
    0 ; otherwise.

This relationship can be also written as:

( ) ( ) ( )v h t p h h q h ta aw r w r
hw r

⋅ = ⋅ ⋅∑∑∆ ∆, ,
���������������������������

(2)

in which paw(hr , h) means probability that a vehicle departing from origin node r of OD pair w during time-interval h
r

enters link a during time-interval h.  The paw(hr , h) hence satisfies following:
( )p h haw r

h

, =∑ 1.

Estimation of Route Choice Probability

Let us assume user's route choice probability such that

( ) ( ) ( ) ( ) ( )[ ]p h C h h C h h mkw r kw r kw r mw r mw r= + ≤ + ∀Prob ε ε , ,



where

Ckw(hr) : cost of path k of a vehicle departing from origin r of OD pair w at time-interval hr,

εkw(hr) : an error term of Ckw(hr).

If error term εkw(hr) has the Wible distribution, we obtain the following well known Logit model :

( ) ( )( )
( )( )p h

C h

C h
kw r

kw r

mw rm

=
−

−∑
exp

exp

θ
θ ,
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(3)

where θ is the Logit parameter, and it must be given externally based on the route choice activity.  If path cost Ckw(hr)

is assumed a linear function of link costs along path k, Ckw(hr) is written as:
( ) ( )( )C h C hkw r a ak

w
r ak

w

a

= ⋅∑ τ δ
,
���������������������������������

(4)

where Ca(h) is the cost of link a at time-interval h.

We here consider only a case in which the path cost is a linear function of the link costs.  Since link travel time

Ta(h) is considered one of the most representative factor, which is assumed given as mentioned earlier, the link cost is

also assumed to be given for all links at all time periods.

The pkw(hr) is obtained from the optimization problem (P1) as shown below by extending the Fisk model on the

static assignment to the dynamic model.

PROBLEM P1:

( ) ( ) ( ) ( )min log
,, ,

1
θ

p h p h C h p hkw r kw r a a
a hw k hr

⋅ + ⋅












∑∑ ,

s.t.

( ) ( )( )p h p ha kw ak
w

ak
w

w k

= ⋅−∑ τ δ1

,

,

( )p hkw r
k

∑ =1 , ( )p ha ≥ 0  , ( )p hkw r ≥ 0 ,

in which pa(h) is the summation of probabilities entering link a at time-interval h for all OD pairs.  We can prove that

the solution of problem P1 is equivalent to the Logit type path choice probabilities shown in (3) (see Appendix).
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Figure 2  A Time-Space Network

To solve P1, let us introduce the three-dimensional time-space network, in which the one-dimensional time axis is

added to the two-dimensional spatial network, as shown in Fig. 2.  On this network configuration, actual link a is

decomposed into several links depending on entering time periods.  Since the vertical height of the link increases by its

link travel time, slope of the link represents the velocity.  And the FIFO can be known as a condition that links on the

three-dimensional time-space network do not cross each other.  In the case, a vehicle entering link a during time-

interval h cannot be overtaken by a vehicle entering link a during time-interval h+∆h.  So, link travel time Ta(h) needs

to be given so as to satisfy:



( ) ( )T h h T h

h
a a+ −

≥ −
∆
∆

1.

However, to adjust the three-dimensional network to the usual two-dimensional network, a new destination node S

must be added as in Fig.2.

To consider the problem P1 on the three-dimensional network, variables in P1 have to be converted as follows.

Origin node R on the three-dimensional network corresponds to a combination of origin node r and departure time

period hr on the two-dimensional network, and link A on the three-dimensional network corresponds to a combination

of link a and entering time period h on the two-dimensional network.  Thus, we can convert the problem P1 to the

problem on the three-dimensional network by converting variables such as pkw(hr) to pKW, Ca(h) to CA, where pKW is a

probability that a vehicle having OD pair W(origin R, destination S) uses path K, and CA is a cost of link A on the three-

dimensional network.

The problem on the three-dimensional network converted from the problem P1 mentioned above can be solved in

the same way as P1, and the result is written as:
( )

( )p
C

CKW
KW

MWM

=
−

−∑
exp

exp

θ
θ .

������������������������������������

(5)

This means that the flow-independent Dial’s assignment can be applied to solve the problem on the three-

dimensional network.
Specifically, we can estimate p

AW
 by applying the Dial’s assignment in which OD flow sets to 1 on any OD pair W

on the three-dimensional network.  Then, p
AW

 estimated above is equal to paw(hr , h) on the two-dimensional network.

Because origin R on the three-dimensional network corresponds to origin r and departure time h
r
 on the two-

dimensional network, destination S to destination s, and link A to link a and entering time period h, respectively.

Estimation of OD Matrices
As discussed in the previous section, a relationship between OD flow and link flow is formulated as (3) using the

route choice probability.  Suppose link flow is observed as ( )�v ha  which consists of real link flow va(h) and its error

term εa(h):

( ) ( ) ( ) ( ) ( ) ( )∃ ,
,

v h v h h p h h q h ha a a aw r w r a
w hr

= + = ⋅ +∑ε ε .
����������������������

(6)

Unknowns qw(hr) must be estimated so that (6) is satisfied.  The number of conditions (6) is the number of observed

link (a) x the number of observed time-intervals (h), which is normally less than the number of unknowns, the number

of OD pairs (w) x the number of time-intervals (hr).  Hence, we can find many sets of OD matrices which satisfy (6)

and the problem is how we should choose a unique matrix among the candidate matrices satisfying (6).

In this study, we apply the Entropy Maximization method5) to this time-dependent model in order to choose a
unique matrix. �Here, a prior OD flow departing from the origin r of OD pair w at time-interval h

r
 is denoted as

( )�q hw r .  Then, OD flow ( )q hw r  and link flow ( )v ha  can be estimated as:

( ) ( ) ( ) ( )q h q h X hw r w r a
p h h

a h

aw r= ∏�
,

,
���������������������������������

(7)

( ) ( ) ( )v h v h X ha a a= −
�

1
γ

������������������������������������

(8)

in which Xa(h) is a parameter that can be obtained by solving

( ) ( ) ( ) ( ) ( ) ( )
� , � , ,

,

,,

v h X h p h h q h X h a ha a aw r w r a
p h h

a hw h

aw r

r

− =











∀∏∑

1
γ

��������������������(9)

The detailed derivation of (7), (8) and (9) is shown in reference6).  Here, a parameter γ  means a weight of link

observed errors.  The larger γ is, the lower observed errors are evaluated, and if γ = ∞ , it is the same as normal

entropy maximization method in which no errors are considered.



SOME EXTENSIONS ON THE MODEL

Aggregation of Time Axis and Simplified Estimation of Route Choice Probabilities
The model proposed in previous section needs to set time interval ∆t so short as to describe changes of link cost

(e.g. ∆t will be less than about 30 seconds.).  On the other hand, we usually need to estimate OD matrices of longer

time interval , such as 15-60 minutes.  Moreover, OD matrices at every ∆t time interval will not preferable because

stochastic changes are more dominant than trend changes.  Thus, it is practical to set much longer time interval than

∆t for estimation of OD matrices.

In this section, we discuss the simplification of estimating link use probability for longer time interval.  We re-

formulate a relationship between an OD flow and link flow for longer time interval assuming that OD flow rate does not

change through the long time interval ∆T = m]∆t, where m is positive integer.  For long time interval ∆T, we define

aggregated time-interval H(i) as follows:

H(i) = a set of m short time-intervals ∆t included in the time section [(i-1)∆T,i∆T], i = 1,2,...,H/m.

If Qw(i) is OD flow rate for OD pair w at the i-th long time-interval ∆T , (2) becomes

( ) ( ) ( )v h t Q i p h h ta w
i

aw r
h H iw r

⋅ = ⋅∑ ∑∑
∈

∆ ∆,
( )

.

Furthermore, let us aggregate link flow through the j-th long time-interval ∆T . So

( ) ( ) ( )
h H j

a w
i h H j

aw r
h H iw

v h t Q i p h h t

r∈ ∈ ∈
∑ ∑ ∑ ∑∑⋅ = ⋅

( ) ( ) ( )

,∆ ∆ .����������������������(10)

If we define Va(j) and Paw(i , j) as shown below, the above is simply rewritten as:

( ) ( ) ( ){ }V j T P i j Q i Ta aw w
w i

⋅ = ⋅ ⋅∑∆ ∆,
,

,
                             

(11)

where

                     
( ) ( )

( )
( )

( )
V j v h

t

T m
v ha a

h H j
a

h H j

= ⋅ =
∈ ∈
∑ ∑∆

∆
1

,
                           

(12)

( ) ( )
( )( )

P i j
m

p h haw aw r
h H jh H ir

, ,=
∈∈
∑∑1

.                             (13)

Paw(i , j) is a probability that a vehicle, departing from O node of OD pair w at the i-th time-interval ∆T , will be

observed in the link a at the j-th time-interval ∆T.  Since (2) and (11) have the exactly same form, OD matrices for

longer time interval ∆T can be estimated by the same method as for small time interval ∆t.

Next we consider efficient estimation of Paw(i , j) for longer time interval ∆T.  Basically, Paw(i , j) at the i-th and

j-th aggregated time-interval ∆T can be estimated from (13) if probability paw(hr , h) are obtained at all hr and h by the

method proposed in previous section.  However, the estimation of paw(hr , h) for every hr and h using small time

interval ∆t is quite tedious.  To decrease calculation times, we make some assumption that route choice activities or

link use probability does not change during a longer time period of ∆τ = c∆t.  Here c is a positive integer, which is the

number of short time-intervals ∆t included in ∆τ.  We assume ∆ ∆ ∆ ∆τ = ≤ =c t m t T and m/c is integer.

Practically speaking, ∆T and ∆τ might be 60 minutes and 30 minutes or so.  The n-th time-interval of ∆τ means [{( n-

1)c+1} ∆t,nc∆t] which is denoted as N(n), and the initial time of N(n) is written as s(n)=(n-1)c+1

Now we assume that route choice probabilities do not change at each time-interval of ∆τ and vehicles departing

from the same origin during the same time-interval ∆τ have the same route choice probabilities.  That is,

paw(s(n) + l, h) = paw(s(n), h - l) , l = 0, 1, 2, ......., c - 1.

Thus, paw(hr , h) can be written as:
( ) ( )( ) ( )( )p h h p s n l h p s n h law r aw aw, , ,= + = − , ( ) ( )l h s n h N n a w n hr r= − ∈ ∀, , , , ,           (14)

From (12), paw(hr , h)
�

for all hr and h can be estimated by calculating only probabilities at the first short time-interval ∆t

of any the n-th time-interval ∆τ.  Then, aggregated time link use probability Paw(i , j)
�

can be estimated from (13).



Use of Spatially or Temporally Aggregated Prior OD Flow
The OD estimation model proposed in the study needs prior OD matrices � ( )q hw r  for the target OD.  However,

in many cases, time-dependent prior OD matrices for fine zone-to-zone level are not available, but more global

(aggregated) matrices such as daily OD matrices for larger zones.  In this section, we discuss how spatially aggregated

prior OD information can be utilized.

First of all, spatially and/or temporally aggregated OD can be expressed as linear summation of the minimum unit

of OD flow, qw(hr). Aggregated OD flow is denoted as g u Uu , ∈ , in which u is number of aggregated OD flow, and U

is a set of aggregated OD flow.  Then, aggregated OD flow can be formulated by using minimum OD flow as
( ) ( )g a w h q hu u r w r

w hr

= ⋅∑ ,
,

,

�����������������������������������

(15)

where

�����

φ(u) : a set of OD pair and departure time ( )w hr,  included in aggregated OD flow g u Uu , ∈ ,

     ( )a w hu r,  qw(hr) : a parameter that expresses contribution of ( )q hw r  to gu. ( )a w hu r,  is 1 if ( ) ( )w h ur, ∈φ

and 0 otherwise.
Now we use �gu

 for prior aggregated OD flow, and ηu for deviation of �gu
 from gu:

( ) ( )
�

,
,

g g

a w h q h

u u u

u r w r u
w hr

= +

= +∑
η

η
.
����������������������������������

(16)

The (16) is very similar to (6) : u U∈  corresponds to ( )a h W, ∈ , gu corresponds to ( )a w hu r,  and ( )a w hu r,  corresponds to
( )p h haw r , .  Therefore, by substituting ( )a w hu r,  for ( )p h haw r ,  and �gu

 for ( )a w hu r,  in (7),(8),(9), the following equation

can be obtained.

( ) ( ) ( )g X a w h q h X uu u u r w r u
a w h

uw h

u r

r

⋅ = 







∀− ∏∑
1
γ , � ,,

,

From this equation, Xu can be solved, and ( )q hw r  can be obtained as shown below by substituting Xa(h) for Xu in (7):

( ) ( ) ( ) ( ) ( )q h q h X h g Xw r w r a
p h h

a h
u u

a w h

u

aw r u r= ⋅∏ ∏� �
,

,

, .

NUMERICAL EXAMPLES
We apply the model discussed above to a test network as shown in Fig.3.

The time interval used in the model is ∆t=10 sec, ∆τ=30 min., and ∆T=1 hour

and we estimate OD matrices for every 1 hour.  The experiment is carried out in

the following way.  First, link travel time are given for all links at every time-

interval ∆t.  Link use probabilities Paw(i , j) for every ∆T=1 hour are estimated

by the Dial’s assignment on the three-dimensional network from (15) and (14).

Here, the Dial’s parameter is assumed θ=0.001[1/sec].  Next, real OD demand

for every 1 hour is assigned to each link based on link use probabilities Paw(i , j).

These link use probabilities and link flows are used in the model as input data.

All link flows assumed to be observed and hourly OD flow is used for the prior

matrices of the model.  Using these data, OD matrices were estimated by

proposed OD estimation method using parameter γ = 1.0.  We examine the

model behavior by comparing OD estimates with real OD matrices assumed.

We examine several cases on the different conditions of observed link flow

and prior OD flow.  Three patterns are considered on observed link flow: no

error, maximum 10% error, and 20% error.  In a similar way, four patterns are

considered on the prior OD flow: no deviation, maximum 10% deviation,

maximum 20% deviation, approximated prior OD rounded off to the hundred

�

�

� � �

�

�

����

Figure 3  Test Network

Table 1  Result of Simulation

D:max 20%, E:round off hundreds
A:no error, B:max 10%, C:max 20%

A:no prior OD, B:no deviation,C:max 10%,

prior
OD

observed
error

correlation
coefficient

RMSE
(Veh/h)

PRMSE
(%)

Case 1 ¾ ¾ 0.456 191.6 80.5
Case 2 ¿ ¾ 0.953 51.0 21.4
Case 3 ¿ ¿ 0.950 52.0 21.8
Case 4 ¿ À 0.940 55.7 23.4
Case 5 À ¾ 0.947 52.8 22.1
Case 6 Á ¾ 0.937 56.3 23.7
Case 7 Â ¾ 0.925 59.9 25.2
Case 8 Â ¿ 0.924 60.2 25.3
Case 9 Â À 0.916 63.1 26.5

prior OD

observed error



digit.  We examine nine cases in combination with these above cases.

The results of these experiments are shown in Table.1, which describes correlation coefficients between estimated OD

matrices and assumed real OD, Root Mean Square Errors (RMSE ) and Percent Root Mean Square Errors(PRMSE).  First, let

us see the correlation coefficient between OD estimates and real OD matrices.  In the case that no prior OD flow is given

(Case 1), the correlation coefficient is very low ; however, we can get rather good result in the cases with prior OD flows

(Case2-9). which agrees with the same result as previous studies on static OD estimation.  In the Entropy Maximizing Method,

to get more precise OD matrices, it is a major factor to give more precise prior OD information close to real OD matrices.

Secondly, let us examine a effect of errors observed on link flows.  The correlation coefficient get lower and RMSE(or

PRMSE) increases when observed error gets larger(Case 2,3,4 and Case 7,8,9).  However, in the case that observed error is

maximum 10%(Case 3,8) the correlation coefficient, RMSE and PRMSE is almost same in comparison with the case that

observed error does not exist(Case 2,7).  Although we cannot say so definitely, it shows that a effect of observed errors of link

flows on the accuracy of the model is not so large if observed error is sufficiently small.

Thirdly, consider effect of deviation of prior OD matrices.  Four cases(Case 2,5,6,7) are tested in cases without observed

link flow error.  From these results, the larger deviation of prior OD matrices is, the worse accuracy of the model is.  It shows

that deviation in prior OD matrices have an effect on the accuracy of the model.

Fig.4 indicates hourly OD volumes from O node 6 to D node 1.  This is the case that hourly OD volumes is the largest

of all OD pairs in the network and its prior OD volumes have positive deviation from assumed ones.  Fig.4(a) is the case

where observed link flow error does not exist (Case 2,5,6), and (b) is the case where the deviation of prior OD matrices does not

exist (Case 2,3,4).  These figures indicate good fitness of time variation between estimated OD flows and assumed one.  Note

that the estimated OD flow varies uniformly in accordance with the deviation of prior OD matrices in the case of (a), but not

uniformly in the case of (b).

CONCLUSION
In the study, we propose the model estimating time-dependent OD matrices from traffic counts in the general

network.  The model consists of two parts : (1) construction of the relationship between the time-dependent OD
volumes and traffic counts at links and (2) estimation of the time-dependent OD.  For the practical use, we propose the
simplified method of estimating route choice probability and the method to use aggregated prior OD information.

We apply the model to a test network.  The main results that have been made in this examples are as follows: (1)We

can get rather preferable OD estimator in the case that prior OD matrices are given. (2) It is assumed that a effect of observed

errors of link flows on the accuracy of the model is not so large if observed error is sufficiently small, but deviation of prior OD

matrices have an effect on the accuracy of the model.  (3) We can see good fitness of time variation between estimated OD

flows and assumed one using the model.

We cannot mention the theoretical study on estimation errors or caused by link observed error, link use

probabilities error and so on.  So further study on such area must be made based on reliability analysis of the model.
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Figure 4  Time Variation of Estimated OD flow
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APPENDIX
The, Lagrangean of problem (P1), L, is:

( ) ( ) ( ) ( ) ( ) ( )
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Partial derivatives of L with respect to both unknown variables, ( )p hkw r  and ( )p hkw r , are
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Thus, by Kuhn-Tucker’s condition,
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w
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w
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+ + − ⋅ =∑ .

can be derived if  ( )p hkw r  is positive.

Thus, route choice probability of path k is written as:

( ) ( )( ) ( ){ }p h C h hkw r a ak
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⋅ − ⋅ −∑exp expθ τ δ θ λ 1 .

Using ( )p hkw rk
=∑ 1,  the above equation can be rewritten as:
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This equation corresponds to the route choice probability defined in.(4). Thus, it is proved that the solution of problem

(P1) gives the route choice probability defined in the former section.


