Dynamic User Optimal Assignment with Physical Queues for a Many-to-Many OD Pattern

多起点多終点 OD における渋滞延長を考慮した動的利用者最適交通量配分

Masao KUWAHARA* and Takashi AKAMATSU**

1. Introduction

This research discusses the formulation and a solution algorithm of the dynamic user optimal assignment considering effects of physical queues with a given many-to-many OD pattern. In the dynamic user optimal assignment which is sometimes called the reactive assignment, vehicles are assumed to choose their routes based on present instantaneous travel times.

2. Network and Traffic Demand

A network consists of links and nodes. Sequential numbers from 1 to N are allocated to N nodes. The number of links is L and a link from node i to j is denoted as link (i,j). A time-dependent many-to-many OD demand is assumed to be given, which is denoted as

\[Q_{ij}(t) = \text{cumulative OD demand from origin } i \text{ to destination } j \text{ generated at the origin by time } t \text{ (given).} \] (1)

The cumulative arrival and departure curves are defined as follows:

\[A_{ij}(t) = \text{the cumulative arrivals at link } (i,j) \text{ by time } t, \] (2)

\[D_{ij}(t) = \text{the cumulative departures from link } (i,j) \text{ by time } t. \] (3)

\[\lambda_{ij}(t) = \text{the arrival rate at link } (i,j) \text{ at time } t = dA_{ij}(t)/dt, \] (4)

\[\mu_{ij}(t) = \text{the departure rate from link } (i,j) \text{ at time } t = dD_{ij}(t)/dt. \] (5)

The \(A_{ij}(t) \) and \(\lambda_{ij}(t) \) are unknown variables which must be determined so as to establish the DUO assignment principle defined later.

3. Constraints

3.1 Flow Conservation at Nodes

The first constraint is the flow conservation at a node:

\[-\sum_{i} D_{i}(t) + \sum_{j} A_{j}(t) - Q_{ij}(t) = 0, i=1,2,...,N, i \neq d. \] (6)

\[A_{ij}(t) = \text{the cumulative arrivals at link } (i,j) \text{ to destination } d \text{ by time } t, \]

\[D_{ij}(t) = \text{the cumulative departures from link } (i,j) \text{ to destination } d \text{ by time } t. \]

3.2 First In First Out Discipline

Second, under the FIFO discipline, a vehicle must leave link (i,j) in the same order as its order of arrival at the link. Thus, the \(A_{ij}(t) \) and \(D_{ij}(t) \) must be related to each other through link travel time \(T_{ij}(t) \):

\[A_{ij}(t) = D_{ij}(t + T_{ij}(t)) \quad \text{or} \quad A_{ij}(t) = D_{ij}(t + T_{ij}(t)) \] (7)

where \(T_{ij}(t) = \text{travel time on link } (i,j) \text{ for a vehicle entering the link at time } t \). Therefore, the link travel time \(T_{ij}(t) \) is written as a function of \(A_{ij}(t) \) and \(D_{ij}(t) \):

\[T_{ij}(t) = D_{ij}^{-1}(A_{ij}(t)) - t \text{ or } T_{ij}(t) = D_{ij}^{-d-1}(A_{ij}(t)) - t. \] (8)

The derivative of (7) is obtained as

\[\lambda_{ij}(t) = \mu_{ij}(t + T_{ij}(t))(1 + dT_{ij}(t)/dt), \]

where \(\lambda_{ij}(t) = dA_{ij}(t)/dt \) and \(\mu_{ij}(t) = dD_{ij}(t)/dt. \)

* 5th Department, Institute of Industrial Science, University of Tokyo
** Toyohashi University of Technology
Since \(\sum \mu_i^d(t) = \mu_i(t) \), eventually the departure rate becomes:

\[
\mu_i^d(t + T_i) = \mu_i(t + T_i) \cdot \frac{\lambda_i^a(t)}{\lambda_i(t)}.
\]

(9)

We clearly see the role of the FIFO discipline; that is, departure rate \(\mu_i^d(t + T_i) \) is controlled not only by its arrival rate \(\lambda_i^a(t) \) but also by arrival rates to other destinations \(\lambda_i^a(t) \)'s, \(d' \neq d \).

4. Physical Queues

Actual queues have some physical lengths. Once a link is fully occupied by a queue, the departure flow rate from the upstream link must be limited to the rate of the downstream link with the queue. To incorporate this phenomena, we have to first analyze the shock-wave speed of the congested flow and then discuss how the departure flow rate should be adjusted due to a queue downstream.

4.1 Shock-Wave Speed

To analyze the wave propagation, the following variables are introduced:

\[
F_i(x,t) = \text{the cumulative number of vehicles passing at location } x \text{ on link } (i,i) \text{ by time } t,
\]

\[
f_i(x,t) = \text{the flow rate at location } x \text{ on link } (i,i) \text{ at time } t,
\]

\[
k_i(x,t) = \text{the density at location } x \text{ on link } (i,i) \text{ at time } t,
\]

where location \(x \) means a length toward upstream from the downstream end on a link. By definition, the derivatives of flow and density are:

\[
f_i(x,t) = \frac{\partial F_i(x,t)}{\partial t},
\]

\[
k_i(x,t) = \frac{\partial F_i(x,t)}{\partial x}.
\]

Furthermore, the flow-density relationship is assumed a triangle shape as shown in Fig.1 at any time \(t \) and location \(x \) on link \((i,i) \), in which the wave speed \(\frac{\partial f_i}{\partial k_i} \) is constant \(v_{ij} \) or \(v'_{ij} \). From the flow conservation, we obtain:

\[
\frac{\partial k_i(x,t)}{\partial t} = \frac{\partial f_i(x,t)}{\partial x}.
\]

(12)

Thus, its derivative \(df_i(x,t) \) is written as follows:

\[
\frac{df_i(x,t)}{dt} = \frac{\partial f_i(x,t)}{\partial x} \cdot \frac{dx}{dt} = \frac{\partial f_i(x,t)}{\partial x} \cdot \frac{dx}{dt}.
\]

On a trajectory with speed of \(-dx/dt = \partial f_i/\partial k_{ij} \), \(df_i(x,t) \) hence becomes:

\[
\text{Flow } f_i(x,t) \text{ [veh/unit time]}
\]

\[
\text{Density } k_i(x,t) \text{ [veh/unit length]}
\]

Fig. 1 A Flow-Density Relationship on link \((i,j)\).

\[
df_i(x,t) / dx = \partial f_i(x,t) / \partial x + \partial F_i(x,t) / \partial t \cdot dt/dx
\]

\[
= k_i(x,t) + f_i(x,t) \cdot dt/dx
\]

\[
= k_i(x,t) - f_i(x,t) \cdot dk_i/df_i
\]

\[
= k_{max}/v_{ij}
\]

(14)

Since the above means that \(df_i(x,t)/dx \) takes the same constant value of \(k_{max}/v_{ij} \) independent of location \(x \), we can draw \(F_i(\epsilon_{ij},t) \) at the upstream end of the link by shifting \(D_i(t) = F_i(0,t) \) horizontally by \(-\epsilon_{ij}/v_{ij} \) and vertically by \(k_{max}/v_{ij} \). In Figure 2, the shifted line \(D_{ij}(t) \) is shown and the intersection of \(D_{ij}(t) \) and \(A_{ij}(t) \) is known as the shock wave.

4.2 Adjustment of Departure Flow Rate

When a queue fully backs up on a link as for \(t_1 \) to \(t_2 \) in Figure 2, the departure flow rate from the upstream link must be limited up to the downstream link capacity. For point queues, the departure flow rate of vehicles leaving link \((i,j)\) at \(t + T_i(t) \) (entering link \((i,j)\) at time \(t \)) is defined using the constant link capacity \(\mu_i^* \):

\[
\mu_i(t + T_i(t)) = \begin{cases}
\mu_i^*, & T_i(t) > \epsilon / v_{ij} \text{ or } \lambda_i(t) > \mu_i^* \\
\lambda_i(t), & \text{otherwise},
\end{cases}
\]

(15)

On the other hand, for physical queues, the link capacity

\[
\text{Flow } f_i(x,t) \text{ [veh/unit time]}
\]

\[
\text{Density } k_i(x,t) \text{ [veh/unit length]}
\]
cannot be constant because it depends upon traffic condition downstream. However, the capacity would be determined based on downstream traffic condition by present time \(t \) (independent of future traffic condition). Therefore, in general, the departure flow rate \(\lambda_d(t) \) can be written as a function of arrival rates at all links by time \(t \):

\[
\lambda_d(t) = \lambda_d(\lambda(t) | t' < t)
\]

(16)

where \(\lambda(t) = (\lambda_{11}(t), \lambda_{12}(t), \ldots, \lambda_{ij}(t), \ldots,)^t \), although the explicit functional form of \(\lambda_d(\lambda(t) | t' < t) \) depends on the road geometry as well as traffic condition at the downstream end of the link.

5. Dynamic User Optimal Assignment

5.1 Outline of the Assignment

Every vehicle is assumed to choose the shortest route to its destination at any time based on the present instantaneous link travel times. Let \(\pi_d(t) \) be the shortest travel time from node \(i \) to destination \(d \) prevailing at time \(t \), which means that \(\pi_d(t) \) is the sum of link travel times along the shortest route \(\rho_d \) evaluated at time \(t \): \(\pi_d(t) = \Sigma T_d(t) \).

Similar to the static assignment, the required condition for the DUO assignment is defined such that

\[
\pi_{id}(t) - \pi_{jd}(t) = T_d(t), \quad \text{if a vehicle with destination } d \text{ leaving node } i \text{ at time } t \text{ uses link } (i, j),
\]

\[
\pi_{id}(t) - \pi_{jd}(t) \leq T_d(t), \quad \text{otherwise.}
\]

(17)

According to the definition, the route choice of vehicles is clearly dependent only upon the instantaneous link travel times at present time \(t \), but independent of the future link travel times. Therefore, the assignment is decomposed with respect to present time \(t \).

At present time \(t \), \(\lambda_{ij}(t') \) and \(\mu_{ij}(t') \) are assumed to be evaluated for every link and destination for \(t' < t \). Let us consider to determine \(\lambda_{ij}(t') \) for every link and destination. From (16), \(\mu_{ij}(t) \) is first determined and departure rate by destination \(\mu_{ij}(t') \) is determined from (9):

\[
\mu_{ij}(t') = \mu_{ij}(t) \cdot \frac{\lambda_{ij}(t)}{\Sigma \lambda_{ij}(t')}, \quad t = t + T_d(t)
\]

Since the flow conservation must be satisfied at node \(i \), the following result is obtained from (6):

\[
\Sigma \lambda_{ij}(t) = q_{id}(t) + \Sigma \mu_{ij}(t), \quad (18)
\]

where, \(q_{id}(t) = dQ_{id}(t)/dt \) (given), \(i = 1, 2, \ldots, N \), \(i \neq d \).

The total arrival rate \(\Sigma \lambda_{ij}(t) \) can be known because the right hand side of (18) has been evaluated but individual arrival rate \(\lambda_{ij}(t) \) must be determined through the DUO assignment based on link travel times estimated below. Since the minimum of link travel time is \(\ell_j/V_{ij} \), link travel times at time \(t \) is estimated using the departure flow rate at present time \(t' \):

\[
T_d(t) = D_n^{-1}(A_d(t)) - t_d,
\]

\[
\equiv \max \{ \ell_j/V_{ij}, \{ A_d(t) - D_d(t)/|u_d(t)| \} \}.
\]

(19)

Using the estimated link travel times \(T_d(t) \)'s, the shortest route from node \(i \) to destination \(d \) can be determined without difficulty by a standard shortest route algorithm.

Even if there are two or more equally shortest routes from node \(i \) to \(d \), the total rate of \(\Sigma \lambda_{ij}(t) \) could be loaded onto one of the shortest routes in order to establish the DUO assignment principle by definition. As the result, \(\lambda_{ij}(t) \) for \(\forall (i,j) \) and \(\forall d \) is determined at time \(t \).

5.2 A Solution Algorithm

First, the time axis is divided into small intervals of equal length \(\Delta t \). The arrival and departure rates of link \((i,j) \), \(\lambda_{ij}(t) \) and \(\mu_{ij}(t) \), are assumed constant during \((t, t+\Delta t) \).

Step 1: Initialize link flow rates, cumulative curves, link travel times and present time.

\[
\lambda_{ij}(t) = \lambda_{ij}(0), \quad t < 0, \quad \forall (i,j), \quad \forall d,
\]

\[
\mu_{ij}(t) = \mu_{ij}(0), \quad t < 0, \quad \forall (i,j), \quad \forall d,
\]

\[
A_d(t) = A_d(0), \quad t < 0, \quad \forall (i,j), \quad \forall d,
\]

\[
D_d(t) = D_d(0), \quad t < 0, \quad \forall (i,j), \quad \forall d,
\]

\[
T_d(t) = T_d(0), \quad t < 0, \quad \forall (i,j), \quad \forall i, \quad t = 0.
\]
Set Δt as $\Delta t = \min_{j} \frac{\ell_{ij}}{v_{ij}}$.

step 2: Determine departure rates $\mu_{ij}(t)$ and $\mu_{ij}(t)$ from (16) and (9).

step 3: Estimate link travel time $T_{ij}(t)$ from (19).

step 4: Determine the total arrival rate at node i for $[t, t+\Delta t]$, $\Sigma \mu_{ij}(t)\cdot \Delta t$, based on (18).

step 5: Find the shortest path from node i to destination d based on the estimated link travel time $T_{ij}(t)$ and determine $\lambda_{ij}(t)\cdot \Delta t$ by loading $\Sigma \mu_{ij}(t)\cdot \Delta t$ onto a link starting from node i on the shortest path as shown in Fig. 4; if link (i,j) is on the shortest path, $\lambda_{ij}(t)\cdot \Delta t = \Sigma \lambda_{ij}(t)\cdot \Delta t$, otherwise zero.

step 6: Extend $A_{ij}(\cdot)$ and $D_{ij}(\cdot)$ from time t to $t+\Delta t$ by straight lines with slopes $\lambda_{ij}(t)$ and $\mu_{ij}(t)$ respectively as shown in Fig. 4.

step 7: If $T_{ij}(t) > \ell \frac{\ell_{ij}}{v_{ij}}$ (a queue exists on link (i,j)), extend $D_{ij}(\cdot)$ by shifting $D_{ij}(\cdot)$, $t < t' \leq t + \Delta t$, horizontally by $-\frac{\ell_{ij}}{v_{ij}}$ and vertically by $\kappa_{ij} \ell_{ij}$ as in Fig. 4.

step 8: Update Back-Up-Flag$_{ij}$ which indicates whether a queue backs up to the upstream link: if $A_{ij}(t+\Delta t) \geq D_{ij}(t+\Delta t)$, Back-Up-Flag$_{ij}$:= 1; otherwise zero.

step 9: Update present time as $t := t + \Delta t$ and return to step 2.

In step 1, the small time interval Δt is set such that $\Delta t \leq \min_{(i,j)} \frac{\ell_{ij}}{v_{ij}}$ because of the following reason. To determine departure rate in step 2, the backward wave generated at the downstream end of link (i,j) at time t should not reach the upstream end before $t + \Delta t$: $\Delta t \leq \min_{(i,j)} \frac{\ell_{ij}}{v_{ij}}$. Normally, wave speed in free flow region v_{ij} is larger than $-\frac{\ell_{ij}}{v_{ij}}$, we obtain the constraint $\Delta t \leq \min_{(i,j)} \frac{\ell_{ij}}{v_{ij}}$. Normally, wave speed in free flow region v_{ij} is larger than $-\frac{\ell_{ij}}{v_{ij}}$, we obtain the constraint $\Delta t \leq \min_{(i,j)} \frac{\ell_{ij}}{v_{ij}}$.

In step 3, link travel time $T_{ij}(t)$ is estimated by extending $D_{ij}(\cdot)$ by a straight line with slope $\mu_{ij}(t)$ as shown in Fig. 3. The estimated travel time is based on the departure rate during $[t, t+\Delta t]$, and hence the estimate may be different from the actual travel time experienced by a vehicle entering the link at time t.

Fig. 3 Construction of Cumulative Arrival and Departure Curves on link (i,j).

6. Summary and Future Research Needs

Given time dependent many-to-many OD volumes, we first discuss the formulation of the assignment so as to satisfy the flow conservation and the First-In-First-Out queue discipline. Then, defining the optimal condition, we extend the discussion with point queues to one with physical queues based on the kinematic wave theory by Newell.

(Manuscript received, May 8, 1996)

References

