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Abstract 
This paper compares the performance of California, University of California, Berkeley, and 
Tokyo Metropolitan Expressways (MEX) freeway incident detection algorithms and artificial 
neural network model.  The selected algorithms are calibrated and evaluated using MEX 
real-life incident data.  Results of the fully calibrated algorithms are presented. 

 

INTRODUCTION 
Freeway incident management system often relies on incident detection algorithms to detect 
incident.  Early detection of incident reduces the time to execute an incident management plan 
and as a result reduces the delay to traffic and increases safety.  

Since 1970s a variety of freeway incident detection algorithms have been developed based on 
traffic flow theory, pattern recognition and statistical techniques.  Some of the widely known 
algorithms are California algorithm (Payne et al.1976), McMaster algorithm (Hall et al. 1993), 
ARIMA algorithm (Ahmed and Cook 1982), HIOCC (Collins 1983; Steed and Clowes 1989), 
ARRB-VicRoads (Luk and Sin 1992), University of California, Berkeley (UCB) algorithm (Lin 
and Daganzo 1997) and Tokyo Metropolitan Expressways (MEX) algorithm (MEX et al. 1993).  
In this paper, this group of algorithms will be referred to as rule based algorithms.  Recent 
development of freeway incident detection algorithms involves using Artificial Neural Network 
(ANN) (Ritchie and Cheu 1993; Dia et al. 1996). 

Many incident detection algorithms have been developed but there is little comparative study 
on the performance of freeway incident detection algorithms by fully calibrating and evaluating 
algorithms using real life data.  Hence it is not possible to compare the performance of 
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individual algorithms. 

The objective of this paper is to compare the performance of three rule based algorithms 
(California, UCB and MEX algorithms) and an ANN model using real life incident data 
collected on the Tokyo Metropolitan Expressways.  The selected algorithms and ANN model 
are calibrated and evaluated on separate field data. 

This paper discusses the performance indicators used to evaluate the performance of incident 
detection algorithms.  Descriptions of each selected algorithm and of the incident data used in 
this study are introduced.  The calibration process of rule based algorithms, training of ANN 
model, the calibration and evaluation results are presented. 

 

 

PERFORMANCE INDICATORS 
Before comparing the performance of incident detection algorithms, the performance indicators 
used to evaluate the algorithms performance are discussed. The performance of an incident 
detection algorithm are characterised by: 

• Detection rate (DR) 

The number of detected incidents to the recorded number of incident in the data set.  
Detection rate is given as a percentage. 

• False alarm rate (FAR) 

The number of incorrect detection interval to the total number of intervals the algorithm 
was applied.  False alarm rate is usually expressed as percentage per section (ie between 
upstream and downstream detector stations) over time period.  The time period 
commonly used is the data sampling period of the traffic sensors.  This paper expresses 
FAR in percentage per section per day because different traffic systems have different 
sampling rate.  Using time period of one day allows comparison of FAR over different 
traffic system independent of the traffic sensors sampling period. 
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where  

 Nf  is the number of incorrect detection interval, 

Nt is the total number of intervals the algorithm was applied, and 
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Nh is the number of intervals per hour. 

• Mean time to detection (MTTD) 

The time to detection is the time difference between the time the incident was detected by 
the algorithm and the actual time the incident occurred.  The mean time to detection 
(MTTD) is the average time to detection over n incidents. 

 

Detection rate and false alarm rate measure the effectiveness of an algorithm while the mean 
time to detection reflects the efficiency of the algorithm.  These performance measurements 
are positively correlated.  Algorithms set to detect large number of incidents are highly 
sensitive and also tend to generate a large number of false alarms.  On the other hand less 
sensitive algorithms detect fewer incidents and produce fewer false alarms.   

Since false alarms are generally caused by random fluctuation of traffic flow, persistence test is 
applied by raising an incident alarm only when multiple incidents are detected in consecutive 
intervals.  The trade off is longer detection time and results in a greater impact on traffic. 

The three performance measures are inter-related and it is not necessary to seek one optimal 
setting.  The incident detection calibration must balance the DR, FAR and MTTD 
combinations for a specific application. 

 

INCIDENT DETECTION ALGORITHMS 
The following incident detection algorithms are selected for this study and are discussed in 
details: 

• California algorithm, 

• University of California, Berkeley (UCB) algorithm, 

• Tokyo Metropolitan Expressway (MEX) algorithm, and 

• Artificial Neural Network (ANN) model. 

 

Further details regarding the wide range of incident detection algorithms can be found in Chang 
et al (1993) and Black (1996). 
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California Algorithm 
The California algorithms developed in the late 1960s for use in Los Angeles freeway 
surveillance control centre is perhaps the mostly widely known AID algorithm (West 1971; 
Payne et al 1976).  Along with the McMaster algorithm (Hall et al. 1993), they are often used 
as a standard for measuring the performance of other algorithms. 

The California algorithm analysis is based on loop occupancy variables and is given by: 

(i) the average occupancy at the downstream detector 

Ou (t) Od (t) k− > 1  

�symbol 0 \f "Tiiithe difference in occupancy between the upstream and downstream 
detectors 

Ou (t) Od (t) k− > 1  

�symbol 0 \f "Tiiiithe difference in the occupancy between the upstream and 
downstream detectors relative to the upstream occupancy 
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−
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�symbol 0 \f "Tiivthe rate of change in the downstream occupancy at a given time 
interval 
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where 

 Ou(t) is the upstream occupancy at time t, 

 Od(t) is the downstream occupancy at time t, 

 ∆ is the time interval offset (s), and 

 T1, T2, T3, T4, T5 are the pre-determined threshold values. 

There are more than 10 versions of the California algorithm and algorithm 8 (see Fig. 1) is the 
version currently used in California.  This algorithm has an element in addition to the 
variations to the classic California algorithm (algorithm 1 to 7), that detects compression wave 
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at the downstream station.  Only algorithm 8 is selected for this study.  

The structure of algorithm 8 (see Fig. 1) can be broadly divided into two branches.  One 
branch is for cases when compression waves are detected and the other is for cases when there 
are no incidents, incidents are tentative, confirmed or continuing.  The first occurrence of a 

compression wave at the downstream detector is when Od(t) ≥ T5 and Od(t-∆τ)-Od(t)/Od(t-∆τ) 
<T2.  After the detection of compression waves at the downstream station, the incident 
detection element of the algorithm is suppressed for 5 minutes.  The compression wave 
element in algorithm 8 lowers the false alarm rate and slightly increases the mean time to 
detection. 

The detection status changes from incident free to tentative incident when conditions (i), (ii) 
and (iii) are satisfied.  If condition (iii) persisted, the status of the incident is upgraded from 
tentative to confirmed and from confirmed to continuing. 
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State Designates
    0 Incident free
    1 Compression wave downstream in this minute
    2 Compression wave downstream 2 minutes ago
    3 Compression wave downstream 3 minutes ago
    4 Compression wave downstream 4 minutes ago
    5 Compression wave downstream 5 minutes ago
    6 Tentative incident
    7 Incident confirmed
    8 Incident continuing
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Fig. 1 - California algorithm #8 flow chart (Source: ???) 

University of California, Berkeley (UCB) Algorithm 
Recently developed at University of California, Berkeley (Lin and Daganzo 1997), this 
algorithm analyses the difference in upstream and downstream cumulative occupancies for 
significant disturbances.  Cumulative sums allow the past observations to be automatically 
remembered and robust results to be obtained despite random fluctuations in data.  Under 
normal traffic conditions the cumulative difference typically dwells around zero.  Sustained 
deviations suggest the presence of an incident.  An incident alarm is triggered whenever 

( )1jtY +  exceeds the detection threshold, τξ0. 
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The UCB algorithm analysis can be expressed by: 
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where 

 Ou(t) is the upstream occupancy at time t, 

 Od(t) is the downstream occupancy at time t, and 

τβ is the critical occupancy difference beyond which incidents can be detected. 

The use of cumulative occupancies in the UCB algorithm means that when there are missing or 
corrupt data due to communication error at a detector station, the UCB algorithm analysis may 
show this situation as an incident.  The comparison of cumulative occupancy also means that 
conservation of flow needs to be preserved for example at a pair of detector stations between 
on-ramp and off-ramp.   In order to overcome the two shortcomings of the UCB algorithm the 
following measures were introduced: 

• when there is missing or corrupt data during a particular interval, the traffic data of the 
pervious interval is used 

• no detection would be carried out at detector stations between an on-ramp or an off-ramp.  
A better approach would be to use the on-ramp or off-ramp traffic data.  Unfortunately 
the on-ramp and off-ramp traffic data were not available.   

In Tokyo Metropolitan Expressway ramps spacing are very close together.  For example 
in the inbound direction of Route 4 there are 7 ramps approximately 7km from downtown 
Tokyo.  Therefore at locations close to downtown Tokyo it can be difficult to find a pair 
of detector station that does not have a ramp.  The ramp configuration of the Tokyo 
Metropolitan Expressway would reduce the usefulness of UCB algorithm unless the ramp 
information is used. 

 

Tokyo Metropolitan Expressway (MEX) Algorithm 
The Tokyo Metropolitan Expressway (MEX) has 250 km of freeway under its jurisdiction.  
About 1600 sensors are installed on the freeways. At present there are two control centres 
monitoring the Tokyo metropolitan freeway systems.  One control centre monitors the eastern 
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section and the other control centre monitors the western section.  In future all the traffic 
surveillance will be carried out from one control centre. 

In 1993 MEX commissioned a study to develop a rule based freeway incident detection 
algorithm. One of MEX specification for developing the freeway incident detection algorithm 
was to minimise false alarm rate.  The objective was to develop an algorithm that will assist 
the operator at the traffic control centre detect incidents without increasing the operators 
workload due to false alarms.  Everyday operators in the traffic control centre have to manage 
about 90 incidents (45 vehicles breaking down and 45 accidents) that occurs on MEX freeways.  
A relatively high false alarm rate would add a significant workload to the operators. 

MEX algorithm analysis compares the flow and speed between upstream and downstream 
detector stations and starting from the upstream detector station.  The traffic parameter 
sampling rate for the MEX system is at 1 minute interval.  The MEX algorithm (see Fig. 2) is 
divided into free flow and congested flow based on the current speed v(t).  The detector 
station is considered as free if the current speed v(t) > vf. 

For upstream detector station with free flow condition at time t, three criteria have to be 
satisfied before an incident can be classified as a tentative incident: 

(i) average traffic flow rate at the detector station must be ≤ q2 and ≤ q3 for 2 and 3 lanes 
respectively, 

(ii) speed change at the detector station v (t-2) - v(t) ≥ ###f where v (t-2) is the 3 minutes 
moving average at time t-2 minutes, 

(iii) speed difference b etween the upstream and downstream stations ≥ δf.  

When all the above criteria are satisfied, persistency check using only criterion (iii) is applied 
at time t+1 and t+2.  In the case where criterion (iii) persisted, an incident is confirmed only 
when criterion (vi) is satisfied. Criterion (vi) states that the flow condition at two upstream 

detector stations are ≤ vf (ie. congested) and the flow condition at two downstream detector 
stations are > vf (ie. free). If the traffic condition failed the persistency test, the whole process is 
repeated from the start at the next time interval.  A confirmed incident is verified as 
continuing when the third and fourth criteria are satisfied. 

The criteria for congested flow condition differ slightly from the free flow condition.  At time 
t, two criteria have to be satisfied before an incident can be classified as a tentative incident: 

(iv) speed change at the detector station  v (t-2) - v(t)  ≥ ###c2 and ≥ ###c3 for 2 and 3 
lanes respectively, where v (t-2) is the 3 minutes moving average at time t-2 minutes, 

• if v (t-2) - v(t) < 0 the current detector station is considered as an downstream 
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station, and 

• if v (t-2) - v(t) > 0, the current detector station is considered as a upstream station. 

(v) the speed difference between the upstream and downstream detector stations vu(t) – vd(t)  

≥ δc2 and ≥ δc3 for 2 and 3 lanes respectively. 

When both criteria above are satisfied, persistency check using criterion (v) only is applied at 
time t+1, t+2, t+3 and t+4.  In the case where criterion (v) persisted, an incident is confirmed 
only when the criterion (vi) is satisfied.  Criterion (vi) states that the flow condition at two 

upstream detector stations are ≤ vf (ie. congested) and the flow condition at two downstream 
detector stations are > vf (ie. free).  If the traffic condition failed the persistency test, the whole 
process is repeated from the start at the next time interval.  A confirmed incident is verified as 
continuing when criteria (v) and (vi) are satisfied.  

The comparison of speed change at detector stations (see criteria ii and iv) with threshold 
values in the range of 20-30 km/h is only applicable when the incident happens.  This means 
that MEX algorithm has only one chance to detect incidents.  This is fine provided that the 
algorithm can detect all the incidents when they occurred.  However perfect detection rate is 
not possible in real life application. 
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Fig. 2 – MEX incident detection algorithm flow chart 

 

Different speed thresholds are used for freeway with 2 and 3 lane configurations (see criteria i, 
iv and v).  The current version of MEX algorithm did not address which threshold should be 
use at freeway section that are in the transition between 2 to 3 lanes and vice versa.  From the 
MEX report (MEX et al. 1993), it was not clear how the algorithm handles missing or corrupt 
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data.  The freeways selected for this study has no sections that change in the lane 
configuration from 2 to 3 lanes.  This study omitted the analysis of detector stations at time 
interval when the stations have invalid or missing data. 

Another incident detection issue not addressed in the MEX report is how the algorithm detects 
incident at the start or the end of a freeway section.  At present incidents are confirmed only 
when 2 upstream detector stations are congested and 2 downstream detector stations are free.  
For example incidents that occurred between detector stations 1 (upstream) and 2 (downstream) 
would mean that it is not possible to find a detector station upstream of detector station 1.  In 
this study when an incident is classified as tentative and when no further upstream or 
downstream stations are available to confirm an incident (see criteria iv and vii), only valid 
traffic data from available detector stations are used.  In other words when no traffic data are 
available, the data are assumed to satisfy the criteria of an incident. 

 

ARTIFICIAL NEURAL NETWORK 
Neural networks are used to simulate the thought process of the human brain, and different 
paths can be taken to reach a final decision (Black 1996).  A neural network consists of many 
simple processing elements (PEs) having densely parallel interconnections.  A single PE can 
receive inputs, weighted by the strength of associated connection values, from many other PEs, 
and can rapidly communicate its outputs to many other PEs. The PE layers that receives input 
from external sources and the layer that communicates its output to external sources are known 
as the input and output layers respectively.  Processing elements found in between the input 
and output layers are referred to as hidden layers.  The hidden layer is invisible to the external 
sources and only interacts with the input and output layers of the network. 

Automatic incident detection neural networks typically use a multi-layer, feed forward (MLF) 
structure (see Fig. 3).  Inputs to the MLF include speed, flow and occupancies at both 
upstream and downstream detectors. 

The network requires substantial training to establish appropriate weights on the PE links, but 
has the ability to learn from past trial-and-error processes.  
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Fig. 3 - Artificial neural network modelling framework 

 

Dia (1996) developed a MLF ANN model by training the model with 60 real life incident data 
that occurred on Tullamarine Freeway in Melbourne, Australia.  The performance of the 
trained ANN model was evaluated using independent data set of 40 incidents collected from the 
Tullamarine and South Eastern freeways in Melbourne.  The data sets were collected at 20 
seconds cycle from inductive loop sensors at 500 m spacing. 

Dia’s ANN model framework structure was a result of some 500 models with different number 
of: 

• hidden processing elements ranging from 2 to 99; 

• time interval: t; t and t-1; t, t-1 and t-2; t, t-1, t-2 and t-3; t, t-1, t-2, t-3 and t-4; 

• stations: upstream and downstream, upstream only and downstream only; and 

• station input data: station average, fast lane and all lanes. 

 

The best MLF ANN model from Dia’s research has the following structure: 

• 6 inputs: upstream and downstream speed, flow and occupancy, 

• 1 hidden layer with 14 processing elements, and 

• 1 output: incident state {0,1}. 

 

The MLF ANN model structure above was used for this study. 
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Data requirements  
Table 1 provides the data requirements of each algorithms described above.  All algorithms 
except MEX algorithm use occupancy.  In fact occupancy is the common traffic parameter 
used by all published algorithms such as McMaster, ARIMA and HIOCC.  Therefore it is 
interesting to note that occupancy is not used in the MEX algorithm.  

Table 1 

Data Requirements for Incident Detection Algorithms 
Algorithm Occupancy Volume Speed 

California symbol 252 
¥f 

"Wingdings
" ¥s 10  

  

Tokyo Metropolitan Expressway (MEX)  symbol 252 
¥f 

"Wingdings
" ¥s 10

symbol 252 
¥f 

"Wingdings
" ¥s 10

University of California, Berkeley symbol 252 
¥f 

"Wingdings
" ¥s 10  

  

Artificial Neural Network symbol 252 
¥f 

"Wingdings
" ¥s 10  

symbol 252 
¥f 

"Wingdings
" ¥s 10

symbol 252 
¥f 

"Wingdings
" ¥s 10

 

INCIDENT DATA 
The incident data used for this study was collected on the Tokyo Metropolitan Expressway. The 
Tokyo Metropolitan Expressway covers 250 km of 2 lane expressway in each direction with the 
exception of Bayshore route, which is a 3 lane expressway (see ref _Ref418323256 ¥h Fig. 4). 
Ultra sonic sensors are installed at 300m spacing on the expressway to collect a weighted 
average occupancy, flow and speed across all lanes at 1 min interval.  The detection length of 
the sensors and different firing positions employed (ie. overhead and side firing) were different.  
As a result the occupancy values collected by MEX were not used.  Instead normalised 
occupancy values using the speed collected and assumed detection length of 1 m and average 
vehicle length of 5.5 m were used.  The normalised occupancy values enable the occupancy 
data along all routes to be analysed together. 

A total of 170 incidents data set were collected in March, May and October of 1995.  However only 
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the May and October data were available for this study. Details of the incident data used for this 

study are shown in ref _Ref408048339 ¥h  

Table 2. 
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Fig. seq Fig. ¥* Arabic 4 – Tokyo Metropolitan Expressway (MEX) Network Configuration 

 

Table seq Table ¥* Arabic 2  

Incident Data Used for this Study 

Route Date of data collection Number of incidents 
3 12th-16th May 1995 9 

4 12th-16th May 1995 8 

5 12th-16th May 1995 7 
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6 17th October 1995 4 

7 17th October 1995 1 

Middle loop 17th October 1995 3 

Kawaguchi line 17th October 1995 2 

 

Although 34 incidents data set were used, only 20 incidents showed notable changes in traffic 
condition after the incidents have occurred.  These were due to the following reasons: 

• Tokyo freeways are often very congested.  When an incident occurs upstream of a 
bottleneck where the reduced in capacity caused by the incident is still greater than the 
bottleneck capacity, there would be very little changes in the traffic data. 

• Incidents that occurred during off peak periods when flow rates are very low would not 
cause much disruption to other traffic. 

• Only aggregate traffic data across all lanes are collected.  This would make it difficult to 
detect incidents that occurred during the two periods described above.  With a lane by 
lane traffic information, incidents at positions closed to traffic sensors would show some 
changes in traffic information for example a reduction of traffic flow across one lane. 

 

CALIBRATION PROCESS AND RESULTS 
Incident data set collected from MEX freeways are divided into two groups.  The May data set 
from 12th to 16th was used for calibrating the algorithms and the October data set was used for 
evaluating the performance of the algorithms.  The calibration data set (see ref 
_Ref408153960 ¥h Table 3) has a total of 24 incidents with 20 incidents due to vehicle 
accidents and the remaining incidents is caused by vehicle break down.  Five full day data 
were used for calibrating the rule base algorithms whilst only selected data (for example all 
incidents and selected non incident data) were used for training the ANN models. 

 

Table seq Table ¥* Arabic 3 

Calibration data set 
Route Accident Vehicle break down 
Route 3 5 4 
Route 4 8  
Route 5 7  

Total 20 4 
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The calibration of the rule-based algorithms involves testing different parameter values until 
the optimal value is determined.  It is often difficult to select the best parameter values as the 
DR, False alarm rate and mean time to detection are inter-related.  One parameter value may 
give the highest detection rate whilst another parameter value may give the lowest false alarm 
rate. 

A typical performance curve of an incident detection algorithm is shown in ref _Ref408135174 
¥h Fig. 5.  The optimal parameter value is usually at the point where the increase in detection 
rate does not lead to a large increase in false alarm rate.  While plotting the DR and FAR data 
points on a curve may help in selecting the optimal parameter value, this approach alone is not 
very useful when an optimisation routine is employed to search for the best parameter values.  
An optimisation routine is necessary when there are more than two parameters to be calibrated. 

An optimisation routine usually needs an index to guide the search process.  A performance 
index, PI can be used in the calibration process.  A lower PI value indicates better 
performance. 

0%FAR and 100%DRfor                   MTTD*nFAR*
m

100
DR100

PI ><
−

= 



  

where coefficients m>0 and n>0. 

The PI equation also considers MTTD, a performance indicator not reflected on the FAR versus 
DR performance curve (see ref _Ref408135174 ¥h Fig. 5).  Other constraints such as 
maximum acceptable MTTD and FAR, for example 5 minutes and 0.5% respectively could be 
added to the PI equation.  This is to ensure that performance outside the constraints would not 
be accepted.  

The coefficients m and n in the PI equation is used to emphasise the importance of DR and 
FAR respectively. Typical values for the two coefficients are m=1 and n=1.  Larger value 
denotes a greater importance of the particular performance indicator.   
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Fig. seq Fig. ¥* Arabic 5 – Typical performance curve of an incident detection algorithm 

 

California algorithm 
California algorithm 8 has five parameters T1, T2, T3, T4 and T5 (see ref _Ref407606015 ¥h Fig. 
1).  Values ranging from 0.03 to 0.7 were tested for the five parameters.  The performance 
curve for the calibration of California algorithm is shown in ref _Ref408158830 ¥h Fig. 6.  
The best parameter values for the California algorithm are T1=0.3, T2=0.2, T3=0.5, T4=0.13 and 
T5=0.13. 
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Fig. seq Fig. ¥* Arabic 6 – Performance curve of California algorithm 8 
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University of California, Berkeley (UCB) Algorithm 
UCB algorithm has only 2 parameters symbol 116 ¥f "Symbol" ¥s 11τ and symbol 116 ¥f 
"Symbol" ¥s 11τ0 to calibrate.  Values ranging from 0.1 to 0.6 and 0.1 to 2.5 were tested for 
symbol 116 ¥f "Symbol" ¥s 11τ and symbol 116 ¥f "Symbol" ¥s 11τ0 respectively.  The 
performance curve for the calibration of UCB algorithm is shown in ref _Ref408159126 ¥h Fig. 

7.  The best parameter values for the UCB algorithm are symbol 116 ¥f "Symbol" ¥s 11τ=0.3 
and symbol 116 ¥f "Symbol" ¥s 11τ0=0.6. 
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Fig. seq Fig. ¥* Arabic 7 – Performance curve of University of California, Berkeley algorithm 

 

Tokyo Metropolitan Expressway (MEX) Algorithm 
The MEX algorithm was developed from the full set of incident data collected on MEX 
freeways in 1995.  Parameter values for the algorithm was given in the MEX report (???? 
1996).  Few assumptions addressing the handling of situations such as missing data and 
detection at the start and end of a freeway were made in this study.  As a result it was 
necessary to recalibrate the algorithm based on these new assumptions.  There are six 

parameters vf, q2, symbol 115 ¥f "Symbol" ¥s 11σf, σψµβολ 108 ∴φ ∀Σψµβολ∀ ∴σ 11λ f, 

symbol 115 ¥f "Symbol" ¥s 11σc2, σψµβολ 108 ∴φ ∀Σψµβολ∀ ∴σ 11λ c2 that are pertinent to 
2 lane freeways.  The performance curve for the calibration of MEX algorithm is shown in ref 
_Ref408225818 ¥h Fig. 8.  The best parameter values for the algorithm are vf=41 km/h, q2=30 

veh/min,  symbol 115 ¥f "Symbol" ¥s 11σf=30 km/h, 
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σψµβολ 108 ∴φ ∀Σψµβολ∀ ∴σ 11λ f=36 km/h,  symbol 115 ¥f "Symbol" ¥s 11σc2=22 km/h, 
σψµβολ 108 ∴φ ∀Σψµβολ∀ ∴σ 11λ c2=36 km/h. 

Fig. seq Fig. ¥* Arabic 8 – Performance curve of Tokyo Metropolitan Expressway algorithm 

Artificial Neural Network (ANN) 
Data set that comprises of incident and non incident data were used to train ANN models.  A 
number of training data set using: 

• data from all incidents, 

• only data from incidents that caused significant change in traffic flow condition, and 

• different amount of non incident data. 

Non incident data were sampled from all hours of the day to give a full representation of the 
traffic conditions.  ref _Ref408226228 ¥h Table 4 shows the different combination of training 
data set. 

 

Table seq Table ¥* Arabic 4 

Training Data Set for ANN Models 
ANN Model Number of incident 

data (minutes) 
Number of non incident 

data (minutes) 
Ratio of incident: non 

incident 
All incident data    

Model 7 1237 7440 1:6.0 
Model 8 1237 5880 1:4.8 
Model 9 1237 2940 1:2.4 

Selected incident data    
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Model 11 865 2340 1:2.7 
Model 12 865 7440 1:8.6 
Model 13 865 4680 1:5.4 
Model 14 865 8820 1:10.2 
Model 15 865 5580 1:6.3 
Model 16 865 2940 1:3.4 

 

ANN models trained with data containing all incident (Model 7-9) showed high false alarm rate 
compared with ANN models trained with selected incident data only (Model 11-16).  The 
results showed that ANN models trained with all incident data have difficulty distinguishing 
between incident and non incident data.  Hence it is important to use training data that are 
representative of an incident. 

The ratio of incident to non incident data also showed some affect on the performance of the 
ANN model.  Test results showed that ratio of incident to non incident less than 1:5, for 
example 1:6, is required to train ANN model that produces reasonable false alarm rate.  
However the performance of Model 13 to 15 are very similar.   

The output from ANN models ranges from 0 to 1.  It is necessary to determine a detection 
threshold (DT) to decide whether the output from an ANN model is an incident or a non 
incident.  For example an ANN model with DT=0.9 would classify any output value of less 
than 0.9 as non incidents.  Detection threshold ranging from 0.6 to 0.99 were used to calibrate 
9 of the trained ANN models. 

Persistency test was applied to the ANN model to reduce the false alarm rate.  Three options 
were tested: 

• no persistency test, 

• persistency test of  symbol 179 ¥f "Symbol" ¥s 11≥1 time interval, and 

• persistency test of  symbol 179 ¥f "Symbol" ¥s 11≥2 time intervals. 

The performance curve of Model 12 to 15 with different persistency tests and detection 
threshold values is shown in ref _Ref408238761 ¥h Fig. 9.  The best ANN model is Model 15 
with persistency test of 2 interval and DT=0.95. 
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Fig. seq Fig. ¥* Arabic 9 – Performance curve of trained Artificial Neural Network models 

 

Calibration Results 
Calibration results of the four incident detection algorithms are shown in ref _Ref408238984 
¥h Table 5.  The California algorithm has the highest detection rate and the MEX algorithm 
has the lowest FALSE ALARM RATE.  Note that all the algorithms are capable of detecting 
greater number of incidents (see Figs. 5 to 8) than the numbers shown in ref _Ref408238984 ¥h 
Table 5.  However more sensitive algorithms ie higher detection rates than the calibration 
results generate much higher false alarm rate. 

Figure ref _Ref408656598 ¥h Fig. 10 shows the performance curves of the four incident 
detection algorithms.  Performance curves of the California, ANN and UCB have similar 
shape.  That is in the beginning the detection rate increases at a higher rate than the false 
alarm rate.  This is followed by a higher rate of increase for the false alarm than the detection 
the detection rate.  Unlike the other three algorithms, the MEX algorithm performance curve 
reaches its maximum detection rate quickly.  This means that the maximum detection rate for 
MEX algorithm is low.  Of the four algorithms, the California algorithm has the highest 
detection rate at any false alarm rate.  

 

Table seq Table ¥* Arabic 5 

Calibration Results 
Algorithm Number of 

incident detected
DR (%) FAR per section 

per day (%) 
MTTD (min) 

California algorithm 15 62.5 7.2 3.9 
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UCB algorithm 9 37.5 16.4 12.8 

MEX algorithm 10 41.7 8.6 5.0 

ANN 12 50 9.6 7.1 

 

 

Fig. seq Fig. ¥* Arabic 10 - Performance curves of the four incident detection algorithms 

 

 

EVALUATIONEVALUATIONEVALUATIONEVALUATION    
The data set used for evaluation of the calibrated algorithms were collected on the 17th October 
1995.  Whole day data for the 5 routes shown in ref _Ref408411545 ¥h Table 6 were used.  
The data set contained a total of 10 incidents.  Traffic condition after 4 of the 10 incidents 
were noted as no change.  This meant that the 4 incidents would be very difficult to detect. 

 

Table seq Table ¥* Arabic 6 

Evaluation data set 
Route Accident Vehicle break down Vehicle overturn 
Route 6 Mukoujima 3   
Route 6 Misato  1  
Route 7  1  
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Middle Loop 1 1 1 
Kawaguchi line 1  1 

Total 5 3 2 

 

Evaluation results of the 4 algorithms are shown in ref _Ref408411742 ¥h Table 7.  The 
results showed that California algorithm has the highest detection rate of 40% and MEX 
algorithm has the lowest false alarm rate of 0.3% per section per day.  There are 
approximately 1600 detectors on MEX freeways.  If an algorithm with a false alarm rate of 
50% were to be used on MEX freeways, there would be approximately 33 alarms per hour.  
This is quite high for MEX traffic control centre’s operators.  For practical purposes, a false 
alarm rate of less than 10 alarm per hour per operator would be a more acceptable. 

The mean time to detection for the four algorithm ranges from 4 to 9.5 minutes and MEX 
algorithm has the lowest mean time to detection. 

 

Table seq Table ¥* Arabic 7 

Evaluation Results of Four Calibrated Algorithms 
Algorithm Number of 

incident detected
DR (%) FAR per section 

per day (%) 
MTTD (min)

California algorithm 4 40.0 17.4 5.5 

UCB algorithm 2 20.0 141.0 9.5 

MEX algorithm 3 30.0 0.3 4.0 

ANN 2 20.0 7.2 7.0 

 

 

CONCLUSION 
 

This paper has shown the different performances of the four incident detection algorithms 
calibrated and evaluated using real life incident and non incident data.  A performance index 
equation was introduced to assist in selecting optimal parameter values. 

The results showed that California algorithm has the highest detection rate and the MEX 
algorithm has the lowest false alarm rate.  Relative to the California algorithm, the ANN 
model has lower detection rate and higher false alarm rate.  The false alarm rate of the ANN 
model may be reduced if variable detection threshold were introduced (Dia and Rose 1997).  
Dia and Rose (1997) found that the false alarm could be improved without sacrificing the 
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detection rate performance. 

There are no optimal parameter values for each algorithm.  The best algorithm and optimal 
parameter values depend on the freeway system the algorithm is applied and the sampling rate 
of the traffic data.  A higher false alarm rate is acceptable in a freeway system with less 
detector stations than MEX freeways.  Hence a higher detection rate could be achieved.  Also 
a short sampling rate would allow longer persistency test for example over 5 interval to reduce 
false alarm rate.  Furthermore short sampling rate reduces the mean time to detection. 
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