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ABSTRACT 

This paper demonstrates that the capacity increasing paradox in a transportation networks 
as in Braess(1968) does also occur under non-stationary settings, in particular, under 
dynamic traffic assignment with endogenous time-varying origin-destination (OD) 
demands.  Through the analyses, the analytical formulae for the solutions of the dynamic 
equilibrium assignment are explicitly derived for two kind of networks: the networks 
with a one-to-many OD pattern and the reversed networks with a many-to-one OD pattern; 
the formulae clarify the significant difference in the properties of the two dynamic flow 
patterns.  This also leads us to the findings that one of the crucial conditions that 
determine whether the paradox occurs or not is the OD pattern of the underlying 
networks. 
 
 
1. INTRODUCTION 
 
 Local improvements in a transportation network do not necessarily lead to the improvement 
of the global performance of the network.  This fact has been well recognized as “Braess’s 
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paradox”(Braess (1968)) or “Smith’s paradox”(Smith (1978)). The paradoxes stimulated many 
researchers in the field, and a considerable number of studies have been made on the relevant 
topics such as the network design problem or the sensitivity analysis of the equilibrium traffic 
assignment. Almost all the studies are, however, based on the framework of static (equilibrium) 
traffic assignment; only a few attempts have so far been made to study non-stationary (dynamic) 
traffic flow patterns with queues. Since the properties of the dynamic flow with queues are 
significantly different from those of the static flow without queues, many basic problems on the 
paradox under non-stationary settings are yet to be investigated. 
 The purpose of this paper is first to demonstrate that the capacity increasing paradox does 
also occur under non-stationary settings, in particular, under dynamic traffic assignment with 
endogenous, time-varying origin-destination (OD) demands. The paper also aims to capture the 
conditions that determine whether the paradox is likely to occur or not; we disclose that the OD 
pattern of the underlying networks is one of the crucial conditions. 
 In order to achieve the purpose, we first disclose that the analytical solution of the 
dynamic user equilibrium (we call this DUE) traffic assignment with elastic OD demands (i.e. 
the assignment considering users’ departure-time choice behavior) can be obtained explicitly in 
a particular type of network satisfying some conditions.  The solutions are derived for two 
kinds of network: (i) networks with single origin and multiple destinations (regarded as an 
“Evening rush hour” on a network of a city with a single CBD; we refer to this “E-net” hereafter); 
and (ii) networks with single destination and multiple origins (obtained by reversing the direction 
of all links and origin/destinations of the E-net, we may regard it as a “Morning rush hour” on the 
same network above; we refer to this “M-net”).  Through the analyses of the two cases, we see 
the significant difference in the properties of the two dynamic flow patterns for not only the case 
where time-varying OD demands are given but also for the case of elastic OD demand due to 
user’s departure time choice.  These basic results for the DUE assignment then enables us to 
demonstrate the dynamic version of the capacity increasing paradox and to discuss the 
significant effect of OD pattern on the occurrence of the paradox. 

The organization of this paper is as follows. In the second chapter, we briefly explain the 
basic properties of dynamic user equilibrium assignment, restricting ourselves to the minimum 
knowledge required for considering our problem.  The third chapter explores the structure of the 
dynamic equilibrium assignment with exogenous OD demands for E-net and M-net.  The 
analytical solution formulae of the equilibrium flow patterns for E-net and M-net are derived.  The 
fourth chapter extends the analyses to the model with endogenous OD demand; not only the route 
choice but also the departure time choice are simultaneously considered in the model.  For an 
appropriate set of boundary conditions, the explicit equilibrium flow patterns are derived for E-net 
and M-net.  By using the results obtained in Chapters 3 and 4, we demonstrate a dynamic version 
of Braess’s paradox in the fifth chapter.  We first discuss the paradox for the model with 
exogenous OD demand; the analysis on a simple network exhibits that the paradox arises only on a 
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particular condition for the network with a one-to-many OD pattern, while the corresponding 
paradox always arises for the reversed network with a many-to-one OD pattern. We then show that 
the same results also hold for the model with endogenous OD demand.  Finally, the last chapter 
summarizes the results and remarks on some further research topics. 
 
 
2.  DECOMPOSITION OF DYNAMIC EQUILIBRIUM ASSIGNMENT 

 
2.1 Networks  

 
Our model is defined on a transportation network G[N, L, W] consisting of the set L of 

directed links with L elements, the set N of nodes with N elements, and the set W of 
origin-destination (OD) nodes pairs. The origins and the destinations are the subset of N, and we 
denote them by R and S, respectively.  In this paper, we deal with only networks with a 
one-to-many OD (i.e. the element of R is unique) or those with a many-to-one OD (i.e. the element 
of S is unique). Sequential integer numbers from 1 to N are allocated to N nodes. A link from node 
i to j is denoted as link (i,j). We also use the notation to indicate a link by the sequential numbers 
from 1 to L allocated to all the links in the set L.  

The structure of a network is represented by a node-link incidence matrix A*, which is an N
×L matrix whose (n, a) element is 1 if node n is an upstream-node of link a, −1 if node n is a 

downstream-node of link a, zero otherwise.  The rank of this matrix is N-1 since the sum of rows 
in each column is always zero.  Hence, it is convenient in representing our model to use the 
reduced incidence matrix A (instead of A*), which is an (N-1)×L matrix eliminating an arbitrary 

row of A*. We call the node corresponding to the elimination “reference node”.  It is also 
convenient to “split” the matrix A into a pair of matrices, −A  and +A , defined as follows: −A  is 

a matrix that can be obtained by letting all the +1 elements of A be zero (i.e. the (n, a) element is -1 
if link a arrives at node n, zero otherwise); +A  is a matrix that can be obtained by letting all the 

−1 elements of A be zero (i.e. the (n, a) element is +1 if link a leaves node n, zero otherwise); it is 
needless to say that A = −A + +A  holds. 

 
 
2.2. Link Model and Dynamic Equilibrium Assignment 

 
For a link model in our dynamic assignment, we employ a First-In-First-Out (FIFO) 

principle and the point queue concept in which a vehicle has no physical length: it is assumed that 
the arrival flow at link (i,j) leaves the link after the free flow travel time mij if there exists no queue 
on the link, otherwise it leaves the link by the maximum departure rate (capacity) ijµ . 

Concerning the assignment principle, we assume the dynamic user equilibrium (DUE) 
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assignment, which is a natural extension of the static user equilibrium assignment; the DUE is 
defined as the state where no user can reduce his/her travel time by changing his/her route 
unilaterally for an arbitrary time period. 
 
 
2.3. Decomposition Property of Dynamic Equilibrium Assignment  

 
Under the DUE state, the users who depart their origin at the same time, regardless of their 

routes, have the same arrival time at any node that is commonly passed through on the way to their 
destination.  Furthermore, under the DUE state, the order of departure from the origin must be 
kept at any node through destinations.  From these property, we can define the unique equilibrium 
arrival time at each node for each departure time from the origin. 

As defined in the previous section, link travel time cij (t) depends only on the vehicles which 
arrived at the link before time t.  Therefore, together with the above discussion on the order of 
arrivals at a node, it is concluded that the travel time experienced by the vehicle that departs from 
an origin at time s is independent of the flows of the vehicles that depart from the origin after time s.  
Consequently, we can consider the assignment sequentially in the order of departure from the 
single origin.  That is, the assignment can be decomposed with respect to the departure time from 
the single origin provided that the OD pattern is one-to-many.  Similarly, for a many-to-one OD 
pattern, we can easily conclude that the assignment can be decomposed with respect to the arrival 
time at the single destination. For the detailed discussions on this property, see Kuwahara and 
Akamatsu (1993) and Akamatsu and Kuwahara (1994). 
 
 
3.  EQUILIBRIUM FLOW PATTERNS ON SATURATED NETWORKS 
     - FIXED DEMAND CASE 

 
In general, the DUE assignment is formulated as a non-linear complementarity problem 

(NCP) or a variational inequality problem (VIP), which implies that it is difficult to obtain the 
analytical properties of the assignment. Hence, instead of exploring the properties of the DUE 
assignment under general settings, we confine our analysis to “saturated networks” where we can 
obtain the analytical solution.  The “saturated networks” are the networks satisfying the following 
two conditions: a) there exist inflows on all links over the network, b) there exist queues on all 
links over the network.  The first condition a) is not very restrictive, since we can constitute the 
networks satisfying this condition after knowing the set of links with positive flows.  Although the 
second condition b) may not be satisfied in many cases, we nevertheless employ this assumption 
because this assumption, as shown below, gives us the explicit formula for the solution of the DUE 
assignment, which enables us to understand the qualitative properties of interest. 
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We will first show the formulation for E-net and derive the solution in 3.1; and then the 
formulation and the solution for M-net will be examined in 3.2. 
 
 
3.1. Equilibrium on Saturated Networks with a One-to-Many Pattern 
 
(1) Formulation 

The DUE assignment on a network with a one-to-many OD pattern can be decomposed with 
respect to the origin departure-time as mentioned in chapter 2. Hence, once we know the method of 
solving the equilibrium pattern for one particular departure-time, we can obtain the equilibrium 
pattern for whole time periods by successively applying the same procedure at the order of the 
departure-time.  In the following, we consider the problem of obtaining the equilibrium pattern for 
vehicles departing from origin o at time s, assuming that the solutions for vehicles departing before 
time s are already given. 

In the decomposed formulation with origin departure time s, two kinds of variables, ( s
i

s
ijy τ, ), 

play a central roll: s
iτ  is the earliest arrival time at node i for a vehicle departing from origin o at 

time s; s
ijy  is the link flow rate with respect to s, that is, s

ijy dsdF s
iij /)(τ≡ , where Fij(t) denote 

the cumulative number of vehicles entered into link ij at time t.  In addition, we denote the number 
of vehicles with destination d departing from origin o until time s (cumulative OD demand by 
departure-time) by )(sQod . 

 In the DUE state, each user choose his/her route whose travel time is (ex post) minimum over 
the network.  In other words, the links with positive inflows should be on the minimum path tree.  
In our saturated networks, all the links have positive inflows, and therefore the minimum path 
condition for users with origin departure-time s is written as 0Ac =+ τTs)( , where ( )sc  is an L 
dimensional column vector with elements )( s

iij
s
ij cc τ≡ , ( )sτ  is an (N-1) dimensional column 

vector with elements s
iτ .  Since the equation above should hold for any s, taking the derivative 

with respect to s, we have 

     0
)(

 
)(

=+
ds

sd
ds

sd T τ
A

c
   s∀ ,    (3.1) 

where ( ) dssd /c  is an L dimensional column vector with elements dsdc s
ij / , and ( ) dssd /τ  is an 

N-1 dimensional column vector with elements dsd s
i /τ . 

 In our link model, the point queue and the FIFO principle are assumed, and therefore, the rate 
of change in link travel time is given by 

     




 −

=
 otherwise                       0 

queue a is  thereif   1)/)(()( ijijij
t

dt

tdc µλ
, 

where )(tijλ  is the standard link flow rate defined as dttdFij /)( . Hence, in our saturated 
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networks where all links have queues, the rate of change in the time needed to traverse link ij for 
users with origin departure time s, dsdc s

ij / , can be represented as: 

     
ds

d
ds

d
d

dc

ds

dc s
i

ij

s
iij

s
i

s
i

s
iij

s
ij τ

µ

τλτ
τ

τ










−== 1

)()(
. 

Noticing here the definitional relationship dsdy s
i

s
iij

s
ij /)( ττλ ⋅= , we see that the dsdc s

ij /  

reduces to a function of s
ijy  and s

iτ : 

      
ds

dy

ds

dc s
i

ij

s
ij

s
ij τ

µ
−= ,       (3.2a) 

or equivalently 

     
ds

sd
s

ds
sd T )(

)( 
)( 1 τ

 +
− −= AyM

c
 s∀ .    (3.2b) 

where M is a diagonal matrix whose ath diagonal element represents the maximum capacity of link 
a, ( )sy  is an L dimensional column vector with elements s

ijy .  

 Substituting (3.2) into (3.1), we obtain 

     0AAyM =−+ +
−

ds
sd

s TT )(
()( 1 τ

 ) , s∀     (3.3) 

and rearranging this yields 

     ( ) ( ) ( )
ds

sd
s T τ

−−= AMy   s∀ .     (3.4) 

On the other hand, in the decomposed DUE formulation, the flow constraints that consist of 
the FIFO condition for each link and the flow conservation at each node over a network reduce to 
the following equations (for the detail, see Kuwahara and Akamatsu (1993), Akamatsu and 
Kuwahara (1994)):  

     0
Q

yA =−−
ds

sd
s

)(
)(   s∀ .     (3.5) 

where ( ) dssd /Q  is defined as an (N-1) dimensional vector with elements ( ) dssdQod /  (given). 

Combining (3.5) with (3.4),  

     ( ) ( ) ( )
ds

sd
ds

sdT Q
AMA =−

τ
 s∀ ．    (3.6) 

Thus, we see that the DUE assignment has a unique solution ( ( ) dssd /τ ) if the rank of the matrix 
T
−AMA  is N-1.  

 
(2) Solution 

The rank of the matrix T
−AMA  generally depends on the choice of a reference node. For a 



A Paradox for a Dynamic Equilibrium Assignment 

 7 

network with a one-to-many OD, the rank of T
−AMA can be less than N-1 when we choose an 

arbitrary node that is not an origin as the reference node. The rank, however, is always N-1 when 
an origin is employed as the reference node.  Furthermore, since the value of dssd i /)(τ  for an 
origin node is always 1 from the definition of )(siτ ,  it is natural to choose an origin as the 

reference node.  Thus, by setting an origin as the reference node, we obtain the equilibrium 
solution, ( ) dssd /τ , by the following formula: 

     
( ) ( ) ( )

ds
sd

ds
sd T Q

AMA
1−

−=
τ

．      (3.7) 

In addition, we can obtain the equilibrium link flow pattern, ( )sy , by substituting (3.7) into (3.4). 

 
 

3.2. Equilibrium on Saturated Networks with a Many-to-One Pattern 
 
(1) Formulation 

The DUE assignment on a network with a many-to-one OD pattern can be decomposed with 
respect to the destination arrival-time as shown in chapter 2.  In the following, we consider the 
problem of obtaining the equilibrium pattern for vehicles arriving at a destination at time u, 
assuming that the solutions for vehicles arriving before time u are already given. 

For the networks with a many-to-one OD pattern, by decomposing with respect to the arrival 
time at a single destination, the discussions almost parallels to those in the previous section.  In the 
decomposed formulation with destination arrival time u, two kinds of variables, ( u

i
u
ijy τ, ), play a 

central roll: u
iτ  is the latest arrival time at node i for a vehicle reaching destination d at time u; 

u
ijy  is the link flow rate with respect to u, that is, u

ijy dudF u
iij /)(τ≡ .  In addition, we denote the 

number of vehicles with origin o arriving at destination d until time u (cumulative OD demand by 
arrival-time) by )(uQod . 

The formulation almost parallels the discussions in 3.1.  First, the minimum path 
conditions for saturated networks reduces to the following conditions: 

     0
)()(

=+
du

ud
du

ud T τ
 A

c
   u∀ .    (3.8) 

Then the link travel time with a point queue for saturated networks also should satisfy 

     
du

ud
u

du
ud T )(

)( 
)( 1 τ

 +
− −= AyM

c
 u∀ .    (3.9) 

Substituting (3.9) into (3.8),  we obtain 

     ( ) ( ) ( )
du

ud
u T τ

−−= AMy    u∀ .    (3.10) 
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On the other hands , the link flow y should satisfy the flow constraints: 

     0
Q

yA =−
du

ud
u

)(
)(    u∀ .    (3.11) 

Combining (3.10) with (3.11), we reach 

     ( ) ( ) ( )
du

ud
du

udT Q
AMA =− −

τ
  u∀ ．   (3.12) 

Thus, we see that the DUE assignment has a unique solution ( ( ) duud /τ  and y(u)) if the rank of 
T
−AMA  is N-1. 

 
(2) Solution 

An arbitrary network with a many-to-one OD pattern can be obtained by reversing the 
direction of all links and origin/destinations of a network with a one-to-many OD pattern.  
Therefore, it is natural to expect that, “reversing” the result in 3.1,  the rank of T

−AMA  become 

N-1 when a destination is chosen as the reference node.  However, it is not the case for this 
problem; the rank become less than N-1 even if we set the destination as the reference node; 
furthermore, we can prove that the rank is less than N-1 for any choice of the reference node. 

The reason why the rank of the matrix T
−AMA  becomes less than N-1 is that there exist 

particular origins (we call this “pure origins”) that are not traversal nodes (i.e. the origin which has 

no links arriving at the origin).  Letting Bij be the (i,j) element of 
T**

−MAA , we easily see that 

    






=

≠−
= ∑

k
ki

ij

ij jiif

jiif
B         

          

µ

µ
 ．       (3.13) 

Hence, the column vectors of T
−AMA  corresponding to the pure origin are always zero, and the 

rank of T
−AMA  necessarily decreases by the number of pure origins. 

To see this fact more precisely, we divide the node set N into two sub-sets: the set of pure 
origins, N1, and the set of the other nodes, N2.  Then, we divide A*, A*_, dτ(u)/du and dQ(u)/du 

into the two blocks corresponding to N1 and N2 , respectively: 

    







=

2

1*

A
A

A ,   







=

−
−

2

*

A
0

A ,  
( )

( )

( )















=

du
ud

du
ud

du
ud

2

1

τ

τ
τ

,  
( )

( )

( )















=

du
ud

du
ud

du
ud

2

1

Q

Q
Q

, 

where i th element of dQ2(u) /du is defined as ∑∑ −=−
k kdo od duudQ µ}/)({ if i is an orign,  

dQid(u)/du if i is a destination, zero otherwise.  Note that A1 _, which is the first block of A_ 
corresponding to N1, is always 0 according to the definition of the pure origins.  Rewriting (3.12) 
with these partitioned variables, we have  
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( )

( )















du
ud

du
ud

2

1

Q

Q
( )

( )

( )
























−
−

==
−

−
−

du
ud

du
ud

du
ud

T

T
T

2

1

22

21**

 
 

τ

τ
τ

MAA0
MAA0

MAA

．

   (3.14) 

That is,  

      
( ) ( )

du
ud

du
ud T 2

21
1 τ

−−= MAA
Q

 ,     (3.15a) 

     
( ) ( )

du
ud

du
ud T 2

22
2 τ

−−= MAA
Q

．     (3.15b) 

This means that no condition which determines the dud /1τ  for the pure origins is included in the 
equilibrium condition (3.12), while the dud /2τ for the traversal nodes can be obtained by 

     
( ) ( ) ( )

du
ud

du
ud T 21

22
2 Q

MAA
−

−−=
τ

.     (3.16) 

Thus we see that the solution of the DUE assignment with a many-to-one OD pattern can not be 
unique and that for the problem to have a unique solution we should add appropriate conditions to 
resolve the indeterminacy of the dud /1τ . 

 
 
4.  EQUILIBRIUM FLOW PATTERNS ON SATURATED NETWORKS 
     - ELASTIC DEMAND CASE 

 
 The previous chapter analyzed the solution of the DUE assignment where only user’s route choice 
is endogenously described given time-varying OD demands.  This chapter extends the analyses to the 
case where the time-dependent OD demands are endogenously determined (we call the model “DUE 
assignment with Elastic demand”) by incorporating the user’s departure time choice.  The model 
employed here is the simplest one that consistently unifies the two kind of dynamic equilibrium models: 
the dynamic equilibrium assignment presented in the previous chapter and the dynamic equilibrium 
model of departure time choice as is well known since Vickrey (1969) or Hendrikson and Kocur (1980).  
For expositional brevity, the following assumptions are made in this paper: 

1) The users with the same OD pair are homogeneous, that is, their utility functions are all the same and 
their desired arrival time is unique; 
2) The users who arrive later than the desired arrival time do not exist [This is not a restrictive 
assumption but one just to make the exposition as simple as possible; it is easy to extend to the case 
where late arrival is permitted.]. 
3a) For the problems with one-to-many OD pattern (i.e. when we consider the problem on the basis of 
the origin departure-time), the disutility function for the users with destination d leaving origin at time s, 



Transportation and Traffic Theory 

 10 

Vod(s), is given as the linear combination of their travel time from the origin to destination d and their 
“schedule delay”: 

     )}({})({)( 21 stassasV dddod ττ −+−= ,     (4.1) 

where a1，a2 are positive parameters that satisfy a1 > a2， )(sdτ  is the destination arrival-time for the 

users who start from origin at time s, and  td is the users’ desired arrival time. 
3b) For the problems with many-to-one OD pattern (i.e. when we consider the problem on the basis of 
the destination arrival-time), the disutility function for the users with origin o arriving at the destination 
at time u, Vod(u), is given as the linear combination of their travel time from origin o to the destination 
and their “schedule delay”: 

     }{)}({)( 21 utauuauV dood −+−= τ ,      (4.2) 

where )(uoτ  is the origin departure-time for the users who arrive at destination at time u. 

4) The networks can be regarded as “saturated networks” that is defined in the previous chapter. 
 
 
4.1. Equilibrium on Saturated Networks with a One-to-Many Pattern 
 
  (1) Formulation 
 In this section we consider the networks with a one-to-many OD pattern where all nodes except the 
origin are destination, i.e., there are no nodes that are neither origin nor destination. [This is simply for the 
convenience of expositional brevity. The appropriate division of the node set easily extends our analyses 
to the general case where there are some nodes that are neither origin nor destination. See Appendix.] 
 The elastic demand DUE employed in this chapter is defined as the state where no one can improve 
his/her utility by changing either his/her route or their departure-time unilaterally．To formulate this, 

consider users who choose time s as departure time.  Since the users choose their optimal route 
(conditional on the optimal departure time) in the DUE state, the equilibrium conditions for the route 
choice should be represented by the following differential equations as shown in Chapter 3: 

     ( ) ( ) ( )
ds

sd
ds

sdT Q
AMA =−

τ
,      (4.3) 

where the origin node is selected as a reference node as discussed in 3.1.  Then, the condition that no user 
can improve his utility by changing his/her departure-time in the DUE state can be represented by  

     
( )

0
 

 
=

∂
∂

s
sVod   s∀ , d∀ ．     (4.4) 

Substituting the definition of disutility function (4.1) into this, we obtain the equilibrium rate of change in 
the destination arrival-time as follows:  

     
( )

21

1

aa
a

ds
sd d

−
=

τ
  s∀ , d∀      (4.5) 
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[We are assuming that networks can be regarded as “saturated networks” and all OD pairs have positive 
OD flows during the period of time. In general we should consider the analysis period to include the time 
where some OD pairs have no generation of OD flows. By introducing appropriate classification, 
however, the general case can be reduced to the combination of our basic case (the case where all OD 
pairs have positive OD flows during the period for our analysis) and the case presented in Appendix.]．

Thus, the elastic DUE conditions are represented as the following system of differential equations: 

     

( )

( ) ( ) ( )










=

−
=

− ds
sd

ds
sd

aa
a

ds
sd

T τ

τ

AMA
Q

E
21

1

      

)b6.4(

)a6.4(

 

where E is an (N-1) dimensional column vector whose elements are all equal to 1.  It is worthwhile to 
compare the equilibrium conditions with those for the fixed demand case.  In the fixed demand DUE 
model, eq.(4.3) with a given constant vector dQ(s)/ds determines dssd /)(τ . On the contrast, in the 
elastic demand DUE, dssd /)(τ  is first determined from the departure-time equilibrium condition, and 
then  eq.(4.3) with fixed dssd /)(τ  determines dQ(s)/ds. 

 
  (2) Solution 
 By setting appropriate boundary conditions, we can obtain the solution ))(),(( ss Qτ for the 
differential equation (4.6).  For the boundary conditions, we first set the initial time sŝ  of the time 

period (measured with respect to the origin departure-time) during which eq.(4.6) holds (i.e. the networks 
can be regarded as “saturated networks” and all OD pairs have positive OD flows).  Then we give the 
value of cumulative OD flows for the time sŝ  and for the final time of the period: 

     ( ) givenQsQ
odsod ==ˆ   d∀       (4.7a) 

     ( ) givenQtsQ oddod ==)(  d∀       (4.7b) 

where )( dts  is an origin departure-time of the final users who arrive at destination d at time td (note that 
we do not have to give the value of )( dts  explicitly). 
 Integrating the second equation of (4.6) from time sŝ  to s with the initial condition (4.7a), we have  

    ( ) ( ) ( )s
T ss

aa
a

s ˆ
21

1 −
−

+= − EAMAQQ ,     (4.8) 

where Q  is an (N-1) dimensional vector with elements 
od

Q .  

 We then solve (4.6) with respect toτ .  Integrating the first equation of (4.6) from time sŝ  to time 
( )dts  reduces to 

    ( ) ( )( )sds st
aa

a
s ˆ ˆ

21

1 Est −
−

=− τ  d∀ .     (4.9) 

where t, ( )sŝτ , and s(td) are (N-1) dimensional vectors with elements td , ( )sd ŝτ , and s(td), respectively. 
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The length of the time period that appears in the right hand side of (4.9), ( )dts − sŝ , can be obtained by 

substituting (4.7b) into (4.8):  

    ( ) )()(ˆ 1

1

21 QQAMAEs −
−

=− −
−
T

sd a
aa

st  .    (4.10) 

Hence, from (4.10) and (4.9), we can determine the initial equilibrium arrival time corresponding to sŝ : 

    )()()ˆ( 1 QQAMAt −−= −
−
T

ssτ       (4.11) 

Thus, the equilibrium pattern ))(),(( ss Qτ  with the boundary condition (4.7) is given by 

    

( ) ( ) ( )

( ) ( )











−
−

+=

−
−

+−−=

−

−
−

s
T

s
T

ss
aa

a
s

ss
aa

a
s

ˆ

ˆ)()(

21

1

21

11

EAMAQQ

EQQAMAtτ

 s∀ ,  (4.12) 

and the corresponding equilibrium disutility ( )sdτ  is calculated by 

    ( ) ( )( )21
1

1 )( ˆ aaas T
s −−+−= −

− QQAMAEtρ   s∀ .  (4.13)   

 
 
4.2. Equilibrium on Saturated Networks with a Many-to-One Pattern 
 
  (1) Formulation 
 In the following we consider the networks with a many-to-one OD pattern where all nodes except 
the destination are origins, i.e., there is no node that is neither origin nor destination. For the general case 
where there are some nodes that are neither origin nor destination, see Appendix. 
 We divide the node set N into two sub sets: the set of origins N1, and the set of the single 
destination, N2.  Then, we divide A*, A*_, dτ(u)/du and dQ(u)/du into the two blocks 
corresponding to N1 and N2 , respectively: 

   







=

2

1*

A
A

A , 
( ) ( )














=

1

1

du
ud

du
ud ττ

, ( ) ( )














−
=

d

du
ud

du
ud

µ

1QQ .  (4.14) 

where 1A  is an (N－1)×L matrix, 2A is an L dimensional column vector, ( ) duud /1Q  is an N-1 
dimensional column vector with elements ( ) duudQod / ，and ∑

∈

≡
dLij

ijd µµ .  

 The elastic demand DUE employed here is defined as the state where no one can improve his/her 
utility by changing either his/her route or their departure/arrival-time unilaterally. Since the users choose 
their optimal route (conditional on having chosen his/her optimal departure/arrival-time) in the DUE state, 
the equilibrium conditions for the route choice should be represented by the following differential 
equations as shown in Chapter 3: 
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( ) ( ) ( )

du
ud

du
ud T τ

−−= **MAA
Q

.      (4.15) 

Rewriting this with the variables introduced in (4.14), we have  

    
( ) ( ) ( ) ( )TT

du
ud

du
ud

−− −−= 21
1

11
1 MAAMAA

Q τ
    (4.16) 

The condition that all the users can not improve their utility by changing his/her arrival-time (or 
departure-time) in the DUE state can be represented as 

     
( )

0
 

 
=

∂
∂

u
uVod   u∀ , o∀ ．     (4.17) 

Substituting the definition of disutility function (4.2) into this, we obtain the equilibrium rate of change in 
the destination arrival-time as follows: 

     
( )

1

21

a
aa

du
ud o −

=
τ

 u∀ , o∀      (4.18) 

Thus, the elastic DUE conditions are represented as the following system of differential equations: 

    

( )

( ) ( ) ( )



















−
−

−=

−
=

−−
TT

a
aa

du
ud

a
aa

du
ud

21
1

21
11

1

1

211

MAAEMAA
Q

E
τ

    (4.19) 

 It is worthwhile to compare the equilibrium conditions with those for the fixed demand case.  In 
the fixed demand DUE model, we tried to determine duud /)(τ from the eq.(4.15) with a given constant 
vector dQ(u)/du.  Then we encountered the indeterminacy of duud /)(τ due to the decrease in the rank 

of matrix A*MA*_ .  On the contrast, in the elastic demand DUE, the indeterminacy problem is resolved 
since duud /)(τ  is first determined from the departure-time equilibrium condition, and then eq.(4.16) 
with fixed duud /)(τ  determines dQ(u)/du. 

 
  (2) Solution 
 As in the case of one-to-many OD pattern, we can obtain the solution ))(),(( ss Qτ for the differential 

equation (4.19) by giving appropriate boundary conditions.  For the boundary conditions, we first set the 
initial time sû  of the time period (measured with respect to the destination arrival-time) during which 

eq.(4.19) holds (i.e. the networks can be regarded as “saturated networks” and all OD pairs have positive 
OD flows).  Then, on a parallel with the discussion in 4.1, it is natural to give the value of cumulative OD 
flows from sû  and for the final time td  : 

     givenQuQ
odsod ==)ˆ(   o∀ ,     (4.20a) 

     givenQtQ oddod ==)(   o∀ ,     (4.20b) 

The conditions (4.20) in conjunction with (4.19) can be solved with respect to Q(u). However, these 
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conditions are not enough to determine the value of τ .  Hence, instead of (4.20a), we give the time 
needed to travel from origin o to the destination at the initial time sû as a new boundary condition: 
     ( ) givenruu odsos ==− ˆˆ τ  o∀ .     (4.20c) 

 Integrating the second equation of (4.19) from time u to td with the initial condition (4.20c), we 
have  

    ( ) ( ) ( ) ( )ut
a

aa
u d

TT −








+
−

+= −− 21
1

21
111 MAAEMAAQQ   u∀  (4.21) 

We next solve (4.19) with respect toτ .  Integrating the first equation of (4.19) from time sû  to time u  

with the initial condition (4.20c), we obtain 

    ( ) )ˆ()ˆ (
1

21
ss uu

a
aa

uu −
−

+−= ErEτ  u∀ .    (4.22) 

and the corresponding equilibrium disutility ( )sdτ  is calculated by 

    ( ) rE 12  ˆ auta sd +−⋅=ρ         (4.23) 
 
 
5.  PARADOXES 

 
Having derived the formulae for the solution of the dynamic traffic equilibrium assignment 

so far, now we can discuss the capacity increasing paradox. The paradox presented here is a 
situation such that improving the capacity of a certain link on a network worsen the total travel cost 
over the network; this is a dynamic version of Braess’s paradox which is well known in the static 
assignment.  Using the results obtained in Chapters 3 and 4, we derive the necessary conditions 
for the occurrence of the paradox for E-net and M-net, which are shown to be significantly 
different. 
 
 

5.1. A Paradox for a Network with a One-to-Many OD Pattern 
 
We consider the paradox for the network shown in Fig. 5.1, where node 1 is a unique origin; 

nodes 2 and 3 are destinations; the maximum departure rate of link a (a = 1,2,3) is given by µ a.  

Fig.5.1. Example Network with Single Origin and Two Destinations 

1

2

3

µ1

µ2

µ3Q12+Q13

・ ・
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For the brevity of notation, we employ the superscript “・” as the derivative operation with respect 
to origin departure-time s in this section. (e.g. ( ) ( ) dssds ii /ττ ≡& , ( ) ( ) dssdQsQ odod /≡& )． 

 
  (1) Fixed Demand Case 

For the network in Fig. 5.1, the origin (i.e. node 1) should be the reference node; the 
incidence matrix A*, the reduced incidence matrix A, and the corresponding A_ are given as 
follows: 

  
















−−
−=

110
101
011

*A , 







−−

−
=

110
101

A ,  







−−

−
=− 110

001
A   (5.1) 

Hence,  

  







+

−
=−

32

31

0 µµ
µµTAMA ,  ( ) ( )



















+

+=
−

−

32

321

3

11

1
0

1

µµ

µµµ
µ

µTAMA ．  (5.2) 

 The equilibrium pattern for the vehicles with the departure time s from a single origin can be 
calculated using the results of Chapter 3.  From (3.6), we first obtain the rate of change in 
equilibrium arrival time: 

  ( ) ( ) ( ) ( )sQsQs 13
321

3
12

1
2

1 &&&
µµµ

µ
µ

τ
+

+= ,  ( ) ( )sQs 13
32

3
1 &&

µµ
τ

+
=    (5.3) 

Substituting these into (3.3), we have the following equilibrium link flow pattern:  

  ( ) ( ) ( ) ( ) )(31213
32

3
121 sysQsQsQsy +=

+
+= &&&

µµ
µ

 

  ( ) ( )sQsy 13
32

2
2

&
µµ

µ
+

= , ( ) ( )sQsy 13
32

3
3

&
µµ

µ
+

= ．      (5.4) 

 To discuss the “capacity increasing paradox”, we employ the total travel time for the users 
departing from an origin from time 0 to T as an indicator for measuring the efficiency of the 
network flow pattern: 

   ( ) ( ) ∑∫∑∫ −=≡
d

d

T

od
a

T

aa dssssQdsscsyTC })({)( 
 

0 

 

0 
τ&    (5.5) 

We then refer to the situation “paradox” if increasing the capacity of a certain link, µ a, causes the 
increase of TC (i.e. addTC µ > 0 implies “paradox”). 

 Let us examine whether the paradox arises or not for the network in Fig. 4.1.  Substituting 
(5.3) into (5.5),  we obtain TC : 
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  ( ) ( ) ( )
( ) ( ) ( )

dss
sQ

sQs
sQsQ

sQTC
T














−+
+

+












−+
+

+= ∫ )0()0( 3
32

13
13

 

0 2
321

133

1

12
12 τ

µµ
τ

µµµ
µ

µ
&&  (5.6) 

From (5.6), we easily see that the increase of  µ 1 or µ 2 always decreases TC (note that both µ 1  
and µ 2 appear in only the denominator of TC), that is, the paradox does not arise for links 1 and 2.  
Increasing µ 3, however, causes the paradox.  The reason is that since 

    ( ) ( ){ } ( ) ( ){ }
( )2

321

 

0 13131

 

0 13122
3

1
     

µµµ
µµ

µ +
−

= ∫∫
TT

dssQsQdssQsQ
d
dTC && ,  (5.7) 

if the condition: 

    
2

 

0 1313

1

 

0 1312 )()()()(

µµ
∫∫ >

TT
dssQsQdssQsQ &&

     (5.8) 

holds, 3µddTC is always positive，this means the occurrence of the paradox. 

The (5.8) is the condition that the paradox occurs for a certain time period 0 ～ T.  From 

this, we can also derive the condition under which the paradox occurs for an arbitrary time period: 

     ( ) ( ) 213112 // µµ sQsQ && > .       (5.9) 

The meaning of this inequality is simple. Since the increase of µ 3 always results in the increase of  
y 3 (see (5.4)),  suppose 1 unit of increase in flow on link 3 (= y 3). This means that the number of 
users with destination 3 who pass through link 1 increases by 1 unit. The increase in flow on link 1 
then causes ( ) 112 / µsQ&  of increases in total travel time for the users with destination 2 (“User-2”).  

On the other hand, total travel time for the users with destination 3 (“User-3”) decreases by 
( ) 213 / µsQ& , since the flow on link 2 decreases 1 unit.  Therefore, the 1 unit of increase in flow on 

link 3 causes the increase of total travel time by ( ) 112 / µsQ&  − ( ) 213 / µsQ& .  Thus, we see that 

(5.9) means the condition that the “net benefit” for User-2 and User-3 (User-3’s benefit minus 
User-2’s loss) due to the increase of µ 3 becomes positive. 
 
  (2) Elastic Demand Case 
 The equilibrium pattern for the network in Fig. 5.1 can be calculated from the results of 
Chapter 4.  From (4.12), we first obtain the equilibrium arrival times and OD flows: 

   ( ) ( ) 







+

−+−
−

= 13
32

3
21

1
3

ˆ1ˆ Qtss
aa

a
s s µµ

τ       (5.10) 

 ( ) ( ) ( ) ( )ss ss
aa

a
sQsQ ˆˆ

21

1
311212 −

−
−+= µµ , ( ) ( ) ( )ss ss

aa
a

sQsQ ˆˆ
21

1
21313 −

−
+= µ . (5.11) 

where 
ododod QQQ −≡ˆ .  Then (4.13) gives the equilibrium disutility for each origin: 
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 ( ) ( ) 12
31

21212
ˆ1ˆ Qaasta s µµ

ρ
−

−+−= ,  ( ) ( ) 13
32

21313
ˆ1ˆ Qaasta s µµ

ρ
+

−+−=  . (5.12) 

We define the sum of disutility experienced by all users over a network, TC, as an indicator for measuring 
the efficiency of the network usage: 

     ∑≡
d

odd QTC ˆρ .        (5.13) 

The TC for the network in Fig.5.1 is given by  

  ( ) ( ){ } ( ) 










+
+

−
−+−+−=

32

2
13

31

2
12

211331221

ˆˆ
ˆˆˆˆ

µµµµ
QQ

aaQstQstaTC ss    (5.14) 

To check the occurrence of the paradox, we calculate 3µddTC : 

    
2

32

13

2

31

12

3

ˆˆ











+
−











−
=

µµµµµ
QQ

d
dTC

      (5.15) 

Note that the capacity of link 1 should be greater than that of link 3 (i.e. 31 µµ > ) in order for (5.11) to 
satisfy the (physically evident) condition ( ) ( ) 0ˆ1212 >− ssQsQ .  Hence 03 >µddTC  holds only if 

    )( /ˆ)( /ˆ
32133112 µµµµ +>− QQ .      (5.16a) 

We see from (5.16a) that the paradox arise (with the capacity increase of link 3) independent of the value 
of µ 3 if the following condition hold: 

     213112 /ˆ/ˆ µµ QQ > .       (5.16b) 

It is noteworthy that the condition (5.16b) is identical in form to the condition for the fixed demand case. 
 
 
5.2. A Paradox for a Network with a Many-to-One OD Pattern 

 
We consider the paradox for the network in Fig.5.2, where node 1 is a unique destination; 

nodes 2 and 3 are origins; the maximum departure rate of link a (a = 1,2,3) is given by µ a.  
For the brevity of notation, we employ the superscript “・” as the derivative operation with respect 
to destination arrival time u in this section. (e.g. ( ) ( ) duudu ii /ττ ≡& , ( ) ( ) duudQuQ odod /≡& )  

 

Fig. 5.2. Example Network with Two Origins and Single Destination 

 

1

2

3

µ1

µ2

µ3Q21+Q31

・ ・



Transportation and Traffic Theory 

 18 

  (1) Fixed Demand Case 
 For the network in Fig. 5.2, node 3 is the pure origin; we divide the incidence matrix A*, the 
corresponding A*_ and the OD flow vector as follows:  

 

[ ]

)2 (
)1 (

)3 (   

101
011

 1  1   0  

2

1

node
node

node









−

−−
=

=

A

A

, 

[ ]









−

−−
=

=

−

−

100
011

 0  0   0  

2

1

A

A

, 







 +−
=

=

)(
)(

/)(

)]([/)(

21

21
2

311

uQ
duud

uQduud

&

&

µµ
Q

Q
． (5.17) 

Hence,  

   
















−
+

−−
=








=

−

−
−

31

21

32

22

21**

0
00

0
  

0

µµ
µµ

µµ

T

T
T

MAA0
MAA

MAA ．   (5.18) 

 The equilibrium pattern for the vehicles with the arrival time u at a single destination can be 
calculated from the results in Chapter 3.  From (3.16), we first obtain the rate of change in 
equilibrium arrival time for nodes 1 and 2: 

    ( ) 1
21

21
1 =

+
+

=
µµ
µµ

τ u& ,  ( ) ( )
3

211
2 µ

µ
τ

uQ
u

&
&

−
= ．    (5.19) 

Substituting these into (3.10) yields the link flow rates (with respect to u):  

    ( ) 11 µ=uy ,  ( ) 22 µ=uy ,  ( ) ( )uQuy 2113
&−= µ    (5.20) 

Note that this flow pattern is significantly different from that for the reversed network (see (5.4)). 
In order to determine the rate of change in equilibrium arrival time for node 3 (= the pure 

origin), adding an appropriate condition is required. Here we assume for node 3 that the OD flow 
rate measured at the origin, ( )ududQq 33131 /)(ˆ τ≡ )( /)( 331 uuQ τ&&= , is given. On the other hand, 

the OD flow rate measured at the destination, )(3131 uQq &≡ , is determined from (3.15a):  

     )()( 212131 uQuQ && −+= µµ       (5.21) 

Substituting this into the definitional relationship between odq̂  and odq : 

    
( ) ( )

( )
( )

du
ud

ud
udQ

du
udQ

uq
uq o

o

odod

od

od τ
τ

== /
)(ˆ
)(

 , 

we obtain the rate of change in equilibrium arrival time at node 3:  

    ( ) ( )
( )

( )
( )uq

uQ
uq
uQ

u
31

2121

31

31
3 ˆˆ

&&
&

−+
==

µµ
τ ．     (5.22) 

Defining the total travel time for the users arriving at an destination from time 0 to T as an 
indicator for measuring the efficiency of the network flow pattern:  

   ( ) ( ) ∑∫∑∫ −=≡
o

o

T

od
a

T

aa duuusQduucuyTC )}({)( 
 

0 

 

0 
τ& ,   (5.23) 
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let us examine whether the paradox arises or not in the network in Fig. 5.2.  Substituting (5.19), 
(5.21) and (5.22) into (5.23), we obtain the TC for this network: 

   

( ) ( )

( ) ( )
du

Q

uQu
uuQ

uQu
uuQTC

T



















−
−+

−+














−
−

−= ∫

)0(ˆ
)(

            

)0(

3

31

2121
31

 

0 2
3

211
21

τ
µµ

τ
µ

µ

&

&

    (5.24) 

where ∫≡
T

od duuquQ
 

0 31 )(ˆ )(ˆ .  We see from this equation that the increase in µ 1 or µ 2 will   

always decrease TC; the paradox does not arise for links 1 and 2.  However, the increase in the 
capacity of link 3 always results in the occurrence of the paradox.  This fact can be easily 
examined as follows. Calculating the derivative of TC with respect to µ 3, we have 

  ( ) ( ) ( ){ }dudttuQdu
uQu

uQ
d
dTC T uT

∫ ∫∫ =
−

=
 

0 

 

0 2212
3

 

0 2
3

211
21

3

)( 
1

τ
µµ

µ
µ

&&& .   (5.25) 

Note that )(2 uτ&  should be positive in the DUE state. The reason is that if )(2 uτ&  is not positive 

the users with the destination arrival time u’> u must depart from their origin before the users with 
arrival time u, and this contradict the assumption that the state is in the DUE.  Therefore, from the 
(5.25) and the fact that )(2 uτ& >0 for any u, the inequality 0/ 3 >µddTC  always holds; we see 

that the paradox for link 3 takes place without any additional conditions. 
 
  (2) Elastic Demand Case 
 The equilibrium pattern for the network in Fig. 5.2 can be calculated from the results of 
Chapter 4. For the network in Fig.5.2, the matrices T

−11MAA  and T
−22MAA  defined in 4.2 are 

   







−

=− 0
0

3

3
11 µ

µTMAA ,  







−
−

=−
2

1
21 µ

µTMAA .     (5.26) 

Hence, from (4.21) and (4.22), we obtain the equilibrium arrival times and OD flows:  

 ( ) ( ) ( ) ( )








−+
−

=








−+
−

= ssss ur
a
a

u
a
a

u
a

aa
uur

a
a

u
a
a

u
a

aa
u ˆˆ   ,ˆˆ 31

2

1

1

2

1

21
321

2

1

1

2

1

21
2 ττ  (5.27) 

 ( ) ( ) ( ) ( ) ( ) ( )ut
a

aaa
QuQut

a
aaa

QuQ −
+−

−=−
−−

+=
1

21321
3131

1

11321
2121    ,

µµµµ
 (5.28) 

We also get the equilibrium disutility from (4.23):  

   ( ) ( )ss urauta ˆˆ 21122 +−=ρ ,  ( ) ( )ss urauta ˆˆ 31123 +−=ρ ．   (5.29) 

 Let us define the sum of disutility experienced by all users over a network, TC, as an indicator for 
measuring the efficiency of the network usage: 
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     ∑≡
o

odoQTC ˆρ         (5.30) 

Substituting (5.29) into the definition (5.30), we get the TC for the network in Fig.5.2: 

    ( )( ) ( )( )ss uQQuQQTC ˆˆ 3131321212 −+−= ρρ  
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  (5.31) 

To check the occurrence of the paradox, we calculate 3µddTC : 

    ( )( ) ( ) ( ){ }sss ururutaaa
d
dTC ˆˆˆ 2131211

3

−−−=
µ

．    (5.32) 

Note that the relationship 

      ( ) ( )ss urur ˆˆ 2131 >        (5.33) 

or equivalently, 
      ( ) ( )ss uu ˆˆ 32 ττ >        (5.34) 

should holds as long as the network in Fig.5.2 is a saturated network. The reason can be proved 
by contradiction: consider two users with origin 2 and 3, denoted as U2 and U3, who arrive at 
the destination at the same time sû ; suppose that the (5.34) does not hold, then it implies that 

U2 should leave his origin earlier than U3 does; this clearly contradict the assumption of the 
saturated network. Thus, from (5.32) and (5.33), we see that 3µddTC > 0 always holds; in 

other words, the occurrence of the paradox is inevitable when the capacity of link 3 is 
increased.  It is worth noting that we eventually obtained the same result as in the fixed 
demand case. 
 
 
6.  Concluding Remarks 
 
 This paper discussed a capacity increasing paradox under a dynamic equilibrium assignment 
with elastic OD demands: the paradox is a situation such that improving the capacity of a certain 
link on a network worsen the total travel cost over the network. Our analysis in a simple network 
disclosed that the paradox arises only on a particular condition for a network with a one-to-many 
OD pattern, while the corresponding paradox always arises for the reversed network with a 
many-to-one OD pattern. This is the asymmetrical result that can not be seen in the classical static 
assignment framework; it is particular to the dynamic assignment with queue. Furthermore, we 
show that this property holds not only for the assignment with fixed OD demands but also for the 
assignment with elastic OD demands. 
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 In this paper, particular simple networks were employed to demonstrate the paradox. Note, 
however, that the examples presented here are not the exceptional ones that can hardly be observed 
in practical situations but the ones that can be seen universally if we regard the example networks 
as a macroscopic representation of real road networks. Therefore, we think that the examples, 
despite their simplicity, describe one of the essential points that should be considered in deciding 
practical traffic management operations such as ramp metering or addition of lanes in freeways. 
 We recognize that there are still several relevant topics to be studied. First, we should extend 
our analysis to the paradox in a more complex network by exploiting the analytical formula of the 
DUE solution derived in this paper; it may be possible to obtain systematic methods for general 
networks that detect (without computing the equilibrium patterns) the links where the paradox 
takes place; the exploration of this possibility would be an interesting future topic. Secondly, we 
should analyze more realistic case where the assumption of “saturated networks” are relaxed; the 
exploration would be achieved by employing not only the analytical approach just as shown in this 
paper but also the numerical approach based on the recent convergent algorithms for the DUE 
assignment (see Akamatsu (1998)).  Finally, we should explore the case where physical queues 
are explicitly incorporated into the analysis. Though the incorporation of physical queues may 
cause very complex phenomena as shown in Daganzo(1998), comprehensive studies on this topic 
would be indispensable for a clear understanding of the properties of dynamic network flows. 
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