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ABSTRACT

This paper demonstrates that the capacity increasing paradox in a transportation networks
as in Braesy(1968) does also occur under non-stationary settings, in particular, under
dynamic traffic assignment with endogenous time-varying origin-destination (OD)
demands. Through the analyses, the analytical formulae for the solutions of the dynamic
equilibrium assignment are explicitly derived for two kind of networks: the networks
with a one-to-many OD pattern and the reversed networks with a many-to-one OD pattern;
the formulae clarify the significant difference in the properties of the two dynamic flow
patterns. This also leads us to the findings that one of the crucial conditions that
determine whether the paradox occurs or not is the OD pattern of the underlying
networks.

1. INTRODUCTION

Local improvements in a transportation network do not necessarily lead to the improvement
of the globa performance of the network. This fact has been well recognized as “Braess's
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paradox” (Braess (1968)) or “Smith's paradox” (Smith (1978)). The paradoxes stimulated many
researchers in the field, and a consderable number of studies have been made on the relevant
topics such as the network design problem or the senstivity analysis of the equilibrium traffic
assgnment. Almost al the studies are, however, based on the framework of static (equilibrium)
traffic assgnment; only a few attempts have so far been made to study non-stationary (dynamic)
traffic flow patterns with queues. Since the properties of the dynamic flow with queues are
sgnificantly different from those of the static flow without queues, many basic problems on the
paradox under non-stationary settings are yet to be investigated.

The purpose of this paper isfirst to demonstrate that the capacity increasing paradox does
also occur under non-stationary settings, in particular, under dynamic traffic assignment with
endogenous, time-varying origin-destination (OD) demands. The paper also aims to capture the
conditions that determine whether the paradox is likely to occur or not; we disclose that the OD
pattern of the underlying networks is one of the crucial conditions.

In order to achieve the purpose, we first disclose that the analytical solution of the
dynamic user equilibrium (we call this DUE) traffic assignment with elastic OD demands (i.e.
the assignment considering users departure-time choice behavior) can be obtained explicitly in
a particular type of network satisfying some conditions. The solutions are derived for two
kinds of network: (i) networks with single origin and multiple destinations (regarded as an
“Evening rush hour” on a network of a city with asingle CBD; we refer to this “E-net” hereafter);
and (ii) networks with single destination and multiple origins (obtained by reversing the direction
of al links and origin/destinations of the E-net, we may regard it as a“Morning rush hour” on the
same network above; we refer to this “M-net”). Through the analyses of the two cases, we see
the significant difference in the properties of the two dynamic flow patterns for not only the case
where time-varying OD demands are given but also for the case of elastic OD demand due to
user’s departure time choice. These basic results for the DUE assignment then enables us to
demonstrate the dynamic version of the capacity increasing paradox and to discuss the
significant effect of OD pattern on the occurrence of the paradox.

The organization of this paper is as follows. In the second chapter, we briefly explain the
basic properties of dynamic user equilibrium assignment, restricting ourselves to the minimum
knowledge required for considering our problem. The third chapter explores the structure of the
dynamic equilibrium assignment with exogenous OD demands for E-net and M-net. The
anaytica solution formulae of the equilibrium flow patterns for E-net and M-net are derived.  The
fourth chapter extends the analyses to the model with endogenous OD demand; not only the route
choice but aso the departure time choice are smultaneoudy considered in the modd. For an
appropriate set of boundary conditions, the explicit equilibrium flow patterns are derived for E-net
and M-net. By using the results obtained in Chapters 3 and 4, we demonstrate a dynamic verson
of Braess's paradox in the fifth chapter. We first discuss the paradox for the modd with
exogenous OD demand; the anadysis on a smple network exhibits that the paradox arises only on a
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particular condition for the network with a one-to-many OD pattern, while the corresponding
paradox always arises for the reversed network with a many-to-one OD pattern. We then show that
the same results aso hold for the model with endogenous OD demand. Finaly, the last chapter
summarizes the results and remarks on some further research topics.

2. DECOMPOSITION OF DYNAMIC EQUILIBRIUM ASSIGNMENT
2.1 Networks

Our model is defined on a transportation network G[N, L, W] conssting of the set L of
directed links with L elements, the set N of nodes with N elements, and the st W of
origin-destination (OD) nodes pairs. The origins and the destinations are the subset of N, and we
denote them by R and S respectively. In this paper, we ded with only networks with a
one-to-many OD (i.e. the element of Ris unique) or those with a many-to-one OD (i.e. the element
of Sisunique). Sequential integer numbers from 1 to N are allocated to N nodes. A link from node
i to ] isdenoted as link (i,j). We aso use the notation to indicate a link by the sequential numbers
from1toL alocated to dl thelinksintheset L.

The structure of a network is represented by a node-link incidence matrix A", which isan N
x L matrix whose (n, a) element is 1 if node n is an upstream-node of link a, - 1 if node n is a
downstream-node of link a, zero otherwise. The rank of this matrix is N-1 since the sum of rows
in each column is aways zero. Hence, it is convenient in representing our model to use the
reduced incidence matrix A (instead of A"), which is an (N-1)x L matrix eiminating an arbitrary
row of A". We cdl the node corresponding to the eimination “reference node’. It is aso
convenient to “split” the matrix A into a pair of matrices, A_ and A, , defined asfollows. A_ is

amatrix that can be obtained by letting all the +1 elements of A be zero (i.e. the (n, @) element is-1
if link a arrives at node n, zero otherwise); A, isamatrix that can be obtained by letting al the

- 1 elements of A be zero (i.e. the (n, @) lement is +1 if link a leaves node n, zero otherwise); it is
needlessto say that A=A _+A, holds.

2.2. Link Mode and Dynamic Equilibrium Assgnment

For a link model in our dynamic assgnment, we employ a Firgt-In-First-Out (FIFO)
principle and the point queue concept in which a vehicle has no physical length: it is assumed that
the arrival flow at link (i,j) leavesthe link after the free flow travel time my; if there exists no queue
on the link, otherwise it leaves the link by the maximum departure rate (capacity) m, .

Concerning the assgnment principle, we assume the dynamic user equilibrium (DUE)
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assgnment, which is a natural extenson of the static user equilibrium assignment; the DUE is
defined as the state where no user can reduce hisher travel time by changing hisher route
unilaterally for an arbitrary time period.

2.3. Decomposition Property of Dynamic Equilibrium Assgnment

Under the DUE date, the users who depart their origin at the same time, regardless of their
routes, have the same arrival time at any node that is commonly passed through on the way to their
destination.  Furthermore, under the DUE date, the order of departure from the origin must be
kept at any node through destinations.  From these property, we can define the unique equilibrium
arrival time at each node for each departure time from the origin.

As defined in the previous section, link travel time c;j(t) depends only on the vehicles which
arrived at the link before time t. Therefore, together with the above discusson on the order of
arrivals a a node, it is concluded that the travel time experienced by the vehicle that departs from
an origin at time sisindependent of the flows of the vehiclesthat depart from the origin after time s,
Consequently, we can consider the assignment sequentialy in the order of departure from the
gngle origin.  That is, the assgnment can be decomposed with respect to the departure time from
the single origin provided that the OD pattern is one-to-many. Similarly, for a many-to-one OD
pattern, we can easily conclude that the assignment can be decomposed with respect to the arrival
time at the single destination. For the detailed discussions on this property, see Kuwahara and
Akamatsu (1993) and Akamatsu and Kuwahara (1994).

3. EQUILIBRIUM FLOW PATTERNSON SATURATED NETWORKS
- FIXED DEMAND CASE

In generd, the DUE assgnment is formulated as a non-linear complementarity problem
(NCP) or a variationa inequdity problem (VIP), which implies that it is difficult to obtain the
anaytical properties of the assgnment. Hence, instead of exploring the properties of the DUE
assgnment under general settings, we confine our analysis to “saturated networks’ where we can
obtain the analytical solution. The “saturated networks’ are the networks satisfying the following
two conditions: @) there exist inflows on al links over the network, b) there exist queues on all
links over the network. The first condition &) is not very redtrictive, since we can condgtitute the
networks satisfying this condition after knowing the set of links with positive flows.  Although the
second condition b) may not be satisfied in many cases, we nevertheless employ this assumption
because this assumption, as shown below, gives us the explicit formulafor the solution of the DUE
assignment, which enables us to understand the qualitative properties of interest.
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We will first show the formulation for E-net and derive the solution in 3.1; and then the
formulation and the solution for M-net will be examined in 3.2.

3.1. Equilibrium on Saturated Networkswith a One-to-Many Pattern

(1) Formulation

The DUE assignment on a network with a one-to-many OD pattern can be decomposed with
respect to the origin departure-time as mentioned in chapter 2. Hence, once we know the method of
solving the equilibrium pattern for one particular departure-time, we can obtain the equilibrium
pattern for whole time periods by successively applying the same procedure at the order of the
departure-time.  In the following, we consider the problem of obtaining the equilibrium pattern for
vehicles departing from origin o at time s, assuming that the solutions for vehicles departing before
time sare already given.

In the decomposed formulation with origin departure time s, two kinds of variables, ( Y;t ),
play acentra roll: t;° isthe earliest arrival time at node i for a vehicle departing from origin o at
times; Y isthelink flow rate with respect to s, that is, ¥i © dF; (t °)/ds, where Fyj(t) denote

the cumulative number of vehicles entered into link ij at timet. In addition, we denote the number
of vehicles with destination d departing from origin o until time s (cumulative OD demand by
departure-time) by Q_, ().

In the DUE state, each user choose his/her route whose travel time is (ex post) minimum over
the network.  In other words, the links with positive inflows should be on the minimum path tree.

In our saturated networks, all the links have positive inflows, and therefore the minimum path

condition for users with origin departure-time s is written as c(s)+ATt =0, where c(s) isan L
dimensiona column vector with elements ¢ © ¢, (), t(s) is an (N-1) dimensiona column

vector with elements t °.  Since the equation above should hold for any s, taking the derivetive
with respect to s, we have
dc(s) AT di(s) _
ds ds

where dc(s)/ds isan L dimensiona column vector with elements dc? / ds, and dt(s)/ds isan

0 "s, (3.1

N-1 dimensiona column vector with elements dt ° / ds.
In our link model, the point queue and the FIFO principle are assumed, and therefore, therate
of changein link travel time is given by
dc; (t)
dt

j(;®)/m;)- 1 if thereisaqueue
= i y
to otherwise

where | ;(t) is the standard link flow rate defined as dF; (t)/dt. Hence, in our saturated
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networks where dl links have queues, the rate of change in the time needed to traverse link ij for
userswith origin departuretime s, dc; /ds, can be represented as:

ij

ds dts ds & m gds'

dej _de, ) c? _@, () Oc;

Noticing here the definitional relationship y; =1, (t°)>dt °/ds we see tha the dc;/ds
reducestoafunctionof y° and t °:

R R L A (3.22)

or equivaently
dc(s) “MTy(s)- AT dt(s)
ds ds

(3.2b)

where M isadiagona matrix whose ath diagonal element represents the maximum capacity of link
a, y(s) isan L dimensiona column vector with dements y; .

Subgtituting (3.2) into (3.1), we obtain

My - ADEE <0, v @3
and rearranging thisyields
ﬂ§=(MAﬂ%§2 "s. (34)

On the other hand, in the decomposed DUE formulation, the flow constraints that consist of
the FIFO condition for each link and the flow conservation a each node over a network reduce to
the following equations (for the detail, see Kuwahara and Akamatsu (1993), Akamatsu and
Kuwahara (1994)):

Ay Q=0 s 35)

where dQ(s)/ds isdefined as an (N-1) dimensional vector with dements dQ_, (s)/ ds (given).
Combining (3.5) with (3.4),

S ds

(amar)dE)_dals) g (36)

Thus, we see that the DUE assignment has a unique solution (dt (s)/ ds) if the rank of the matrix
AMAT isN-1.

(2) Solution
The rank of the matrix AMAT generaly depends on the choice of a reference node. For a
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network with a one-to-many OD, the rank of AMA can be less than N-1 when we choose an
arbitrary node that is not an origin as the reference node. The rank, however, is aways N-1 when
an origin is employed as the reference node.  Furthermore, since the value of dt . (s)/ds for an
origin node is always 1 from the definition of t.(s), it is naturd to choose an origin as the

reference node. Thus, by setting an origin as the reference node, we obtain the equilibrium
solution, dt(s)/ ds, by the following formula:

dt (s)

- =(AMAT)'1dQ—(S) (3.7)

ds

In addition, we can obtain the equilibrium link flow pattern, y(s), by substituting (3.7) into (3.4).

3.2. Equilibrium on Saturated Networkswith a Many-to-One Pattern

(1) Formulation

The DUE assignment on a network with a many-to-one OD pattern can be decomposed with
respect to the destination arrival-time as shown in chapter 2. In the following, we consider the
problem of obtaining the equilibrium pattern for vehicles arriving a a destination at time u,
assuming that the solutions for vehicles arriving before time u are aready given.

For the networks with a many-to-one OD pattern, by decomposing with respect to the arriva
time at a single destination, the discussions amost paralels to those in the previous section.  Inthe
decomposed formulation with destination arrival time u, two kinds of variables, (Yi/sti'), play a
centra roll: t;' isthe latest arrival time at node i for a vehicle reaching destination d at time u;

Yi isthe link flow rate with respect to u, that is, ¥; © dF; (t)/du. In addition, we denote the

number of vehicles with origin o arriving at destination d until time u (cumulative OD demand by
arrival-time) by Q. (u).

The formulation almost pardlds the discussons in 3.1.  First, the minimum path
conditions for saturated networks reduces to the following conditions:

dc(u) AT dt (u) _
du du

0 "u. (3.9
Then the link travel time with a point queue for saturated networks also should satisfy

de(u) dt (u)

u y(u)- A, U (3.9)
Subgtituting (3.9) into (3.8), weobtain
y(u) =- (M AT )dt_(u) "u, (3.10)

du
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On the other hands, the link flow y should satisfy the flow constraints:

Ay(u)- dQ(“) ", (3.12)

Combining (3.10) with (3.11), we reach

-(AMAT) () ()

du du

"u (3.12)

Thus, we see that the DUE assignment has a unique solution (dt (u)/ du and y(u)) if the rank of
AMAT isN-1.

(2) Solution
An arbitrary network with a many-to-one OD pattern can be obtained by reversing the

direction of al links and origin/destinations of a network with a one-to-many OD pattern.
Therefore, it is natural to expect that, “reversing” the result in 3.1, therank of AMAT become

N-1 when a destination is chosen as the reference node. However, it is not the case for this
problem; the rank become less than N-1 even if we set the destination as the reference node;

furthermore, we can prove that the rank isless than N-1 for any choice of the reference node.
The reason why the rank of the matrix AMAT becomes less than N-1 is that there exist

particular origins (we call this “pure origins’) that are not traversal nodes (i.e. the origin which has
no links arriving at the origin).  Letting B bethe (i,j) dlement of A'MA’ ", we easily see that

- f it
Lo (3.13)

Hence, the column vectors of AMAT corresponding to the pure origin are dways zero, and the
rank of AMAT necessarily decreases by the number of pure origins.

To see this fact more precisely, we divide the node set N into two sub-sets. the set of pure
origins, Ny, and the set of the other nodes, N,.  Then, we divide A", A", dt (u)/du and dQ(u)/du
into the two blocks corresponding to N; and N2, respectively:

édt, (u)u édQ, (u)

u

éA éo0u dt(u) €y a dQ(u) € du a

A =3 , A =a 1, ——— =@ s =@ 0,
&ALl A, 0 du gdt,(u)g du  gdQ,(u)y

€ du @ € du @

where i th dement of dQ»(u) /du is defined as - éo{dQOd (u)/du} =- é_ Mg if 1 isan orign,

dQig(u)/du if i is a destination, zero otherwise. Note that A1 _, which is the first block of A
corresponding to Ny, is aways 0 according to the definition of the pure origins.  Rewriting (3.12)
with these partitioned variables, we have
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¢dQ, (u)u W | edty(u)a
9 dU lﬁleMATdtuzgo _AlMAZ-lilg d lﬁl 314
£dQ, (u)¢ u g0 - A,MAT fedt,(u)d (3149
€ du 0Q € du G
That is,
dQl(u) T dtZ(u)
=- 1
du AMA; du ' (3159
OIQZ(“)=-A2|\/|A;_ dt, (u) (3.15h)
du du

This means that no condition which determinesthe dt, /du for the pure originsisincluded in the
equilibrium condition (3.12), whilethe dt , / du for the traversal nodes can be obtained by
-1 dQ 2 (U)

dt ,(u) _ -
= =-(A,MAT ) . (3.16)

Thus we see that the solution of the DUE assignment with a many-to-one OD pattern can not be

unique and that for the problem to have a unique solution we should add appropriate conditions to
resolve the indeterminacy of the dt, /du.

4. EQUILIBRIUM FLOW PATTERNSON SATURATED NETWORKS
- ELASTIC DEMAND CASE

The previous chapter andyzed the solution of the DUE assgnment where only user’s route choice
is endogenoudy described given time-varying OD demands. This chapter extends the andlyses to the
case where the time-dependent OD demands are endogenoudy determined (we cdl the modd “DUE
assgnment with Elasic demand”) by incorporaing the usar’s departure time choice.  The modd
employed here is the smplest one that consstently unifies the two kind of dynamic equilibrium modds
the dynamic equilibrium assgnment presented in the previous chepter and the dynamic equilibrium
mode of departure time choice asiswdl known snce Vickrey (1969) or Hendrikson and Kocur (1980).
For expostiond brevity, the following assumptions are made in this paper:

1) The userswith the same OD pair are homogeneous, that is, their utility functions are dl the same and
their desred ariva timeisunique;

2) The users who arive later than the desred ariva time do not exis [This is not a redrictive
assumption but one just to make the exposition as Smple as posshle; it is easy to extend to the case
wherelate ariva is permitted.].

33) For the problems with one-to-many OD pettern (i.e. when we consder the problem on the basis of
the origin departuretime), the disutility function for the users with destingtion d leaving origin et time s,
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Vud(S), is given as the linear combingtion of ther travel time from the origin to destination d and their
“scheduledday”:

Voa (8) =aft 4 () - s +a,{t, - t ()}, (4.2)
wherea, & are pogtive parametersthet satify ap > & t(S) isthe destination arriva-time for the
usarswho gart fromoriginattimes and  tyisthe users desired arrivd time.
3b) For the problems with many-to-one OD pattern (i.e. when we consder the problem on the basis of
the degtination arriva-time), the disutility function for the users with origin o arriving &t the destination

a time u, Vw(U), is given as the linear combination of their travel time from origin o to the dedtination
and ther “schedule delay”:

Vo (U) =a{u-t ()} +a,{t, - u}, 42
where t  (u) istheorigin departure-timefor the userswho arrive a destination at time u.
4) The networks can be regarded as “ saturated networks' thet is defined in the previous chapter.

4.1. Equilibrium on Saturated Networ ks with a One-to-Many Pattern

(1) Formulation

In this section we congder the networks with a one-to-many OD paitern where al nodes except the
origin are degtination, i.e., there are no nodes that are neither origin nor destintion. [Thisissmply for the
convenience of expostiond brevity. The gppropriate divison of the node st eeslly extends our analyses
to the generd case where there are Some nodes thet are neither origin nor destination. See Appendix.]

The dadtic demand DUE employed in this chapter is defined as the State where no one can improve
higher utility by changing e@ther higher route or their departuretime unilaterdly To formulate this,
condder usars who choose time s as departure time.  Since the users choose their optima route
(conditiond on the optima departure time) in the DUE date, the equilibrium conditions for the route

choice should be represented by the following differentid equations as shown in Chapter 3:
(amaT ) (s) _ dals) 43
ds ds
where the origin node is selected as areference node as discussed in 3.1, Then, the condiition thet no user

can improve his utility by changing hisher departure-timein the DUE Sate can be represented by

WVerl) _ "s, " d 44)
1s
Subgtituting the definition of disutility function (4.1) into this, we obtain the equilibrium rate of changein
the destination arriva-time asfollows:
dt () =& "s,"d (45)
ds a - a,

10
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[We are assuming that networks can be regarded as “ saturated networks” and dl OD pairs have postive
OD flows during the period of time. In generd we should consder the analyss period to include the time
where some OD pairs have no generaion of OD flows. By introducing appropriate classfication,
however, the generd case can be reduced to the combination of our basic case (the case where dl OD
pairs have postive OD flows during the period for our andyss) and the case presented in Appendix ]
Thus, the dagtic DUE condiitions are represented as the following system of differentid equations

idi(s) - & (4.6a)
i ds a-a

id S\t

%% =(AmA’ )f (4.6b)

where E is an (N-1) dimensond column vector whose dements are dl equd to 1. It is worthwhile to

compare the equilibrium conditions with those for the fixed demand case. In the fixed demand DUE
modd, eq.(4.3) with a given condant vector dQ(s)/ds determines dt (s)/ds. On the contrad, in the

eladtic demand DUE, dt (s)/ds isfirg determined from the departure-time equilibrium condition, and
then eg.(4.3) withfixed dt(s)/ds determinesdQ(s)/ds.

(2) Solution
By sdting appropriate boundary conditions, we can obtain the solution (t(s),Q(s)) for the
differentia equation (4.6). For the boundary conditions, we fird st the initid time S, of the time
period (measured with respect to the origin departure-time) during which eqg.(4.6) holds (i.e. the networks
can be regarded as “saturated networks’ and dl OD pairs have postive OD flows).  Then we give the
vaue of cumulative OD flowsfor thetime S, and for thefind time of the period:

Qy(8)=Q,, = given " d 474

Qui(S(ts)) = Qo =given " d (4.7b)
where s(t,) isan origin departuretime of the find users who arive a dedtination d at time ty (note that

wedo not haveto givethevadueof s(t,) explictly).
Integrating the second equation of (4.6) fromtime S, to swith theinitid condition (4.78), we have

Q(s)=Q+(AMAT)E—2(s- 8), 48)
o a- a
where Q isan (N-1) dimensiond vector withelements Q .
We then solve (4.6) with repect tot . Integrating the first equetion of (4.6) fromtime S, totime
slt,) reducesto

IRV .
t-t(3)= t,)-E&) "d. 49
(6)=5 75 ) ES) @9

wheret, t(8,), and Stg) are (N-1) dimensiona vectors with dementst, t (8,), and S(t), respectively.

11
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The length of the time period that gppears in the right hand side of (4.9), st, )- 8., can be obtained by
subgtituting (4.7b) into (4.8):

st,)- E& :%(AMAT)*(G - Q). (4.10)
Hence, from (4.10) and (4.9), we can determine theinitia equilibrium arrival time correspondingto S
t(&)=t- (AMA))*(Q- Q) (4.11)

Thus, the equilibrium pettern(t (s), Q(s)) with the boundary condition (4.7) isgiven by

2

t(s)=t- (AMAT) Q- 9))+Ea1a1 (s-8)

i
v
[
|
v
:
|

"s, (4.12)

Q(s):9+AMATEﬁ(s- 3)

and the corresponding equilibrium disutilityt  (s) iscalculated by
r=(-E8)a+(AMAD Q- Qa-a) s @1

4.2. Equilibrium on Saturated Networkswith a Many-to-One Pattern

(1) Formulation
In the following we condder the networks with a many-to-one OD paitern where dl nodes except
the dedtination are origins, i.e, there is no node thet is neither origin nor destination. For the generd case
where there are Some nodesthat are neither origin nor destination, see Appendix.
We divide the node set N into two sub sets: the set of origins Nj, and the set of the single
destination, N.. Then, we divide A", A", dt(u)/du and dQ(u)/du into the two blocks
corresponding to N1 and N2, respectively:

A édt ,(u)a 6dQ, (u)a
el ) GG ool gl @19
AL G du 8 1 H du g_mj H

where A, isan (N 1)x L malrix, A,is an L dimensonad column vector, dQ,(u)/du is an N-1
dimensional column vector with dements dQ (u)/du  and my © & m, .
ijl Ly

The dadtic demand DUE employed here is defined as the sate where no one can improve hisher
utility by changing ether hisher route or their departure/arrival-time unilaterdly. Since the users choose
their optima route (conditiona on having chosen hisher optima departure/arriva-time) in the DUE date,
the equilibrium conditions for the route choice should be represented by the following differentid
equations as shown in Chapter 3:

12
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9Qu) __(prya7)okll) (415)
du du

Rewriting thiswith the variablesintroduced in (4.14), we have

dQ,(u dt,(u
?j—L() = (a,mMAT )% - (AMmAT) (4.16)
The condition that al the users can not improve ther utility by changing hisher ariva-time (or

departure-time) in the DUE date can be represented as

Weslt) _ "u, "o 417)
fu

Subdtituting the definition of disutility function (4.2) into this, we obtain the equilibrium rate of changein
the destination arriva-time asfollows:

dt o (u) =4 % "u,"o (4.18)
du a
Thus, the dagtic DUE condiitions are represented as the following system of differentid equations
dt,(u)_-a- 3
: du a,
| (4.19
i dQl(u)
1
|

1(A1|v| Al e aiéiaz - (AMAT )‘g

It is worthwhile to compare the equilibrium conditions with those for the fixed demand case. In
the fixed demand DUE modd, we tried to determine  dt (u) / du from the eq.(4.15) with a given constant

vector dQ(u)/du.  Then we encountered the indeterminacy of dt (u) / du due to the decrease in the rank

of matrix AMA™-.  On the contragt, in the dastic demand DUE, the indeterminacy problem is resolved
gnce dt(u)/du isfird determined from the departuretime equilibrium condition, and then eq.(4.16)

withfixed dt (u)/du determinesdQ(u)/du.

(2) Solution
Asinthe case of one-to-many OD pattern, we can obtain the solution(t (s), Q(s)) for the differentiad

equation (4.19) by giving gppropriate boundary conditions.  For the boundary conditions, we first st the
initid time 0, of the time period (measured with respect to the destinetion arrival-time) during which

€0.(4.19) holds (i.e. the networks can be regarded as “saturated networks’” and dl OD pairs have postive

OD flows). Then, onapardld with thediscussonin 4.1, it isnaturd to give the value of cumulative OD
flowsfrom U, andfor thefind timety :

Qu (Us) =Q,, = given "o, (4.208)
Qua (ty) = Qo = given "o, (4.20b)
The conditions (4.20) in conjunction with (4.19) can be solved with respect to Q(u). However, these
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conditions are not enough to determine the value of t. Hence, indead of (4.20a), we give the time
needed to travel from origin o to the destination &t theinitia time U asanew boundary condiition:

a,-t,(G,)=r, =given  "o. (4.200)

Integrating the second equation of (4.19) from time u to ty with the initid condition (4.20c), we
have

(A,MAT )E%+(A1MA;_ )‘g( -u) "u @2
We next solve (4.19) with respect tot . Integrating the first equation of (4.19) from time G, totimeu
with theinitia condition (4.20c), we obtain

t(u)=(EQ, - r)+E%(u- a)  "u. (4.22)

and the corresponding equilibrium disutilityt  (s) iscalculated by
r=a,qt,- 0,)E+ar 423

5. PARADOXES

Having derived the formulae for the solution of the dynamic traffic equilibrium assignment
so far, now we can discuss the capacity increasing paradox. The paradox presented here is a
situation such that improving the capacity of a certain link on a network worsen the total travel cost
over the network; thisis a dynamic version of Braess' s paradox which is well known in the static
assgnment. Using the results obtained in Chapters 3 and 4, we derive the necessary conditions
for the occurrence of the paradox for E-net and M-net, which are shown to be significantly
different.

5.1. A Paradox for a Network with a One-to-Many OD Pattern

We consider the paradox for the network shown in Fig. 5.1, where node 1 is a unique origin;
nodes 2 and 3 are destinations,; the maximum departure rate of link a (a = 1,2,3) isgiven by m..

}v@__>
Q12+Q13__’@ lm"

Fig.5.1. Example Network with Single Origin and Two Destinations

14



A Paradox for a Dynamic Equilibrium Assignment

For the brevity of notation, we employ the superscript “ " as the derivative operation with respect
to origin departure-time sin this section. (e.g. t,(s)° dt,(s)/ds, Q,(s)° dQ,(s)/ds)

(1) Fixed Demand Case
For the network in Fig. 5.1, the origin (i.e. node 1) should be the reference node; the
incidence matrix A", the reduced incidence matrix A, and the corresponding A_ are given as
follows:

¢l 1 ou £1 0 1 10 0
+» _ @ u _€ u _€ u
A —é'l O 1u, A—eo -1 ) u, —eo -1 ) u (51)
éO -1 ']-é e ]'U e
Hence,
1 m
, _ é ‘|
A|\/|,A\T=gTl M, v (AMAT)'lzémi ml(rnz"'rns,)g (5.2)
g0 m,+my §‘0 1 u
g m+m H

The equilibrium pattern for the vehicles with the departure time s from a single origin can be
caculated using the results of Chapter 3. From (3.6), we first obtain the rate of change in
equilibrium arriva time:

fﬁki%@h—L—ﬁx)u@ QOs(s) (53

m m (m, +m, ”E"'WE

Substituting these into (3.3), we have the following equilibrium link flow pattern:

Yi(s)=Qu(s)+ Qis(8)=Qu(8)+ s (9

”E"'WE

Qu(s). ¥s(s)=

» 5.4
e mz+mSQ() (54)

Y,(s)=

To discuss the “capacity increasing paradox”, we employ the tota travel time for the users
departing from an origin from time 0 to T as an indicator for measuring the efficiency of the
network flow pattern:

o o ‘T 0o ‘T .
TC° @ Q) Valsleu(s)ds=a ¢ Qu(SKta(9)- Sds (55)
a d
We then refer to the situation “paradox” if increasing the capacity of a certain link, my, causes the
increaseof TC (i.e. dTC/dm, > 0implies “paradox”).

Let us examine whether the paradox arises or not for the network in Fig. 4.1. Subgtituting
(5.3)into (5.5), weobtanTC:

15
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Qu(s) u
t,(0 » t,(0)- sygds (56
#1200 s%+Q()mZ+ms+ ©- sycds (59

T8 Ile()+ mQss(s)
Tes Q ()T m - m(m+m,

From (5.6), we easily see that the increase of my or m, always decreases TC (note that both my
and m, appear in only the denominator of TC), that is, the paradox does not arise for links 1 and 2.
Increasing ms, however, causesthe paradox. Thereason isthat since

dTC & [ .
M 8 { Q Qe (S)Q13 (S)d } { Q le( )le( )dS }Sm , (5.7)

if the condition:
Q Qu(3IQu(9d5 _ ) Qu(9)Qu(S)ds -

m m,
holds, dTC/dm, isalways positive this means the occurrence of the paradox.

The (5.8) is the condition that the paradox occurs for a certain time period 0  T. From
this, we can also derive the condition under which the paradox occurs for an arbitrary time period:

Qu(s)/m >Qu(s)/m,. (5.9)

The meaning of this inequality is smple. Since the increase of m; always results in the increase of
y3 (see (5.4)), suppose 1 unit of increase in flow on link 3 (= y3). This means that the number of

users with destination 3 who pass through link 1 increases by 1 unit. The increase in flow on link 1
then causes Q,,(s)/m of increasesin total travel time for the users with destination 2 (“User-2).

On the other hand, total travel time for the users with destination 3 (“User-3") decreases by
Q,;(s)/ m,, since the flow on link 2 decreases 1 unit. Therefore, the 1 unit of increase in flow on

link 3 causes the increase of total travel time by Q,(s)/m - Qu(s)/m,. Thus, we see that

(5.9) means the condition that the “net benefit” for User-2 and User-3 (User-3's benefit minus
User-2'sloss) due to theincrease of mg becomes positive.

(2) Elagtic Demand Case
The equilibrium pattern for the network in Fig. 5.1 can be calculated from the results of
Chapter 4.  From (4.12), wefirst obtain the equilibrium arrival timesand OD flows:

__a ]
tils)= = (- g n +%Q13g (510)

le(s):le(és)"'(mi' ma)ai?iaz (S' és)’ le(s):Q13(§S)+mZ ai?iaz (S' és)- (5-11)

where QOd Q. - Q.- Then (4.13) givesthe eguilibrium disutility for each origin:
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~ R 1 ~
o e FeTal 8)r @ a) 0 G
We define the sum of disutility experienced by dl users over anetwork, TC, as an indicator for measuring
the efficiency of the network usage:

r, :al(tz - §5)+(ai_ az)

TC° 4 r,Q,. (5.13)
d
TheTCfor thenaetwork in Fig.5.1isgiven by
N PR AR e, QO
TC=afl.- 8)0u (- 80} (o ali S N2 514

To check the occurrence of the paradox, we cdculate dTC/dm, :

~ 2 ~ 2
dic _2Q, 9 2Q; O (515
dm  gm-mpy gm+mjp
Note thet the capacity of link 1 should be greater than thet of link 3 (.e. m > m,) in order for (5.11) to
satisfy the (physically evident) conditionQ, (s)- Q,(8,)>0. Hence dTC/dm, >0 holdsonly if

Qz /(M - m)>Qy/ (M, +my). (5.169)
We see from (5.164) that the paradox arise (with the cgpacity increase of link 3) independent of the vaue
of mg if the following condition hold:

Q,/m>Q,/m,. (5.160)
It is noteworthy that the condition (5.16b) isidentica in form to the condition for the fixed demand case.

5.2. A Paradox for a Network with a Many-to-One OD Pattern

We consider the paradox for the network in Fig.5.2, where node 1 is a unique destination;
nodes 2 and 3 are origins, the maximum departure rate of link a (a = 1,2,3) isgiven by m..
For the brevity of notation, we employ the superscript “ " as the derivative operation with respect
to destination arrival time u in this section. (e.g. t,(u)° dt, (u)/du,Q,(u)° dQ,(u)/du)

QutQu+- @ I m

Fig. 5.2. Example Network with Two Originsand Single Destination
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(1) Fixed Demand Case
For the network in Fig. 5.2, node 3 is the pure origin; we divide the incidence matrix A”, the
corresponding A™_and the OD flow vector as follows:

A,=[0 1 1] (node3y A, =[0 0 0] dQ,(u)/du=[O, ()]

&1 -1 OUuU(noded, é1l -1 O0u, é& (m+m)u (5.17)
. (noded) @ dQ,u)/du=g ot

Z_gl 0 -]H(nOdez) - go 0 -1Ij e QZl(u) u
Hence,
€0} -m -mu
. AMAI U & -4
AMAT =g AN G0 mam 0 (5.18)
& AZMAZ-G "O: _ -
g0} -m m§

The equilibrium pattern for the vehicles with the arrival time u at a single destination can be
caculated from the results in Chapter 3. From (3.16), we first obtain the rate of change in
equilibrium arrival time for nodes 1 and 2:

t,(u)= m+m _, t,(u)= m - Qu(u)
m+m m

(5.19)

Subgtituting these into (3.10) yields the link flow rates (with respect to u):
vi)=m, y,(u)=m, y,(u)=m-Q,u) (5.20)

Note that this flow pattern is significantly different from that for the reversed network (see (5.4)).
In order to determine the rate of change in equilibrium arriva time for node 3 (= the pure

origin), adding an appropriate condition is required. Here we assume for node 3 that the OD flow
rate measured at the origin, G, © dQ,, (u)/dt ,(u) = Q,, (u)/t ,(u) , is given. On the other hand,

the OD flow rate measured at the destination, ., © Q., (u) , is determined from (3.15a):
Qsl (Uy=m+m, - Q21 (u) (5.21)
Substituting this into the definitional relationship between ¢, and q,:

qod (U) - ond (U)/ ond (U) - dt o(u)
()  du  dt,(u)  du

we obtain the rate of change in equilibrium arrival time at node 3:

. _Qsl(u)_ml"'mz' Q21(U)
S R—N )

(5.22)

Defining the total travel time for the users arriving a an degtination from time Oto T as an
indicator for measuring the efficiency of the network flow pattern:

TC° 8 ¢ valule,(W)du=& ¢ Qui(Hu-t,(U)au, (5:23)
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let us examine whether the paradox arises or not in the network in Fig. 5.2. Subgtituting (5.19),
(5.21) and (5.22) into (5.23), we obtain the TC for this network:

TC = deﬂ(u)}u- ”WTQ(“) t 2(0)§
e |

(5.24)

x (0)
Qu K
whereésl(u) ° d Qos (U)du. We see from this equation thet the increase in my or my will

always decrease TC; the paradox does not arise for links 1 and 2. However, the increase in the
capacity of link 3 always results in the occurrence of the paradox. This fact can be easly
examined as follows. Calculating the derivative of TC with respect to ms, we have

T G Sl L sogosh e

Note that t',(u) should be postive in the DUE dtate. The reason isthat if t',(u) isnot positive

the users with the destination arrival time u'> u must depart from their origin before the users with

arrival time u, and this contradict the assumption that the state isin the DUE.  Therefore, from the
(5.25) and the fact that t',(u) >0 for any u, the inequality dTC/dm, >0 always holds, we see

that the paradox for link 3 takes place without any additional conditions.

(2) Elagtic Demand Case

The equilibrium pattern for the network in Fig. 5.2 can be calculated from the results of
Chapter 4. For thenetwork in Fig.5.2, thematrices A,MA] andA,MA] ddfinedin4.2ae

o L
AMAT —en}% oﬁ’ AMATL =& n”iﬁ (5.26)
e e by

Hence, from (4.21) and (4.22), we obtain the equilibrium arrival timesand OD flows:

Q- Al A sl
u+—= u ra\Us )y (5.27)
a, a“ a, 31( )g

i. U
—iUg- i"21(us)g’ ts(u):

|
a  ai a

Q21(U) = C_221 + (al : aZ)aT" o (t - u)’ Qsl(u) = C_231 : (al : aZ)aTj o (t ) u) (5.29)
We ds0 get the equilibrium disutility from (4.23):
= az(t - ljs)"' airZI(OS)’ rs= az(t - ljs)"' a1r3l(as) (529)

Let us define the sum of disutility experienced by dl users over anetwork, TC, as an indicator for
measuring the efficiency of the network usage:
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TC° & r.Qu (5.30)
Subgtituting (5.29) irrtothede‘inition(S.;O),weget the TC for the network in Hg.5.2:
TC =1,(Q, - Q,(0.))+r,(Q,, - Q,(d.))
=fault- 0) o) B Mo am g

i a
(5.3
+{a2(t - as) + airsl(as)}}\ (a1 - aZ)arIE ! alrnz (t - 05%
|
To check the occurrence of the paradox, we cdculate dTC/dm, :
dTC - - -
d— = 31(31 - )(t - us){rBl (Us)' I (Us )} (5-32)
m
Notethat the rdationship
r31 (Os) > r21 (as) (533)
or equivaently,
t 2(05)>t3(05) (534)

should holds as long as the network in Fig.5.2 is a saturated network. The reason can be proved
by contradiction: consider two users with origin 2 and 3, denoted as U2 and U3, who arrive at
the destination at the same time (, ; suppose that the (5.34) does not hold, then it implies that

U2 should leave his origin earlier than U3 does; this clearly contradict the assumption of the
saturated network. Thus, from (5.32) and (5.33), we see that dTC/dm, > 0 always holds; in
other words, the occurrence of the paradox is inevitable when the capacity of link 3 is
increased. It is worth noting that we eventually obtained the same result as in the fixed
demand case.

6. Concluding Remarks

This paper discussed a capacity increasing paradox under a dynamic equilibrium assignment
with elastic OD demands: the paradox is a Situation such that improving the capacity of a certain
link on a network worsen the totd travel cost over the network. Our analysis in a smple network
disclosed that the paradox arises only on a particular condition for a network with a one-to-many
OD pattern, while the corresponding paradox always arises for the reversed network with a
many-to-one OD pattern. This is the asymmetrical result that can not be seen in the classical static
assgnment framework; it is particular to the dynamic assgnment with queue. Furthermore, we
show that this property holds not only for the assignment with fixed OD demands but also for the
assignment with elastic OD demands.
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In this paper, particular smple networks were employed to demonstrate the paradox. Note,
however, that the examples presented here are not the exceptional ones that can hardly be observed
in practical situations but the ones that can be seen universaly if we regard the example networks
as a macroscopic representation of real road networks. Therefore, we think that the examples,
despite their smplicity, describe one of the essentia points that should be considered in deciding
practical traffic management operations such as ramp metering or addition of lanesin freeways.

We recognize that there are still severa relevant topics to be studied. First, we should extend
our analysis to the paradox in a more complex network by exploiting the analytical formula of the
DUE solution derived in this paper; it may be possible to obtain systematic methods for genera
networks that detect (without computing the equilibrium patterns) the links where the paradox
takes place; the exploration of this possibility would be an interesting future topic. Secondly, we
should anayze more redlistic case where the assumption of “saturated networks’ are relaxed; the
exploration would be achieved by employing not only the analytical approach just as shown in this
paper but also the numerical approach based on the recent convergent agorithms for the DUE
assgnment (see Akamatsu (1998)). Finally, we should explore the case where physica queues
are explicitly incorporated into the analysis. Though the incorporation of physica queues may
cause very complex phenomena as shown in Daganzo(1998), comprehensive studies on this topic
would be indispensable for a clear understanding of the properties of dynamic network flows.
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