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SUMMARY 
 
This study analyses theoretical flow patterns of the Dynamic System Optimum (DSO) 
assignment and proposes the ramp control strategy toward DSO using a simple network of a 
parallel pair of an expressway and a surface street.  The marginal cost for the dynamic 
traffic flow is first defined in contrast with one in static analysis.  An analysis on DSO based 
upon the dynamic marginal cost suggests that the best strategy for DSO is to assign demand 
onto the faster route (the expressway) just up to its capacity.  Then, assuming each traveler 
chooses a route so as to minimize his/her own travel time, we show that a ramp control such 
as metering can decrease the total travel time of not only the expressway but also the surface 
street.  Finally, we apply the proposed ramp control strategy to the existing traffic 
conditions. 
 
 

DSO ASSIGNMENT 
 
Network and Demand 
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Figure 1  A Study Network with Single OD Pair 
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Figure1 shows a study network consisting of an expressway and a surface street.  Such a 
simple network is used to focus on the key issue.  A time-dependent traffic demand from 
single origin to single destination given.  We suppose the following three assumptions. 

1. Free flow travel time of the expressway Te is less than one of the surface street Ts. 
2. A queue has no physical length. 
3. Each vehicle is served in the FIFO (First-In-First-Out) discipline at the both 

bottlenecks. 
The OD demand rate departing from the origin is written as λ(t), which is assumed to have a 
single peak and is split onto the expressway and the surface street.  The corresponding 
arrival and departure rate are written as below. 

λe(t), λs(t) : Arrival rates entering the expressway and the surface street at time t. 
µe(t), µs(t) : Departure rates leaving the expressway and the surface street at time t. 

And their cumulative functions are defined as below. 
Ae(t), As(t) : The cumulative number of vehicles entering the expressway and the surface 

street by time t,  A(t)=Ae(t)+As(t). 
De(t), Ds(t) : The cumulative number of vehicles leaving the expressway and the surface 

street by time t. 
The µ*

e and µ*
s in Figure 1 mean capacities of the expressway and the surface street, 

respectively. 
 
DYNAMIC MARGINAL COST 
 
The total travel time TC during the study time period, 0 ≤ t ≤ τ, is written as below. 

∫ ⋅++∫ ⋅+=+= ττ λλ 00 )()}({)()}({ dtttwTdtttwTTCTCTC ssseeese  (1) 

where, 

TCe  : Total travel time of the expressway. 

TCs : Total travel time of the surface street. 
we(t) : Waiting time of a vehicle entering the expressway at time t. 
ws(t) : Waiting time of a vehicle entering the surface street at time t. 

Let us consider the marginal cost on the expressway and the surface street, MCe(t) and MCs(t), 
which describe how much travel time changes when unit arrival rate at time t shifts.  For the 
expressway, 

ttT

twTtTttwT

tAtAtwT

dt
duudttwT

dt
duu

td
udwtwT

dttd
duuuwTd

dttd
dTCtMC

e
e

eee
e

ee

e
e

e

e
ee

t e
e

ee

t e
e

e
ee

e

eee

e

e
e

−+=
++−+++=

−++=

⋅∫++=

⋅∫++=

⋅∫ ⋅+
==

1

1

1*

*

0

))}((){()(

))()((1)(

1)()(

1)(
)(
)()(

1
)(

)()}({
)(

)(

µ

λ
µ

λ
λ

λ
λ

λ

τ

τ

τ

 (2) 

where et1 : queue vanishing time on the expressway (see Figure 2) 



 3

Equation (2) implies that, in contrast with the static marginal cost, shift of arrival rate at time t 
affects travel time of all vehicles arriving at the bottleneck from t until the queue vanishes.  
That is, since the cumulative number from time t increases by one unit, the marginal cost is 
interpreted as MCe(t) = travel time of the vehicle entering at time t (Te + we(t)) + total waiting 
time change of vehicles entering after t ( µ*

1 ))()(( ee
e

e tAtA − ).  Similarly, for the surface street, 
MCs(t)=Ts+ st1  - t.  To establish DSO, we should clearly equilibrate these dynamic marginal 
costs on both routes. 
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Figure 2  Dynamic Marginal Cost on the Expressway 

 
Strategy for DSO 
 
At first, we consider a case where no queue forms on the surface street because of the 
sufficient capacity (µ*

e<Max λ(t)<µ*
e+µ*

s).  When free flow travel time Te is equal to Ts, the 
solution of DSO must be the same as one in DUE.  Since users have no preference one route 
to another one in this case, the problem can be reduced to a single bottleneck with capacity of 
µ*

e+µ*
s. 

When ∆T=Ts - Te>0, the solution of DUE would be one shown in the left upper figure of 
Figure 3.  For simplicity, we assume free flow travel time on the expressway Te is equal to 
zero thereafter.  The A(t) shows the total cumulative demand, all of which uses the 
expressway at the beginning.  At time t0, a queue starts forming on the expressway and the 
travel time on the expressway becomes equal to Ts at time t2.  From t2 to t3, the demand is 
split so as to equalize travel times on both routes.  However, at time t3, the whole demand 
rate decreases lower than expressway capacity, and then the entire demand returns to the 
expressway.  Thus, the slope of Ae(t) for the expressway becomes equal to that of total 
demand A(t) after time t3.  The left lower figure of Figure 3 shows the marginal costs of both 
routes.  When a queue forms on the expressway at time t0, MCe(t) suddenly jumps to t1 - t0 + 
Te and then decreases until time t1 with slope of –1 according to equation (2).  On the other 
hand, the marginal cost of the surface street MCs(t) stays constant value of Ts.  From this 
figure, in DUE, the marginal costs are not in the equilibrium; that is, more demand tends to be 
assigned to the expressway especially from time t0 where MCe(t)>MCs(t). 
The right upper figure of Figure 3 shows the queue evolution under DSO.  Until time t0, 
both marginal costs stay to their free flow travel times because of no queues, and the entire 
demand uses the expressway.  At time t0, the whole demand rate becomes equal to 
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expressway capacity µ*
e.  Under this condition where λe(t)=µ*

e, if we add one unit of 
demand onto the expressway, a queue on the expressway would last until time t1.  Therefore, 
the marginal cost of one unit addition, MCe

+(t), is t1 - t0+Te.  On the other hand, if we 
subtract one unit of demand, demand rate on the expressway λe(t) is less than its capacity µ*

e 
and MCe

-(t) is Te (<Ts) as shown in the broken line in the right lower Figure 3.  As seen here, 
the marginal cost jumps between MCe

+(t) and MCe
-(t) when demand of just equal to its 

capacity is assigned.  Hence, if we add one more unit on the expressway, the expressway 
marginal cost MCe

+(t) becomes larger than the surface street marginal cost MCs(t), while if 
one unit is subtracted, MCe

-(t) becomes smaller than MCs(t).  This suggests, from t0 to t4, to 
assign the demand onto the expressway just up to its capacity to keep the bottleneck busy but 
not more than its capacity.  From time t0, MCe

+(t) keeps decreasing with slope of –1 until 
time t4.  After time t4, since the expressway marginal cost MCe

+(t) becomes smaller than the 
surface street marginal cost MCs(t)=Ts, the entire demand should be assigned to the 
expressway.  Thus, if the total demand rate is larger than its capacity µ*

e for t4 to t1, a queue 
forms on the expressway as shown in the right upper Figure 3.  It is interesting that t1 - t4 
must be equal to ∆T, since MCe

+(t) still decreases with slope of –1 from t4 to t1.  To draw 
Figure 3, t0 is first determined so that A(t0)=µ*

e.  Then, a straight line with slope µ*
e is 

superimposed with the total demand curve A(t) and find two intersection points t4 and t1 so 
that t1 - t4 =∆T.  If ∆T gets longer, t1 - t4 is therefore increases.  For sufficient large ∆T, t4 
becomes equal to t0.  Then, a time interval between t0 and t4 during which some demand 
uses the surface street is disappeared and hence the entire demand uses the expressway all the 
time.  In other words, no one should take the surface street for DSO because of its quite long 
travel time Ts. 
If Max λ(t)>µ*

e+µ*
s then, a queue forms both on the expressway and on the surface street.  

For all cases, a basic strategy to establish DSO is to assign demand onto the faster route (the 
expressway) just up to its capacity as discussed above.  This strategy would be valid not 
only a case with only two alternative routes as we discussed but also cases with more than 
two routes.  That is, we should assign demand first onto the fastest route up to its capacity 
and then assign the remainder to the second best also up to the capacity and so on. 
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Figure 3  Queue Evolution in DUE(left) and DSO(right) 

(No Queue on Surface Street) 
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RAMP CONTROL 
 
We have discussed on DSO, in which we directly control demand, itself.  However, in 
reality, we cannot order drivers which way to go.  They can be controlled only through some 
physical and/or economical means such as ramp control, road pricing, and so on.  In this 
section, let us consider the ramp control that restricts the flow rate entering an expressway.  
We also assume that traffic condition becomes DUE without ramp control.  Thus, the point 
of the analysis is whether the ramp control reduces the total travel time compared with the 
DUE condition. 
 
Preliminary Consideration 
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Figure 4  A Study Network with Two OD Pairs 
 
This section summarizes conditions where the ramp control is or is not clearly effective to 
reduce the total travel time.  First, let us consider a single OD situation where Demand 2 in 
Figure 4 is equal to 0.  For this single OD, travel time reduction is not possible because of 
the following reason.  If you reduce the on-ramp inflow rate above the expressway 
bottleneck capacity, the true bottleneck on the expressway route is still at the expressway 
bottleneck.  Thus the situation would be the same as one without ramp control.  On the 
other hand, if you reduce the inflow rate below the expressway bottleneck capacity, you 
simply shift the bottleneck from the expressway to the on-ramp, and the total travel time 
would increase.  Consequently, if we have only single OD, the ramp control is not effective. 
Let us add one more OD (Demand 2), whose rate is λ2(t) to the same destination as shown in 
Figure 4.  The Demand 2 has only the expressway route while Demand 1 has two alternative 
routes.  With this additional OD Demand 2, the ramp control would be effective in some 
situations.  When a queue forms on the expressway, the bottleneck capacity of µ*

e is shared 
by Demands 1 and 2.  Thus, if you control the inflow rate, you can control the share of µ*

e 
between Demands 1 and 2.  For instance, since the bottleneck service is FIFO, if you reduce 
the inflow rate of Demand 1 to the expressway, the share of Demand 2 in µ*

e would increase, 
and vice versa.  This is the role of the ramp control.  When no queue forms on the surface 
street due to the sufficient capacity, travel time of Demand 1 does not get larger than free flow 
travel time on the surface street, Ts, independent of the ramp control.  This means that, for 
Demand 1, their travel time is the same as one in the DUE condition whatever ramp control is 
implemented.  Therefore, apparently we had better restrict the inflow rate of Demand 1 to 
the expressway so that Demand 2 can pass the expressway bottleneck without any delay. 
Another obvious case is that if the maximum flow rate of λ(t)=λ1(t)+λ2(t) is smaller than or 
equal to expressway capacity µ*

e, the whole demand can use the expressway without delay. 
This means the ramp control has no effect. 
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Effects of Ramp Control 
 
This section quantitatively analyzes effects of the ramp control under ∆T=Ts - Te>0, λ2(t)>0, 
and Max λ(t)>µ*

e.  The λ1(t), is divided into λe1(t) for the expressway and λs(t) for the 
surface street as shown in Figure 4.  The λe1(t) is restricted at the ramp and only rate of λr(t) 
can enter the expressway.  Thus, if λr(t)<λe1(t), a queue forms at the ramp.  The λr(t) is our 
control variable.  Figure 5 shows cumulative curves under some ramp control λr(t), in which 
we find three different time period. 
In time period 1 from T0 to T1, all the demand uses the expressway because of no delay on the 
expressway at the beginning.  But from time T0, a queue start growing on the expressway 
and the travel time becomes equal to one on the surface street at time T1.  For T0≤ t≤T1, the 
departure rate from the bottleneck is therefore equal to expressway capacity µ*

e.  Arrival 
rates of Demand 1 and 2 at the expressway bottleneck are λr(t) and λ2(t) respectively during 
the period.  Based on FIFO, the capacity µ*

e is split into µe1(t) for Demand 1 and µe2(t) for 
Demand 2 as follows: 
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Without ramp control, ratio µe1(t+we(t))/µe2(t+we(t)) is always equal to λe1(t)/λ2(t) but here 
µe1(t) and µe2(t) can be controlled by λr(t) as in equations (3).  On the other hand, to make 
the ramp control effective, the ramp itself should not be a bottleneck: 
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Also, arrival rate at the ramp λe1(t) should be larger than the control rate λr(t): 
)()( 1 tt er λλ ≤  (5) 

Since everyone uses the expressway during this period (λe1(t)=λ1(t)), the constraints (4) and 
(5) are summarized as 

)()()( 12
* ttt re λλλµ ≤≤−  (6) 

From this, clearly λ1(t)+λ2(t) should be greater than µ*
e, which suggests that the ramp control 

should obviously start after time when the total demand rate of λ1(t)+λ2(t) exceeds µ*
e.  If 

constraint (4) is satisfied, the essential bottleneck for Demand 1 is still at the expressway 
bottleneck (not the on-ramp).  Thus, under constraint (4), we can evaluate whole delay of 
Demand 1 at the expressway bottleneck from λ1(t) and µe1(t), which is controlled by λr(t) as 
in equations (3). 
In time period 2 from T1 to T2, a vehicle departing the origin at time T1 - ∆T faces the same 
travel time on the two alternative routes.  From this time, Demand 1 also uses the surface 
street and is split into λs(t) and λe1(t) so as to equalize these travel times of Demand 1.  Even 
in this period, µe1(t) and µe2(t) is obtained from equations (3), and constraints (4) and (5) must 
be satisfied.  
In time period 3 from T2 to T3, travel time on the expressway becomes faster and Demand 1 
also uses the expressway.  The entire departure rate from the bottleneck is thus µ*

e. 
To draw Figure 5, first, cumulative curves A1(t), A2(t) and A1(t)+A2(t) are drawn with given 
slopes λ1(t), λ2(t) and λ1(t)+λ2(t) respectively.  Second, from time T0 when λ1(t)+λ2(t) 
becomes equal to expressway capacity µ*

e, a straight line with slope of µ*
e are drawn.  Third, 

inflow rate from the ramp λr(t) is also drawn based upon our control strategy.  Fourth, 
cumulative curve with slope of λr(t)+λ2(t) is drawn, which is the flow rate arriving at the 
expressway bottleneck.  Since the bottleneck service is FIFO, µe1(t) and µe2(t) can be 
determined from equations (3).  Fifth, from time T1 - ∆T, since users start using also the 
surface street, the departure curve from the surface street bottleneck with slope of µ*

s is drawn.  
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Sixth, arrival curves of Demand 1 at the expressway and the surface street bottlenecks are 
determined so as to establish the equilibrium; that is, 
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At time T2 - ∆T, travel time on the expressway returns to ∆T, and no one would like to use the 
surface street thereafter.  Therefore, arrival rate of Demand 1 at the expressway λe1(t) is 
equal to λ1(t) from time T2 - ∆T. 
As explained above, it is interesting that the total departure rate from the both bottlenecks µ(t) 
during each of the three time periods is written independent of control variable λr(t): 

µ(t) = µ*
e for  T0≤ t <T1 

µ*
e + µ*

s for  T1≤ t <T2 (8) 
µ*

e  for  T2≤ t <T3 
Hence, to minimize the total travel time, we should enlarge time period 2 in which the total 
departure rate is the largest.  First, to let T1 be earlier, µe1(t) should be smaller so that delay 
of Demand 1 quickly becomes equal to ∆T. From equations (3), µe1(t) is written as a function 
of λr(t) and dµe1(t+we(t))/dλr(t)≥0.  Thus, we should control λr(t) as small as we can under 
constraints of (4) and (5).  Clearly from (4), λr(t)=µ*

e - λ2(t).  For the extreme case, if µ*
e - 

λ2(t)<0, the ramp should be closed: λr(t)=0.  When the ramp is closed, T1 - T0 is equal to ∆T 
and T1 is the smallest.  Second, to let T2 be larger, we should again control µe1(t) as small as 
possible so that delay of Demand 1 return to ∆T slowly.  Similarly, the optimum control 
strategy is to adjust λr(t) to be µ*

e - λ2(t).  In conclusion, the optimum control strategy is to 
keep λr(t) being µ*

e - λ2(t) so that the expressway capacity is assigned to Demand 2 as 
possible and only remaining capacity is assigned for Demand 1.  This strategy is consistent 
with our discussion on DSO in the previous sections. 
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Figure 5  Queue Evolution with Ramp Control 
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Case Study 
 

Shibuya
On and Off-Ramps

Yamate
Street

Meiji
Street

MEX Route 3
Shibuya Line

inbound

Tamagawa Street

Setagaya
Street

Sangendyaya
On-Ramp

Ikejiri
Off-Ramp

Takagicyo
On-Ramp

N

Origin & Destination Node

Intersection Node of Tamagawa Street

Diverging or Merging Node of Tamagawa Street

Diverging or Merging Node of MEX

Legend

6 km

 
 

Figure 6  A Case Study Network 
 
To validate the proposed ramp control strategy, we incorporate the strategy into AVENUE, a 
network traffic simulation model developed by our laboratory, and simulate by using the 
existing traffic conditions.  Although we don’t explain details of AVENUE here, it 
reproduces the accurate link density and the microscopic dynamic route choice behaviors of 
drivers at the same time.  Figure 6 shows a case study network consisting of Tokyo 
Metropolitan Expressway (MEX) Route 3 Shibuya line inbound, Tamagawa Street, and so on.  
Results in Figure 7 prove the validity of the strategy. 
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Figure 7  Comparison of Total Travel Times with and without Ramp Control 

 
 

CONCLUSIONS 
 
In this study, we propose the strategy for DSO considering the dynamic marginal cost and the 
optimum strategy of the ramp control toward DSO under the point queue concept.  However, 
realistic physical queues cause some interesting phenomena that cannot be found with point 
queues. The ramp control analysis considering such a physical queue is our further work. 


