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Abstract 
 

This study extends the static marginal cost analysis to the dynamic one so that the dynamic 
bottleneck phenomena are properly included in its supply curve.  Conventionally in the 
economic field, the equilibrium analysis of demand-supply has been studied and the marginal 
cost pricing strategy was proposed so as to maximize consumer’s surplus.  However, the 
static analysis does not well consider the time-dependent queue evolution in the supply 
function.  On the other hand, in traffic engineering field, although the time-dependent 
queueing analysis has been extensively studied, the demand function has not been dealt with 
in most analysis.  This study attempts to extend the demand-supply analysis to incorporate 
dynamic queueing phenomena.  For the problem without departure time choice, it is shown 
that dynamic marginal cost is equivalent to the duration of congestion.  For the problem with 
departure time choice, the demand-supply analysis is combined with the existing theory of 
departure time choice with time constraints at destinations.     
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1. INTRODUCTION 
 
This study extends the current static marginal cost analysis to the dynamic one so that the 
dynamic bottleneck phenomena are properly included in its supply curve.  Conventionally in 
the economic field, the equilibrium analysis of demand-supply has been studied using demand 
as well as supply functions and the marginal cost pricing strategy was proposed so as to 
maximize consumer’s surplus.  However, the static analysis does not well consider the time-
dependent queue evolution in the supply function.  On the other hand, in traffic engineering 
field, although the time-dependent queueing analysis has been extensively studied given 
certain amount of demand, the demand function has not been explicitly dealt with in most 
analysis.  Thus, this study attempts to extend the equilibrium demand-supply analysis so as 
to incorporate dynamic queueing phenomena. 
 
 
2. REVIEW OF STATIC MARGINAL COST ANALYSIS 
 
Let us quickly review the derivation of the marginal cost pricing in the static framework.  
The demand and supply functions are first defined as follows: 

ρ(p) = demand generated at trip cost p       (1) 
S(x) = trip cost when demand is x       (2) 

These functions are described in Fig.1 and the intersection of two curves is the equilibrium 
point at demand x*.  The consumer’s surplus, the shaded are in Fig.1, is then written as 

∫ ⋅−= −x
xSxdyyF

0
1 )()(ρ .   (3) 

Taking derivative with respect to demand x yields  

)x(MC)}x(Sx{
dx
d)x(1 =⋅=−ρ .   (4) 

This implies that the right hand side of the 
marginal cost MC(x), the derivative of total cost 
regarding x, must be equal to the inverse of 
demand function ρ-1(x). 
 
 
3. DYNAMIC BOTTLENECK PHENOMENA 
 
Queue evolution at a bottleneck is basically time-dependent phenomena, which cannot be 
described by the above static analysis.  Let us consider a single bottleneck.  If traffic 
demand rate exceeding the bottleneck capacity µ enters, a queue would grow as shown in 
Fig.2.  The arrival and departure rates λ(t) and µ(t), and waiting time at the bottleneck w(t) 
are defined: 
λ(t) = arrival rate at the bottleneck at time t, 
µ(t) = departure rate from the bottleneck at time t, 
w(t) = waiting time of a user arriving at the bottleneck at time t. 

And the cumulative arrival and departures are also defined as follows: 

dx
)}x(Sx{d)x(MC ⋅=

ρ(p) 

 S(x) 

Demand x 

Cost p 

 x*  x 

Fig.1  Static Demand-Supply Equilibrium 
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A(t) = dtt
t

∫0
)(λ     (5) 

D(t) = dtt
t

∫0
)(µ     (6) 

 
Note that in Fig.2, the cumulative curves are 
drawn based on the point queue concept.  
Under the FIFO queue discipline, the 
horizontal distance between A(t) and D(t) 
shows the waiting time w(t) = D-1(A(t)) - t as 
shown in the figure.  From this figure, the 
waiting time at time t, w(t), is clearly depends 
upon the history of λ(t) until time t.  Waiting 
time w(t), which corresponds to trip cost, 
therefore cannot be simply a function of the 
demand rate at that time t, but w(t) may change 
if λ(t’), t’ < t varies.   
 
 
4. EXTENSION TO DYNAMIC MARGINAL COST ANALYSIS 
 
4.1. Dynamic Marginal Cost    
 

Let’s consider the dynamic marginal cost by adding the time axis.  As shown in Fig.3, cost 
p(t) is defined as the cost of a user arriving at the bottleneck at time t and written as a function 
of w(t): p(t)=fw{w(t)}.  On the other hand, the demand during t~t+dt is written as x(t)=λ(t)dt.  
Similar to the static analysis, the demand function 
is defined: 

ρ(p(t),t) = x(t),    (7) 
ρ-1(x(t),t) = p(t).   (8) 

The demand function ρ(p(t),t) is assumed given 
for all t, and the upper figure of Fig.3 shows that 
ρ(p(t),t) are changing over time.  This time-
dependent demand function is introduced to 
reflect the fact that the generated demand rate 
may change over time, for instance peak and off-
peak, even if the same amount of cost is imposed 
to users.  At time t, waiting time w(t) is 
evaluated from the cumulative curves as in the 
lower figure.  Then, the cost at time t, 
p(t)=fw{w(t)}, determines the generated demand 
of ρ(fw{w(t)},t)=λ(t)dt during t~t+dt.  The 
demand rate λ(t) must be equal to the slope of 
A(t) at time t.  This equilibrium is here called as 
“demand-supply equilibrium”. 
 
Employing the discrete time increment of dt, the 
consumer’s surplus F is written as 

w(t) 

(t1-t)-w(t) 

A(⋅) 

D(⋅) 

time 

cumulative trips 

 µ slope= µ(t) 

slope=λ(t) 

t0 t t1

Fig.2  Cumulative Arrival and Departure  
      at a Bottleneck 

t-dt 
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time 
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Fig.3 Time-Dependent Demand Plane 
     and Queue Evolution 
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The optimality condition to maximize F is obtained by taking derivative with respect to 
x(t)=λ(t)dt.  The derivative of the first term F1 is 
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Since λ(u), u>t can be controlled independent of λ(t) at time t, the second term on the right 
hand side, )t(/)u( λλ ∂∂ , becomes zero.   On the other hand, the derivative of F2 means 
MC(t) because it is the derivative of the total cost:   
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However, the above result is applicable only when the bottleneck is busy, w(t)>0 or λ(t) ≥ µ.  
When the bottleneck is idle just like before t0, marginal cost MC(t) is obviously equal to fw{0}, 
since w(t) cannot be affected by the demand change and consequently the second term of the 
right hand side becomes zero.  As a whole, the optimality condition is summarized as 
follows: 
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For a special case, if the waiting cost function is linear:  

fw{w}=bw, b > 0,        (13) 

the marginal cost is simply written as  
 



 ≥>−

=
otherwise,,

orif,
0

)t(0)t(w)tt(b
)t(MC 1 µλ ,    (14) 

 
where t1-t means the duration of the congestion after time t because time t1 is the queue 
vanishing time.   
 
Since user cost is fw{w(t)}, the dynamic toll while the bottleneck is busy is equal to the first 
term of Eq.(11): 
 

function.costwaitinglinearfor,)}t(wtt{b)u(dt
)u(dw

)}u(w{df1t

t

w −−=∑ λ
µ

   (15) 
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If you apply the marginal cost pricing to users in Fig.2, no toll should be imposed before time 
t0, because the bottleneck is idle and MC(t)=fw(0).  At time t0, arrival rate λ(t) becomes equal 
to capacity µ.  If you impose the toll determined from Eq.(15), clearly the arrival rate would 
be below the capacity; that is, the dynamic toll is too much.  The best pricing is to impose 
toll which controls the arrival rate just equal to its capacity.  That is, from Eq.(12),  MC(t) 
is discontinuous when w(t)=0 as well as λ(t)=µ such as time t0.  Namely, when the demand 
increases by one unit, MC(t) is equal to the upper value of Eq.(12); on the other hand, when it 
decreases, MC(t) jumps to the lower value.  Apparently, as the idle bottleneck due to the 
pricing does not improve the consumer’s surplus, the best strategy for this situation is to 
impose the toll so as to control the arrival rate just equal to its capacity.   
 
Therefore, during some time after time t0, the arrival rate must be controlled at capacity µ.  
Meanwhile, the potential demand would become sufficient so that demand larger than µ could 
be generated even if toll of Eq.(15) is fully imposed.   
 

 
4.2. An Example 
 

Let us consider a bottleneck with its 
capacity of 2000[veh/unit time].  The 
demand function ρ-1(x,t), which gives 
demand x[veh] during a short interval of dt, 
is assumed in the following linear form: 

)},0({
),0(

),( 01 tx
t

atx ρ
ρ

ρ −−=−
[unit cost], 

where ρ(0,t) as in Fig.3 means the 
maximum demand when the user cost is 
zero and its cumulative value is shown in 
the upper figure of Fig.4.  Also, the 
waiting cost function is assumed linear: 

fw{w}=bw,    b=1.0 [unit cost/unit time]. 

Using these linear functions, the 
cumulative arrival curve with the marginal 
cost pricing can be easily drawn in the 
following manner.  Suppose that we have 
evaluated A(t) until time t and try to extend 
A(t) thereafter.   
Step 1 : Assume queue vanishing time t1. 
Step 2 : From A(t) until time t, D(t) can be 
determined until time t+w(t).  From A(t) 
and D(t), waiting time of a user arriving at time t, w(t), is evaluated and hence the dynamic 
toll is also determined as b{(t1-t)-w(t)}. 
Step 3 : From the dynamic toll and w(t), demand generated during t～t+dt is determined 
from the given demand function: λ(t)dt=ρ(b(t1-t),t).  Then, the arrival curve is extended up 
to time t+dt: A(t+dt) = A(t) + λ(t)dt.   
Step 4 : Update time t as t+dt, and return to Step 2 if time t+dt is still within the study period. 
Step 5 : From A(t) drawn, find queue vanishing time t1’.  If t1’ is equal to the assumed time 
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t1, end; otherwise return to Step 1.  In Step 1, t1 must be modified using its characteristics 
that t1’ is monotonically decreasing with respect to t1 assumed in Step 1. 
 
Fig.4 shows the cumulative curves and the time-dependent toll.  We notice that queue 
starting time t0 does not change before and after pricing.  This is due to no pricing before 
time t0 because of no sufficient demand.  As explained above, from time t0 to t2, the dynamic 
toll is adjusted so that the generated demand rate is just equal to the capacity.  After time t2, 
since the potential demand becomes larger and the amount of b{(t1-t)-w(t)} obtained from 
Eq.(15) is fully imposed until the queue vanishes at time t1.  As shown in the dashed line, the 
marginal cost from Eq.(14) is linearly decreasing from t2 to t1: MC(t) = b(t1-t).  In this 
example, the consumer’s surplus increases from 3095 [veh*unit cost] to 3663 [veh*unit cost] 
by the pricing.   
 
 
5. ANALYSIS WITH DEPARTURE TIME CHOICE 
 
Discussion so far has been limited within cases where a user has only one choice of whether 
he/she makes a trip.  However, normally users would have other choices as well such as 
modes, departure times, etc.  In this section, among these choices, we would like to add 
departure time choice into the dynamic marginal cost analysis. 
 
5.1. Departure Time Choice Problem with Time Constraint 
 
Mainly from 1980s, several studies on departure 
time choice have been reported mostly for trips 
with desired arrival times at destinations 
(Vickrey(1969), Hendrickson (1981), and 
Kuwahara (1987)).  The typical application was 
morning commute trips, in which commuters 
have time constraints of their work schedules.  
Trips of other trip purposes may more or less 
have some time constraints at destinations; for 
instance in recreational trips, travelers might have 
approximate desired arrival times at their home.  
Thus, we would like to consider the previous 
research to include departure time choice to the 
marginal cost analysis. 
 
Let’s review the departure time choice problem at 
a single bottleneck with its capacity µ.  
Everyone is assumed to pass through the bottleneck to reach the destination.  Since each user 
has the desired arrival time at the destination, the trip cost of a user consists of waiting cost at 
the bottleneck and schedule cost associated with time difference between the actual and 
desired arrival times.  The trip cost of a user with desired arrival time tw is therefore written 
as 

 
p(td , tw)  = fw{w(td)} + fs{s(td, tw)}       (16) 

td   = departure time from the bottleneck 
tw   = desired arrival time at the destination (given) 
p(td , tw)  = trip cost of a user with desire arrival time tw departing from the bottleneck at  

W(⋅) 

 A(⋅) 

D(⋅) 

time 

Cumulative Trips

tw 

w(td) s (td , tw) = tw - td 

tdt0

slope = λ(t) 

slope = µ 

t1 t2 t

Fig.5  Queue Evolution at a Single 
      Bottleneck, and Waiting Time
      and Schedule Delay 
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  time td. 
w(td)    = waiting time at the bottleneck for a user departing at time td.  (In the previous 

 sections, waiting time is defined by referring arrival time at the bottleneck.  
 However, under FIFO, waiting time can be defined also with respect to 
departure time from the bottleneck.) 

s(td , tw)   = schedule delay for a user with desired arrival time tw departing from the 
 bottleneck at time td = tw - td 

fw{w}    = waiting cost function which converts waiting time to the cost  
fs{s}    = schedule cost function which converts schedule delay to the cost 

 
A user is assumed to travel from the origin to the bottleneck at a static travel speed, wait at the 
bottleneck, and again travel to the destination at a static travel speed.  Therefore,  only 
waiting time and schedule delay are time-dependent.  Thus, for our convenience, the desired 
arrival time at the destination can be switched to the desired departure time from the 
bottleneck, since we can easily obtain the desired departure time by subtracting static travel 
time from the bottleneck to the destination from the desired arrival time at the destination.  
The schedule delay can be therefore written as s(td , tw) = tw - td.  Each user is assumed to 
choose the best departure time from the bottleneck so as to minimize his/her own trip cost. 
 
An important property of this problem is the First In First Work (FIFW) discipline in which 
the order of arrival times at the bottleneck is the same as the order of desired arrival times tw’s, 
provided that schedule cost function fs{s} is convex in s (Smith (1981) and Daganzo (1985)).  
Since, under FIFW together with FIFO, A(t)=D(td)=W(tw) is valid, where W(tw) is the 
cumulative users with desired arrival times before tw.  Arrival time at the bottleneck t and 
departure time from the bottleneck td can be written as a function of desired arrival time tw:  
 

td(tw) = D-1(W(tw)),     t(tw)=A-1(W(tw)).      (17) 
 
Also, w(td), λ(t), and p(td, tw) can be described with respect to tw: 
   
w(tw) = w(td(tw)), λ(tw) = λ(t(tw)), and p(tw) =p(td(tw),tw)= fw{w(tw)} + fs{tw-td(tw)}. (18) 

 

It has been also known that the following “temporal equilibrium” condition must be satisfied 
at the equilibrium situation (Kuwahara et.al.(1987)): 

.
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By solving the above differential equation, the user cost at desired arrival time tw, p(tw), can 
be written simply as a function of schedule delay: 
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5.2. Demand Function and Dynamic Marginal Cost 

 

With departure time choice, we have to simultaneously establish “temporal equilibrium” in 
addition to “demand-supply equilibrium” discussed in section 4.   

 

5.2.1 Dynamic Marginal Cost 

For the problem with departure time choice, the distribution of desired arrival times, W(tw), 
can be considered as the generated demand, since the cumulative arrival curve A(t) is 
obtained as the result of departure time choices given W(tw).  Therefore, defining η(tw) = 
dW(tw)/dtw, the demand function is written as below with respect to tw:   

ρ(p(tw), tw) = η(tw)dtw         (21) 
ρ-1(η(tw)dtw, tw) = p(tw)         (22) 

The consumer’s surplus F is then written 

w
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The optimality condition is obtained by differentiating with respect to demand η(tw)dtw: 
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The second term on the right hand side cannot be generally written in the explicit form, since 
if demand η(tw)dtw increases by one unit at time tw, W(tw) as well as A(t) and D(t) would shift 
for an entire time period as shown in dashed lines in Fig.6.  Consequently user cost p(tw) 
would also change for all time tw. 
 
5.2.2. Constant Desired Arrival Time for 

Everyone 
 
Although the evaluation of the right hand side of 
Eq.(24) is difficult in general, we could relatively 
easily analyze a special case where everyone has 
the same desired arrival time.  Since everyone 
has the same desired time, we cannot distinguish 
users and therefore everyone has the same cost 
under the temporal equilibrium condition.  
From Eq.(20), we see that the cost for everyone 
is given by fs{tw-t0}.  As shown in Appendix, 
with this assumption, marginal cost MC(tw) is 
explicitly written as 
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Fig.6  Impact on A(t) and D(t) by  
      Demand shift 
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The second term corresponds to the dynamic toll, which is the same for everyone. 
 
For the more simplification, let us consider the following linear schedule cost function: 
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On the other hand, from Eq.(20), 
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Thus, MC(tw)=2p(tw) with the linear function, 
which means the toll is p(tw) same for everyone.   
 
Under this simplification, since everyone has the 
same trip cost as well as the same amount of toll, 
the demand-supply balance can be summarized 
in one graph as shown in Fig.7.  From Eq.(27) 
and (28), the user cost and the marginal cost can 
be written as functions of the demand N: p(N) 
and MC(N).  The MC(N) has a slope twice as 
much as one for p(N).  The optimal demand-
supply equilibrium is the intersection of demand 
curve ρ(p(N)) with MC(N) at the marginal cost 
pricing of p(N*). 
 
5.3. Discussion 
 
Based on the above analysis under several 
assumptions for simplification, let us discuss 
the implications.   
(1) Addition of the static cost 
We have eliminated the static travel cost such as 
static portion of travel time and static tolls from 
our analysis.  If you would like to include 
them, you simply add the static cost to the 
dynamic cost we analyzed.  For instance in 
Fig.7, we may add some constant cost to user 
cost p(N) as well as MC(N). 
 
(2) Different desired arrival time for each user 
In reality, W(tw) would be distributed over some 
time interval as in Figures 5 and 6.  For the 
distributed W(tw), user cost depends upon 

a-plane

b-plane 

Demand N 

Cost  

Static Cost 

tw 

N0

MC(tw)

 p(tw) 

Fig.8  Three-Dimensional Illustration
      of User and Marginal Costs  
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Cost p(N) 

 N* 
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Fig.7  Demand-Supply Equilibrium when 
      Everyone has the Same Desired 
      Arrival Times  
      (Linear Schedule Cost Function) 
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his/her desired arrival time tw, and we cannot summarize the demand-supply equilibrium 
within one graph as Fig.7.  Instead, p(tw) and MC(tw) would form planes as shown in Fig.8, 
which includes the static cost mentioned above.  Fig.9 illustrates how user cost changes in 
relation to the desired arrival time tw with fixed demand N (a-plane in Fig.8).  From Eq.(20), 
queueing delay starts from time t0, reaches to its maximum value at tw for zero schedule delay, 
and finally vanishes at time t1.  If the demand N gets smaller, times t0 and t1 would approach 
each other and eventually coincide.  Namely, in Fig. 8, no queue forms when the demand is 
less than N0.    
 
On the other hand, Fig.10 illustrates how p(tw) and MC(tw) vary depending on demand N by 
with fixed desired arrival time tw (b-plane in Fig.8).  Note that Fig.7 is a special case of 
Fig.10 when tw is the same for everyone.  Although Fig.10 looks similar to the demand-
supply curves under the static framework as in Fig.1, the implication is quite different.  First, 
the shapes of p(tw) and MC(tw) depend upon tw.  Second, the location N0 where p(tw) starts 
increasing depends on the distribution of tw, W(tw).  For the same desired arrival time, W(tw) 
has the infinite slope at time tw.  Hence, a queue must form even for a very small demand N, 
which is the reason why p(N) start increasing for N>0.  However, when tw’s are distributed 
over some time period, it would be quite possible that no queue forms for small N < N0.  
Third, the tendency of increasing MC(tw) for N > N0 is related to the schedule cost function as 
well as times t0 and t1 as explained in Eq.(25) and (27).  For a linear schedule cost function 
with the constant desired arrival time, we have seen that p(tw) and MC(tw) become linear as in 
Eq.(27) and (28).  But, for a general case, explicit forms of them cannot be described.   
 

(3) Converting waiting time to toll 
Even with the dynamic marginal cost pricing, a queue must form to establish the temporal 
equilibrium for sufficiently large demand.  The waiting time is required to compensate the 
schedule delay changing over time for the temporal equilibrium.  However, from theoretical 
point of view, we could impose additional dynamic toll equivalent to the waiting time value to 
eliminate the queueing delay.  The temporal equilibrium would be maintained after the 
additional toll, since users pay the same amount of cost as the waiting cost.  (Note that for 
the problem without departure time choice discussed in section 4, the conversion of waiting 
cost to toll is impossible.  Since the demand rate is the slope of arrival curve A(t), the A(t) 
and D(t) do not necessarily coincide each other after the conversion under the demand-supply 
equilibrium.) 
 
(4) Demand-Supply equilibrium 
Figures 8, 9, and 10 are drawn if schedule cost function fs{s} as well as W(tw) are assumed, 

Demand N

Cost 
MC(tw) 

 p(tw) 
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N0 tw 

Static Cost 

Cost 
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since user cost p(tw) under the temporal equilibrium can be determined.  However, for 
demand-supply equilibrium, generated demand from demand function ρ(p(tw),tw) must be 
equal to η(tw)dtw which is evaluated from the assumed W(tw).  For the problem without 
departure time choice, the user cost at time t depends only on arrival rate λ(t) before t under 
FIFO.  As explained in section 4.2, we can determine generated demand rate λ(t), which 
satisfies the demand-supply equilibrium, sequentially from the earlier time.  However, cost 
p(tw) here depends upon the demand rate of the entire time period.  An efficient algorithm to 
find the demand-supply equilibrium is not proposed yet.   
 
6. SUMMARY AND FUTURE RESEARCH NEEDS 
 
This research analyzes the dynamic marginal cost by combining the demand-supply analysis 
in economics with the time-dependent queueing analysis in traffic engineering.  Main 
conclusions are listed below: 
(1) For the problem without departure time choice, the dynamic marginal cost at time t, MC(t), 
is equal to the duration of congestion after time t. 
(2) Through a simple example, we show that the consumer’s surplus can be improved by 
introducing the dynamic marginal cost pricing. 
(3) For the problem with departure time choice, the demand-supply analysis is combined with 
the existing theory of departure time choice.  When desired arrival time tw is distributed over 
time, MC(tw) cannot be explicitly written.  However, under the simplification that everyone 
has the same desired arrival time, user cost p(tw) and marginal cost MC(tw) are explicitly 
described as a function of the total generated demand during the congested time period.   
(4) Waiting time at a bottleneck can be converted to the dynamic toll for the problem with 
departure time choice. 
 
Several future research needs are summarized:   
(1) This research mainly focuses on the supply function so that it reflects dynamic bottleneck 
phenomena.  However, for the demand-supply analysis, the demand function must be 
evaluated.  The demand function we have introduced here forms a three-dimensional plane 
as in Fig.3, and therefore it would be quite difficult to evaluate the shape. 
(2) In this analysis, we assume that the generated demand at a certain time depends only on 
user cost at that time.  Several different definitions on the demand function, however, could 
be possible.  For instance, one can propose that the demand may depend on the average user 
cost for some time period or for the entire study period.  As mentioned in (1) above, the 
definition and evaluation of the demand function are the major research needs. 
(3) For the problem with departure time choice, we should propose an algorithm to find the 
solution which satisfies both the temporal as well as demand-supply equilibrium.   
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On the other hand, in general, queue starting time t0 is determined so that p(t1)=0 when the 
queue vanishes at time t1.  From Eq.(20),   
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Plugging t1-t0=N/µ into the above,  
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The differentiation of Eq.(A3) yields 
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Thus, from Eq.(A1),  
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