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Abstract

In this paper we are introducing a self learning tool for travel time estimation in signalized urban networks based on 
probe data. The main feature of this tool is, that it can be applied with a basic network description instead of a detailed 
modeling of the network structure.  We show how probe data can be utilized to train a Bayesian network to forecast the 
travel time on a route along an arterial road and how the forecast performs under different initial conditions. In the 
conclusion we take a critical look on the limitations of such a system and possible extensions to increase its 
performance.
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Introduction

This paper deals with travel time estimation in signalized 
urban networks. The approach utilizes probe data to 
collect delay times at intersections and the probabilities 
of stopping at them. This information is used to train a 
Bayesian network, which learns from the given patterns 
and is able to compute possible travel times along the 
route with their probabilities. We will show the systems 
performance under several initial conditions and discuss 
its behavior. As an additional feature we show that the 
developed system needs just basic network information 
instead of a detailed configuration of signal timings and 
infrastructure. In the conclusion we take a critical look at 
the system and point out limitations of such a system and 
possible extensions in future work.

Methodology

When vehicles are approaching an intersection, they 
either have to stop at the intersection or can pass without 
delay. These “Stop and Go” patterns as well as the 
associated delays depend on the upstream demand, 
weather conditions, incidents etc. When a vehicle is 
traversing along the route, possible events for the route 
can be defined based on the conditional events 
experienced at each intersection. Those possible events 
for a route can be described in a binary tree structure” as 
shown in Figure 1. 

Figure 1 Binary tree structure of conditional events 
traversing a route with 3 intersections

Although an infinite number of travel times are possible 
along a road section, based on Figure 1 we can categorize 
those into categories (here 2^3).  The events at 
intersections (“stop” or “go”) can be described with their 
probabilities and can be represented as a vector we define 
as Probability Vector. 
When stopping, vehicles experience a delay.  Therefore, 
the above mentioned events are associated with delay 
values.  These delay values for all possible events along a 
given route can also describe by a vector we call Delay 
Vector. 
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Based on those probability and delay vectors we 
developed a self-learning tool to estimate travel times on 
signalized arterial roads with their probabilities. Figure 2 
shows an overview of the system.

Figure 2 Self Learning Travel Time Estimator

The system consists of probability vectors and delay 
vectors for different demand levels.  The relevant delay 
vector and probability vector are selected based on the 
upstream demand level, observed by counting detectors. 
Based on these two vectors the expected delay for the 
route is estimated as:

   

Link cruise times can be obtained from probe records 
directly. With those link cruise times and the calculated 
expected delay value, the expected route travel time for 
the route is calculated as follows:

The upstream demand level,  incidents and weather etc. 
have their effects on conditional binary events and delay 
values at intersections as well as on link cruise times. 
These relations were modeled in a Bayesian Structure as 

shown in Figure 3. 

Figure 3 The Bayesian Structure for Route Travel 
Time Estimation

The circles are measurements (evidences) where as 
rectangles are the belief we obtain using those 
measurements. Basically there are several evidences:

• Demand (Measured with detectors)

• Weather (Monitored with suitable sensors)

• Incidents (Monitored with video cameras etc.)

• Stopping or not stopping at each intersection

• Delay experienced at each intersection (if stopped)

• Free flow link travel times

We can identify two basic components in Figure 3.  First, 
the component for calculating expected delay and 
second, the component for calculating cruise times. 
Further, in case of the expected delay component, there 
are two sub components to determine the delay and 
probability vectors. 

Figure 4 Conditional Probability Tables to Estimate 
Probability Vector

Figure 4 gives a more detailed view on the component to 
determine delay vector using sample conditional 



probability tables. Since in this study we neglected the 
effect of incidents and weather on delay vector and 
probability vector, we have not included incidents and 
weather. 

Since the proposed system is a learning system that 
depends on probe vehicle information, in this study, we 
investigate three kinds of initialization for the probability 
and delay vectors and their effect on the learning 
performance. These are:

‘Initially estimated’ vectors
In this case an initial approximation is used for 
probabilities of stopping or not stopping at intersections 
based on cumulative arrival and departure curves for the 
route.  First cumulative arrival departure curves for the 
route are constructed for given demand levels 
considering basic network information such as geometry 
(link lengths), signal settings (cycle times, phase times, 
offsets etc.), speed limits and acceleration / deceleration 
effects. Based on that,  an initial approximation is given 
for probability and delay vectors.

“50% - 50%” vectors
Here we assume that there is an equal chance to be 
delayed or not delayed at each intersection. Therefore, 
the resulting probability vector gives equal probabilities 
for all possible events. In case of delays we assign the 
maximum possible delay for a vehicle (i.e. the red phase 
time) that stops at the intersection. Accordingly, the 
initial delay vector is constructed for all possible events. 

‘Initially Empty Vectors’ 
In this case probability and delay vectors do not have any 
value initially, which means that initially the expected 
delay for the route is zero. Then probability and delay 
vectors are created with the first set of probe vehicles and 
updated with the probe vehicles arriving in the next 
updating step. The special feature of this case is that the 
probability and delay vectors are fully created by 
evidence from probe vehicles. 

Once we have initialized our system, it is ready for 
operations. Then the system is updated during operation, 
with the available probe vehicle information. 

Initial probability vectors are updated after a fixed time 
period.  That is,  evidences from all probe vehicles are 
collected within a fixed time period (say 5 minutes) and 
the initial probability vector for the relevant demand 
level is updated. To update the probability vector 
software named UnBBayes developed by Fernandes 
(2004) was used. 

UnBBayes uses K2 Algorithm which heuristically 
searches for the most probable belief–network structure 
given a database of cases to estimate conditional 
probabilities. Basically, K2 Algorithm calculates the 
probability of the database D. (Ruiz, 2005). 
The initial delay vector is updated as follows: 

Here, when we observe the first probe vehicle (within a 
certain time period, for a given demand level) the related 
value of the initial vector is replaced with value 
determined with the probe record. And from the 2nd 
update the weighted average is taken.  Note that the basic 
idea behind this equation is to take the average of all 
delay values related to a certain event along the route. 

Investigation of the System Performances

The network shown in Figure 5 was simulated under 
different demand levels and different probe sample sizes 
to investigate system performances under different 
system and network settings. 

Figure 5 Simulated Network

Here AVI 1-1, AVI 1-2, AVI 2-1 and AVI 2-2 are AVI 
(Automatic Vehicle Identification) locations. Section 1 
and Section 2 are two sections which we selected on the 
simulated network for examining system performances. 
Speed limit of the network was set as 55 km/h and 
numbers of lanes on the route are two for both section 1 
and section 2. 

First system performances versus different initial settings 
(discussed under the Section 2) were investigated. 
Results are shown in Figure 6.

Observing Figure 6, we can determine that the estimated 
travel times with ‘Initially Estimated Vectors’ are closer 
to the reality than other estimates. Regarding ‘Initially 
50%-50% Vectors’ case we can see that the estimate 
shows a significant deviation from real value, but it 
gradually gets closer to the real value. Same behavior can 
be seen in case of ‘Initially Empty Vectors’. Therefore it 
is clear that the system is learning from probe vehicles.



Figure 6 Performance of the System under Different 
Initial Conditions

Again it is interesting to see the behavior of ‘Initially 
Empty Vectors’ case. Although initially empty vectors 
may show a deviation from real travel times, relatively 
less samples of probe vehicles (within relatively less time 
period) the system can be trained. Another advantage of 
‘Initially Empty Vectors’ is,  since those are non-site 
specific, same system can be used in different sites 
without re-calibration. Because of convenience of usage 
and above mentioned advantages and to save the cost for 
estimating initially estimated vectors it is recommended 
to use initially empty vectors. 

Intuitively we can say that the higher the probe sample 
size the more accurate the travel time estimation with 
probe vehicle records. The system performances were 
investigated under different sample sizes keeping 
constant demand level (i.e. 1200 vehicles/hour). The 
system was initialized with initially empty probability 
and delay vectors. Estimated section travel times were 
compared as shown in Figure 7.   

Figure 7 Performances of the System under Different 
Probe Sample Sizes (Starting Condition: Initially 
Empty Vectors)

Observing Figure 7 it can be determined that the higher 
the probe sample sizes the shorter the system 
convergence time. And further it can be observed that 
after achieving convergence the system can provide 
reliable travel time information even with less probe 

sample sizes. Figure 8 shows the absolute percentage 
error along the simulation to give a better insight into the 
performance of the system.

Figure 8 Absolute Percentage Error (Starting 
Condition: Initially Empty Vectors)

The ability of the system to identify and respond to 
sudden network changes was investigated. For this 
analysis at time 0 the signal settings of the first 
signalized intersection on the Section 2 were changed 
(Red time=30 Seconds and Effective Green time=30 
seconds) and the behavior of the system was analyzed as 
shown in Figure 9. 
Up to time 0, the system has learned from around 6000 
probe vehicles (i.e.  around 100 hours under constant 
demand). Therefore at time 0 we have 6000 probe 
vehicle records.

Figure 9 Performance of the System after a Sudden 
Change in Signal Program

If we update the system without triggering at time 0 as 
we can see in the Figure 9,  it will take a considerable 
time for the system to adapt to the new signal settings 
and to achieve the convergence again. But when the 
system is triggered at time 0, we can see that the system 
can achieve the convergence within a shorter time period. 
Here, we are going to trigger the system by changing the 
database settings.  Here “TRIGGER (100Veh)” means at 



time 0, hundred (100) hypothetical probe vehicles are 
created which will provide approximately the same 
probability and delay vectors at time zero.  Then instead 
of the previous probe records in the database (in this case 
6000 probe records) the 100 hypothetical probe records 
are used to re-initialize the system at time 0. 

But the system is triggered (for example every morning) 
the travel time estimates can be oscillated if there is no 
any change in the network as shown in Figure 10. On the 
other hand without triggering it is difficult to understand 
sudden changes in the network as shown in Figure 9. 

Figure 10 Oscillations of Travel Times after 
Triggering

Observing Figure 10 we can say that, in case of “TRIG
(0VEHICLES)” (i.e.  triggering with zero vehicles) 
although initially travel time estimates show a deviation 
from real value,  it can achieve convergence within a 
shorter time period. On the other hand it is clear that, 
when trigger with zero vehicles the system can identify 
any change to signal settings and can adopt accordingly. 

Therefore we propose kind of a Sub System in the main 
system. That is,  the main system is continuously learning 
with probe vehicles and estimates travel times. And we 
set the sub system in such a way that in every day it starts 
from initially empty vectors. 

Figure 11 Switching the main system and sub system 

The purpose of this Sub System is to identify any possible 
changes in the network. If any change is identified, after 
pre-defined threshold time period the main system is 
replaced with sub system. 
Figure 11 shows an example for ‘system switching’. 
Here at the end of certain days (i.e. at the end of the Nth 
day) the signal settings were changed. On the nest day 
(i.e. at the start of the (N+1)th day) a significant deviation 
between estimates of the main system and the sub system 
is observed (see Figure 11) and the system was switched. 
For this analysis travel times on coordinated section 2 
was used under constant demand of 1200 vehicles/hour 
and 5% of probe.

Observing Figure 11 it can be seen that after changing 
the signal plan the estimates with the main system and 
the estimates with the sub system are significantly 
different. Therefore after 30 minutes the main system is 
replaced with the sub system. Then the sub system 
becomes the main system which estimates travel times 
and learns gradually with probe vehicle records. 

4. Conclusions

The Self Learning Travel Time Estimator we presented in 
this paper is a robust system that can be implemented in 
any kind of urban signalized networks in undersaturated 
conditions, independent of the geometry and signal 
settings of the network.  
 
We saw that the self learning ability of the system is 
independent of initial settings of the system (i.e. initial 
probability and delay vectors settings) and that the 
system can achieve convergence and provide reliable 
travel time estimates. The system was tested under three 
initial conditions and it was seen that the “Initially 
Estimated Vectors” have the least convergence time. 
However, we recommend “Initially Empty Vectors” since 
the initial cost of calculating those can be saved as well 
as the system is not needed to be changed when the 
network settings are changed. 
 
With the introduction of a sub-system apart from the 
main system in the Self Learning Travel Time Estimator 
we made the system capable of identifying changes in the 
network such as renewed signal plans etc. It could show 
to adapt to the new settings. 

Although there is a direct relationship between system 
convergence time and probe vehicle sample sizes, after 
achieving the convergence there is no significant 
relationship between the probe sample size and accuracy 
of travel time estimates. Therefore it can be concluded 
that the system can provide reliable and accurate travel 
time estimates independent of probe vehicle sample sizes 
in the network after achieving the convergence.  

With a critical view, next to the achievements above, it 
has to be in mind that these have just been realized in 



undersaturated conditions and with non-adaptive signal 
controllers. The applicability of the system in over-
saturated networks has still to be investigated and new 
developments to deal with over-saturated conditions  
have to be added. 
 
Further, in this study, we have ignored the previously 
stated influence of weather, incidents and other factors. 
Therefore the system can be extended to incorporate the 
inter-relationships among events at intersections and 
possible causes which can affect them such as weather, 
incidents etc.  
 
It could be argued that under our assumptions a travel 
time forecast is obsolet, but to understand the behaviour 
of such an autonomous system, one has to understand the 
fundamental principal first. In this case, it means that it 
has to be investigated if such a system would be at all 
able to recognize patterns in the travel time distribution 
along signalized urban roads. Now, with a stable and 
robust base system, we are able to extend the system to 
decrease the variablity in our predictions to provide 
better and reliable information to the road users. This 
means,  that we understand the system as it is as a base 
model on top of wich we are developing new tools and 
functionalities. 

Further, we have to run validations with real world data 
to back up our simulation based tests. So far we had too 
few data to investigate the convergence of the system, 
but are convinced that future datasets will enable us to 
prove the convergance in different places and situations. 
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