

#11-3181: Design of Intergreen Times Based on Safety Reliability

Keshuang TANG, Dr.-Eng., Department of Human-Social Information Sciences, Tohoku University, E-mail: tang@plan.civil.tohoku.ac.jp Masao KUWAHARA, Ph.D., Department of Human-Social Information Sciences, Tohoku University, E-mail: kuwahara@plan.civil.tohoku.ac.jp Shinji TANAKA, Dr.-Eng., Institute of Industrial Sciences, The University of Tokyo, E-mail: stanaka@iis.u-tokyo.ac.jp

• Red-light-running (Case 2, P2) occurs if \checkmark Perceived yellow time, **D** > Perceived time to stop-line, **X**_c ✓ Distance to stop-line, YP > Crossing distance, tP

acceptable

deceleration rate. d

Stopping distance,

 $X_{\rm s} = \tau V + \frac{V^2}{2d}$

Clearing time,

 $t_c = \frac{S_c + L}{L}$

Yes

conflict point,

 $Y_{P} = Y + \delta$

 $\sqrt{2\pi\sigma_{\delta}}$

=

 $(Y+\delta)$

 $(Y+\delta \leq \frac{D}{U}+\eta) \cap (L$

$$\oint f(\delta,\eta,D,V)d_{\delta}d_{\eta}d_{D}d_{V}$$

$$\eta) \cap (D>Y\times V)$$

✓ Perceived yellow time, YP < Perceived time to stop-line, tP \checkmark Distance to stop-line, **D** < Stopping distance, **X**_s

$$f(\delta,\eta,D,V,\tau,d)d_{\delta}d_{\eta}d_{D}d_{V}d_{\tau}d_{d}$$
$$\leq \tau \times V + \frac{V^{2}}{2d})$$

Where.

P2=Occurring probability of red-light-running *P3*=Occurring probability of **abrupt stop**; θ =Safety reliability index for the determination of yellow time, e.g., 15%.

Pcf=Occurring probability of **clearance failure**; ω =Safety reliability index for the determination of yellow time, e.g., 1%.

4. Validation of the Proposed Method

□ Uncertainty analysis of input variables

	•			
	Variables	Distribution	Mean	
The last clearing or stopping vehicle	<i>t</i> , [s]	Normal	0.70	
	<i>V</i> , [km/h]	Normal	50.00	
	<i>d</i> , [m/s²]	Normal	3.00	
	<i>D</i> , [m]	Poison	60.00	
	S _c , [m]	Constant	40.00	
	<i>L</i> , [m]	Normal	4.50	
	δ, [s]	Normal	0.00	
	η, [m]	Normal	0.00	
The first entering vehicle	<i>t'</i> , [s]	Normal	1.76	
	<i>a</i> , [m/s²]	Normal	2.27	
	S _e , [m]	Constant	20.00	

Std.dev
0.21
15.00
0.90
60.00
/
1.35
0.20×Y
0.20× <i>D</i> / <i>V</i>
0.53
0.68
1

□ Impacts of the yellow time on the occurring probability of risky behavior • The relationship between yellow time and the occurring probability of risky behavior

• The relationship between intergreen times and the clearance failure probability

 Comparison of the estimated PET distributions for the all-red times based on the proposed method and the current methods in the United States, and Germany

8. Conclusions and Future Works

Conclusions

• A safety reliability based intergreen time design method was proposed, which is able to account for not only traffic randomness but also driver decision error at the onset of yellow. • Occurring probability of risky behavior and clearance failure was investigated for a set of ordinary conditions (V=50km/h) and compared with that of conventional dilemma zone.

- ✓ θ=10%, Y=4.0s; θ=15%, Y=2.6s; θ=20%, Y=2.0s;
- $\checkmark \omega = 0.5\%$, AR=2.6s; $\omega = 1.0\%$, AR=1.8s; $\omega = 2.0\%$, AR=0.8s;

Future Works

- A closed-form solution for the proposed method
- Correlations of input variables → impacts of long intergreen times
- Extension of Monte Carlo Simulations \rightarrow approach speed (15km/h~100km/h)