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ABSTRACT

This paper presents a parallel processing method for the
transportation equilibrium assignment problem. The method
based on the neural network theory" would substantially reduce
the computation time, using a neural computer which will be
available in near future. The neural network consists of
mutually connected tt neurons", which change the states in
parallel to the descent direction of the Lyapunov function. In
the method proposed in this paper, the link flows are
represented by the neural states, apd we can obtain the
equilibrium flows by the parallel change of the neural states
according to the equations of neural dynamics. Using the
correspondence of the Lagrangian of the transportation
equilibrium problem to the Lyapunov function of the neural
network, the neural interconnections and the equations of
neural dynamics are derived for the deterministic multi
-commodity equilibrium assignment problem. Furthermore, we
extend the method so as to be applicable to the stochastic
equilibrium assignment. The method are implemented in an
actual network and the numerical properties are investigated.

1. INTRODUCTION

The transportation network equilibrium assignment model, which originates
from one step in conventional transportation demand forecasting, has grown to
one of the most important model in various area, such as transportation
planning, land use planning, traffic management and so on. Whenever we apply
this model to a real transportation network, the model often includes the
numerous number of variables and requires the vast calculation costs. For the
reduction of the computational burden, various methods, such as, the
Frank-Wolfe method(!)(~), the projection gradient method(~), the sub-gradient
method(1J, have been proposed. Even these methods, however, are not sufficient
to deal with the large scale network in practice. Accordingly, we often find the
situations that these transportation models which have been developed to obtain
useful information for planners are not fully utilized.

So far as we premise to use the conventional serial processing computer,
drastic· improvement of this problem may be difficult. However, if there are
some parallel processing methods based on a proper principle, it may be possible
to solve the problem very rapidly by the parallel calculation, since all the
variables used in the network assignment model have similar expressions and
structures.

In this research, we pay attention to the neural network theory which has
high possibility of realizing the parallel calculation, an'd aim to develop the
method for applying the theory to the transportation equilibrium assignment
problem.

In the next chapter, we briefly summarize the neural network theory
concerning this research. The third chapter shows the method of applying the
theory to the user equilibrium assignment problem. After the illustration of the
method in a simple example, the method for a general network is presented. In
the fourth chapter, we extend the method to the stochastic user equilibrium
assignment problem. In this case, it is difficult to directly apply the neural
Published 1990 by Elsevier Science Publishing Co., Inc.
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network nlethod because of the path variables included in the conventional
equivalent optin1ization problen1. Alternatively, we first develop an equivalent
program represented by only link variables, and then we apply the neural
network method to this program. In the fifth chapter, we analyse conditions of
the stable convergence in this method. Next, we implement the method in an
actual network, and investigate the numerical properties of this method. Finally,
the features of the method are discussed comprehensively and the directions of
the future research are mentioned.

2. NEURAL NETWORK THEORY

In this chapter, we briefly summarize the neural network theory, concen
trating on the themes concerning with this research. General and detailed
explanations of the theory can be seen, for example, in references(§.) -.., (11J.
2.1 Model of Neuron

The brain of a living thing consists of many "neurons" mutually
interconnecting and forming the network. The schematical model is shown in
Figure 1.

1

Figure 2
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Figure 1 Model of Neural Network.

This figure means that the multiple input signals for each neuron are the
output from other many neurons, and these input signals are converted in the
neuron, and becomes the output. Hopfield model(~) is one of the most popular
models for the conversion forms in a neuron. This model can be expressed as

d Ui/ d t = - ui + ~ TijV j + I i
J

Vi[t] =g(ui[t])

(1)

(2)

'where, U i, V i, I i are the inner state, the output state, and the inner bias of
the i th neuron respectively. T is a matrix which represents the strength of
interconnections between neurons. The function g is a proper sigmoid type
function, for example, binary logit function as follows:

g ( u ) = {I + tanh( u / p )} / 2 (3)

where p is the parameter which represents the sensitivity of neuron, and is
often called "temperature" from the analogy with statistical mechanics. We call
Eqs.(1)-(3) the equations of neural dynamics below.

2.2 Lyapunov Function of Neural Network

When the equations of neural dynamics and the interconnection matrix Tare
given, we can calculate how the neurons change the states. It is difficult,
however, to recognize the global dynamics of the neural network system 'from the
direct calculation of each neural equation. Thus, we consider the "energy" of the
neural network by Lyapunov function, which gives the information on the global
characteristics of dynamical system. Hopfield(~) showed that the function:

E(V)=-
1

2

Vi
~ ~ T .. V· V · - ~ I · V· + ~ ~ g-l(v) dv I
i j IJ 1 J ill i 0

, (4)
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is the Lyapunov function corresponding to the equations of neural dynamics
(1)-(2). That is, Eqs.(l)-(2) change the state to the descent direction of E,
and the stable point is the state where E is minimized. In other words, if the
neurons change each input/output state asynchronously and in parallel, the
neurons have the stable state at the minimum of the Lyapunov function. Note
that the third term of Eq. (4) represents randonlness arising from the continuity
of the value of neural state V, and we call it "neural entropy term".

2.3 Application to Parallel Processing of Optimization Problem

According to the theory above, the neurons change their states to the
direction minimizing E ( V ) spontaneously. Therefore, an optimization problem
can be solved by changing the state of each neuron according to Eq.(l) and (2)

;in parallel, if the variables are represented by the states of neurons and the
objective function can be expressed in the fornl of Eq.(4).

Based on this idea, Hopfield and Tank(10), and Takeda and Goodmantll)
showed that a class of combinatorial optimization problenl can be solved on
neural network efficiently. However, the applications to the optimization
problem of other calsses are quite sparse, since their methods for representing
the constraints in optimization problem on neural Lyapunov function are ad hoc
and they can not be used in general.

3. APPLYING NEURAL NETWORK THEORY TO EQUILIBRIUM ASSIGNMENT
PART I : DETERMINISTIC EQUILIBRIUM PROBLEM

It is widely known that the transportation network user equilibrium problem
can be represented as the optinlization problenl when the Jacobian of the link
performance functions is synlmetric. Therefore, if we can find out the proper
"number representation" and the Lyapunov function corresponding to the
assignment problenl on neural network, we nlust be able to apply the theory. In
this research, we adopt the number representation that the link flows are
represented by the sum of neural output states, and consider the
correspondence between the augmented Lagrangian of equivalent optimization
problem for the transportation equilibrium rnodel and the Lyapunov function of
neural network.

3.1 Simple Example

First, we explain the application nlethod of the neural net\vork theory to the
equilibriunl assignment problenl on a simple exanlple network as shown in Figure
3. The user equilibriunl assignment. problenl in this network is equivalent to the
following optimization problenl,

[ P 1 ]

min. Z ( X ) = ~ ~ x a C a ( w ) d w
a 0

subject to

h(X)=q-LXa=O
a

.~.
O~D

Figure 3 Example Network

Xa~O

where, q is the OD flow, X a is the flow on link a, and C a is the link
performance function of link 8, which is continuous and monotonically increasing
function.

To solve this problem by the neural network theory, we must determine how
to represent the link flows Jf on neural network. Fo:rAhis "number represen
tation", we assume that the link flows are not continuous but discrete variables,
that is , the link flows take integer value measured by certain unit which
represents number of vehicles. Next, we consider many neurons corresponding
to these unit flows, and regard the output state of each neuron as the unit flow.



310

According to this "number representation" method, the link flows X are
represented by the- sum of output states of the neurons assigned to each link;
that is,

X a = L V an
n

(5)

where V an denotes the output state of the n th neuron assigned on link a.
Also, to represent the objective function of the equilibrium assignment problem
by the discrete unit flow, we assign each neuron the value of link
performance function, C an ' corresponding to the value of the link flow
represented by the neuron as shown in Figure 4. As seen from Figure 4, program
[Pl] can be replaced by

link cost

[ P l' ]

min. Z ( V ) = ~ ~ C an V an
an

subject to

h ( V ) = q - L L V an = 0
a n

V ai =1 i=l, .. ,n

= 0 i=n+l, .. ,m

C an

link flow

X a

Figure 4 Rrepresentation of Link Flow.

Since problem [PI'] is a constrained optimization problenl, we can not yet
directly apply the idea of neural network theory. To take the constraints into
consideration, we utilize the augnlented Lagrangian which converts the
constrained problem into unconstrained one in Inultiplier method(12):

E=Z(V)+,uh(V)+R {h(V)}2/ 2 (6)

where J..l is the Lagrange multiplier and R is a parameter of appropriate value.
According to the theory of multiplier method, revising the V to the decent

direction of E by proper method, and revising ,u by

,u [t+1] = ,u [t] + R · h ( V [t]) (7)

(8)

where t. in bracket [] denotes the number of iteration,

the neural state V converges to the optimal solution of original problem.
On the other hand, the Lyapunov function of this problem corresponding to

Eq.(4) is represented by

-- . 1
E ( V ) = - - L L T anbm V an V bnl - L I an Van .

2 an bm an

(9)

(10)

"'\i a,n,b,nl

"'\i a,n

Letting E ( V ) - constant equals E(V), comparing the expansion of Eq.(8) and
the coefficient of Eq.(8), we obtain

T anbm = - R

I an = R q + ,u - C an

The derived matrix T means that all the neurons are mutually connected with
same "strength" R, and the neurons show "inhibitory" property. Also, the
equations of dynamics for the n th neuron of link a becomes

d U an / d t = - U an + L T anbm V bm + I an
bm

= - U an + R (q - lm V bm) + f.l - C an I

(11)

(12)
.'
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V an [ t ] = { 1 + tanh ( U an [ t ]/ p )} / 2 • (13)

Thus, if we connect the neurons mutually according to the interconnection
matrix T on a neural network computer, the neurons change the states
according to the equations 'of dynamics (12)(13) spontaneously, and we can
obtain the user equilibrium flow pattern as the equilibrium state of the neurons.

To check this fact numerically in conventional digital computer, the equations
of dynamics (12) should be replaced with the following discrete-time difference
equations.

(14)U an [ t ] = R { q - L V bm [ t - ~ bm]} + j.J. - C an
bm

where Il bm is the time-interval of changing the state of the bm th neuron.

Note that the temperature parameter p at equilibrium should be taken as very
small value for the consistency of the analysis, since we derived the equations
of dynamics assuming that the neural entropy term of the Lyapunov function can
be dropped because it is negligibly small. For this reason, we adopt the method
analogous to the simulated annealing method (13), that is, p is first set high
value and then p is "cooled" down gradually and finally decreased to the level
that the entropy ternl can be regarded as zero. Detailed discussion on the
relation between the value of this temperature parameter /J, the penalty
parameter R and the convergence condition will be shown in the fifth chapter.
Here, we can demonstrate the simple numerical experiment of the method on
digital computer,. revising p by

p = p max / log ( t + 1 ) ( t ~ 1 ) , (15)

where p max : a constant of given positive value; t : number of iteration,

and changing the state of neurons according to Eq. (7) ,( 14), and (12). Some
conditions of the numerical experiment are as follows:

ill Number of links : 2 ;
~ OD flow : 20.0;

@ Link performance function : c 1 = 200 + 0.02 X t ' c 2 = 300 + 0.15 X ~

@ Value of temperature parameter : p max=100;
® Value of penalty parameter R = p / 2
@ Initial state of the neurons: V an [0]= o. 5 V an

Cl Cl Cl

Xl Xl Xl
Figure 5 (a) t=l (b) t=3 (c) t=10

Figures 5 (a)-(c) show the changes of neural states in link 1 to the convergence.
The width of each bar means the unit link flow represented by one neuron, and
the ratio of the hight of shaded area against the bar represents the value of
output state (from 0 to 1) of each neuron. We can see that initially random
valued neurons gradually converge to the ordered state of user equilibrium.

3.2 Analysis in General Network with Many to Many OD pairs

We extend the previous analysis for the one OD pair problem to the general
network with many to many OD pair. The equivalent optimization problem of user
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equilibrium assignment in this case can be represented by

x· .r IJ
min. Z ( X ) = ~. J C ij ( W ) d w

IJ 0
subject to

(16)

-- s s s s
·h k (X ) = q ks + ~ X ik - ~ X kj = 0

1 J

g .. (X, X s) = X .. - L X~· = 0
IJ . . IJ S IJ

S
X ij ~ 0

V'k;ts

V' (ij)

V' (ij), s

(17)

(18)

(19)

where q ks is the OD flow from node k to node s, X ij and C ij denotes the

flow and the performance function of link i ~ j, respectively, and X fj denotes
the flow with destination s on link i ~ j. As in previous section, we represent
the link flows by the sum of the activated (output) state of neurons. Also, in
order to express the flow conservation constraints on the neural network, we
consider two groups of neurons, V ':), V:s, corresponding to the link flows, X,
and the link flows with destination s , X S ,respectively. The link flows
without distinguishing destinations are represented by

(20)V' (ij)X·· = L V·~IJ n IJn

and then the objective function Z can be represented as the function of V.

Z(X)=Z(V)=LL
ij n

o
C ijn V ijn (21)

where C ijn denotes the value of the link cost function at X ij = n (unit flow).

Also, the link flows with destination s, X s ,is represented by

X?· = L V!3·
IJ n IJn

and then the constraints 11 can be transformed into

V' s, (ij) (22)

(23)
s s s

h k ( V ) = q ks + ~ L V ikn - ~ L V kjn = 0 V' s, k
1 n J n

Furthermore, to satisfy the constraints g, we introduce next constraints for V '":'
and V 5.

o s
g ijn ( V ) = V ijn - L V ijn = 0

s;tO
V' (ij), n (24)

Consequently, the augmented Lagrangian for this problem can be represented
with respect to V = ( V 0,.. , V :s ,.. ) as follows:

(25)

E = Z ( V ) + L L jJ. ~ h ~ ( V) + ~ L Aijn g ijn ( V )
s k IJ n

+~ ~ ~ { h k(V ) } 2 +~ ~. ~ {g ijn ( V ) } 2
2 s k 2 IJ n

where JJ. and ~ are the dual variables corresponding to the constraints hand
g, respectively. On the other hand, the Lyapunov function of this problem
corresponding to Eq.(4) becomes

1 ss' s s' s s
E = - - ~ ~ L L ~ L T iJ'ni'J"n'V iJ·n V i'J"n' - L L L I iJ'n V iJ'n (26)

2 ij n si'j' n' s' ij n s

where E ( V ) is E ( V ) - constant.· Comparing the expansion of Eq.(25) and the
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coefficient of Eq.(26), we obtain the interconnection matrix, T, and the vector of
neural threshold value, I.

(i) Case for s = 0

ss'
T ijn,i'j'n' = R 2 ( 1 - 2 0s'O ) 0ii' ~j' 0nn'

s
I ijn = - C ijn - A ijn

(ii) Case for 5 # 0

ss'
T ijn,i'j'n'= RIo ss' ( 0 ij'+ 0 ji'- 0 ii' - 0 jj')

- R 2 ( 1 - 2 0s'O) 0ii' Ojj' 0nn'

s s s
I ijn = R 1( q is - qjs) + A ijn + ( J.1. i - J.1. j )

where 0 denote Kronecker's delta; that is,

(28)

(29)

(30)

= 1
= 0

if x = y

otherwise.

We can see from the derived matrix T that the n th neuron assignned for x IJ
has the interconnections between the n th neurons for the link flows with
destinations 5, X ij' corresponding to the constraints g in the case of (i).
In the case of (ii), the interconnections have the structure similar to the dual
graph of the original transportation network, corresponding to the flow
conservation constraints h.

Substituting the nlatrix T and the vector I into the basic equations of
dynamics, we can derive the follow~ng equations of dynamics.

s . s
V ijn [ t ] = { 1 + tanh( U ijn[ t ] / p )} / 2

(0 case for 5 = 0 (neurons for link flows)

(31)

d u Sijn / d t = - u tjn - { C ijn + A ijn + R 2 g ijn ( V )} (32)

(ii) case for 5 ~ 0 (neurons for link flows with destination s )

s s s s
d U ijn / d t = - U ijn + ( J.1. i - J.1. j) + A ijn

+ R 1{ h f (V ) - h j (V )} + R 2 g ijn ( V ) (33)

In order to see the interconnection between neurons, we derived the matrix T
by comparing the coefficients, and then obtained the equations of dynamics by
substituting the matrix T into the basic equations of neural dynamics. Note that
the equations of the dynamics can be also obtained by merely differentiating
Eq.(25) with respect to V, since the neural equations represent the dynamics to
the descent direction of the Lyapunov function.

4 • APPLYING NEURAL NETWORK THEORY TO EQUILIBRIUM ASSIGNMENT
PART II: STOCHASTIC EQUILIBRIUM PROBLEM

4.1 Equivalent Optimization Problem

In this chapter, we develop the neural network method for solving
stochastic user equilibrium (SUE) model which is known as a generalization of
deterministic user equilibrium (e.g.(14)-(17». From the practical view point, we
concentrate on the case for logit type path choice model below. Conventionally,
the minimization problem developed by Fisk(15) has been known as an equivalent
program for the logit based SUE assignment model. The program, however,
includes the path flow variables which are troublesome to deal with in general
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network, and it is difficult to directly apply our neural network method by the
similar manner in earlier deterministic equilibrium case. Thus, alternatively, we
derives the equivalent optimization problem represented by only link flows, and
apply the neural network method to the link based program.

To show the essence of "decomposition into link based program" without
notational complexity, we first consider the case for flow independent stochastic
assignment problem with one OD pair and unit OD flow.

In the logit type stochastic assignment model, the probabilities of choosing
path p, Pp, is given by

exp r - e c p ]
P =

p L exp [ - e c p' ]
P'

where e is the dispersion parameter for path choice, and C p is the travel cost
of path p , which is the sum of the link cost t on the path. The probability
(flow) of choosing link i ~ j, P ij , is determined by the flow conservation
equations represented by the link and path flows:

P ij = ~ P p 0 ij,p ,

wheI"e {=1: if link i ~ j is on path p,
oij,p =0: otherwise.

The flow pattern obtained by this assignment model has the property of "Marcov
chain"; that is,

IT [prOb[i' j] ] 0 ij,p = P

ij Prob[j] p

where Prob[j] = L Pmj' Prob[i, j] = Pij ·
ID

In other words, if a certain link flow pattern satisfies

(36)

IT
ij [ L Pmj

m

] 0 ij,p = exp [ - e C p ]

L exp [- e c p']
p'

(37)

then the flow pattern is consistent with the logit type assignment model.
Keeping in mind the above property of logit based stochastic assignment

model, let's consider the following program:

[SA]

min. Z ( p) =
1

e
{ LP" In P 0 0 - L ( L P 0 0 ) In ( ~ P ij )} + L Pij C ij

ij IJ IJ j i IJ 1 ij

subject to

L P ik - L P kJo + (0 rk - 0 sk) = 0 'V k
i j

P ij ~ 0 't ij

where r is the origin and s is the destination node.

The solution of this problem has the property of Marcov chain, and the resulting
link flow pattern is identical to those obtained by logit type assignment model
(Eq.(34)(35)). In other words, this program is equivalent to the logit type
assignment model in terms of the link flow pattern~ The equivalency can be
shown by comparing the optimality conditions of this program and the properties
of Marcov chain mentioned above (Eq.(37». Using the Lagrangian, which is
given by

L(p, ,u)=Z(p)+LkfJ.k {~Pik-~Pkj+(ork-osk)}'(38)
1 J
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we can express the optimality conditions for program [SA] as follows:

a L
---~O,

a Pij

aL
P ij = 0 ,

a P ij
V'ij (39)

(40)V' ij= exp [ - e {c .. - ( j.J. • - j.J. .)} ] •
IJ 1 J

and the flow conservation constraints.

After some algebraic calculation, the optimality conditions Eq.(39) yield

P ij

L Pmj
m

Multiplying the both side of Eq.(40) on appropriate path p,

I1 I P ij I<5 ij,p = IT exp [- e {c ., - (J.L .- J.L .)}] <5 ij,p (41)
ij L P ij IJ 1 J

m rnj

=...exp [ - e {c p - ( j.J. r ~ J.1. s )} ] (42)

Furthermore, considering the flow conservative in Eq.(40), we have

exp[ e j.J. j ] = ~ {exp[ - e C ij ] exp[ e f.J. i]} ·
1

(43)

Eq.(43) shows that the value of f.J. at node j is determined by the value of J.1. at
node i which has links entering to node i ( in other words, nodes i are just
preceeding to node j). Thus, sorting all the node from destination s to origin r
by appropriate order ( s,s-1,s-2,· .. ,1"+2,1'+1,1') and evaluating the value of jJ.

on this order of node reversely,

exp[ () f.J.s ] = L {exp[ - e Cs-I s ] exp[ e }.ls-1 ]}
s-1 '

= L {exp[ - e C s-1 s] L exp[ - e c s-2 8-1 ] . · · .. X exp[ e }.l r]}
s-1 ' s-2 '

= L L" L exp[ - e ( c s-1 8 + c 8-2 8-1 + .. + c 1'+1,1'] X exp[ e }.l l' ]
s-1 s-2 1'+1 "

L exp[ - e C pJ X exp[ e f.J.1.J
p

(44)

Hence,

(45)j.J. r - j.J. 8 = - ( 1 / e ) In L [ - e C].)] ·
p

Substituting Eq.(45) into Eq.(42), we have Eq.(37) as the optinlality condition for
the program [SA]. This means that we can obtain the link flo\v pattern consistent
with logit model by solving the program [SA].

Similarly, we can obtain an equivalent program for SUE with many to rnany OD
pairs represented by only link variables as follows:

1 x ..
min. Z ( X ) = - L { - H L + H N } + L r· IJ C iJ' ( w )d w (46)e s s s ij J 0

subject to

Eq.(17), Eq.(18), and inequalities (19),

where H Ls ( X s ) == - L X ~. In x!3· ·
ij IJ IJ'

HNs(x
s
)= -L(Lx~·)ln(Lx~,).

j i IJ i IJ

(47)

(48)
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4.2 Deriving the Equations of Neural Dynamics

In order to apply the neural network method, it is rather convenient to
convert the entropy term in the objective function Z into the following
"conditional entropy" form:

L { - H L s + H N s} = L { L ( L X ~ , ) (L p ~, In p~.)}
s s j i 1J i 1J 1J

s
s ~ P ij s= L { L ( LX·· ) L ( 0 In w d w + P ij)} (49)

s j i 1J i

where
s s s

P ij == X ij / ~ X ij ·
1

·(53)

As in deterministic case, we represent the link flows by the sum of the
output state of neurons. In addition to the neural variables V = (V '-:> , •• , V :s , •• )

in deterministic equilibrium case, we further introduce a new set of neurons
representing the "turn probabilities", p, as follows:

~ V s 1 S (£;0)
~ ijn = P ij v
n

where the superscript "1 " denotes this set of neurons, and the other types of
neurons representin,g the link flows are distinguished by superscript" 0" belo"v.
From the definition of p and the other neuron variables representing the link

flows, these variables should satisfy the following equations.

s sI sa s s s
f,· (V 1'J'., V 1'J") == XI'J' - P " LX"1J 1J i 1J

sa sl sa=L V ijn - ( L V ijn )( L: L: V ijn) = 0 (51)
n n i n

Similar to the discrete representation in the integral ternl of the link cost
function, we can express the integral of the entropy term by

s
s . J P ij sa s 1 . r-

L ~ (~Xij )( ~ In w d w ) = L L, ( ~ 2: V ijn){ ~ L L n V ijn}' (~2)
s J 1 1 0 s J In 1 n

where L n denotes the value of function In(') corresponding to the n th

division of the interval [0,1]. Consequently, we have the following augmented
Lagrangian with respect to V, adding the constraints Eq.(51) and the entropy
term to those of the deterministic equilibrium case.

sO sI
E = ~, L Cijn V ijn + L ~ ( ~ L: Vi'jn){ L ( 1 + L n ) V ijn } / e

1J n s IJ l' n n

s s s s+ LL,uk,hk(V) +,~LAijngijn(V)+L,~lIijf,· (V)
s k IJ n s IJ 1J

+~1 L L { h 1( V ) }2 +~ ~. L { g ijn ( V ) } 2
2 s k 2 IJ n

where }J., A and 11 are the dual variables corresponding to the constraints h,
g, and f, respectively. On the other hand, the Lyapunov function of this
problem corresponding to Eq.(4) becomes

1
E= ss'dd' sd s'd'

L L L L ~ ,L 2 L T iJ'ni'J"n' V iJ'n V i'J"n' - L L 2 L
2 ij n s d l'J' n' s ' d ' ij n s d

sd sd
I ijn V ijn

(54)
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Similar to the deterministic equilibrium case, we obtain the following
interconnection matrix, T, and the vector of threshold value, I.

ss'dd'
T ijn,i'j'n'= 0 dO 0 d'O (0 sO {R 2 ( 1 - 2 0 s'O) 0 ii' 0 jj' 0 nn'}

+ (1-os0){-R 2 (1-2<;'0 )oii' ~j' 0nn'

- RI 0 ss'( 0ij' + 0 ji' - 0 ii'- 0 jj")})
s

- 0dOod'lo jj'O ss'( 1 - 0sO) (1 + L n ,- }/ij )/8 (55)

sd· s s s
I ijn = 0 dO ( ( 1 - 0 sO ){ R 1 ( q is - q js) + A ijn + ( jJ. i - jJ. j ) - 11 ij }

- 0 so ( C ij n + A ijn) ) (56)

The first line of Eq.(55) means the interconnection of the neurons for s=O (the
neurons representing link flows), the second line is those for s :# 0 (the neruons
representing link flows with destination s), the third line is common to all the
neurons excluding "turn probability neurons", and the last line shows the
connection for the "turn probability neurons".

Substituting the matrix T and the vector I into the basic equations of
dynamics, we can derive the following equations of dynamics for three types of
neurons.

sd sd
V ijn [ t ] ={1 + tanh( U ijn [ t ] / p )} / 2 (57)

(i) case for s = 0 and d = 0 (neurons for link flows}

s d s d
d U ijn / d t = - U ijn - { C ijn + A ijn + R 2 g ijn( V )} (58)

lliLcase for s;t:. 0 and d = 0 (neurons for link flows with destination s )

sd sd s s s
d U ijn / d t = - U ijn + ( j.J. i - j.J. j) + A ijn - }/ ij

+R1{hf(V)-h j(V)} +R 2 gijn(V)

+ { 1I's. - L - 1 } L L V?~ / e (59)
IJ n i n IJn

(iii) case for d = 1 (neurons for "turn probabilities")

s d s d s sO
d U ijn / d t = - U ijn + ( 11 ij - L n - 1 ) ~ L V ijn / e (60)

1 n

Thus, . we know that the stochastic equilibrium flows can be calculated on neural
network, by simply connecting the neurons according to the derived matrix T
and changing the neural states, as in deterministic case.

5. STABILITY ANALYSIS

Replacement of the continuous-time differential equations (Eq.(12» with the
discrete-time equations (Eq.(14» sometimes causes the unstable dynamics of
neurons, depending on the value of parameter p and R. Thus, this chapter
analyses the conditions that the equations of dynamics always converge to the
equilibrium solution. To avoid the notational complexity, we analyse 1 OD pair
problem here, which is expressed by the following equations of dynamics.

V an[t+l] = gan[ V [t]] == g [ U an ( V [t])] (61)
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where
-1

g ( U an) = [ 1 + exp( - 2 U an / p )]

U an = R · ( q - L V bm ) + J.1. - C an
bm

(62)

(63)

In the case for many to many OD pairs, the basic way of analysis is same as the
one OD pair case, though the neural equations corresponding to Eq.(62) becomes
more complicated.

Suppose that V (t) are at the equilibrium state V *, and that the output state
of the n th neuron of link a is changed to V a n* + Can. Since V * satisfies the
flow conservation, the output state at time t+ 1 becomes

-1V an [t+1]=[1+M·exp(-2c an R/p)], (64)

where M == exp{( J.1. - c an )/ p}. (65)

On the other hand, the condition for stable convergence may be expressed as
follows:

I V an [t+l]-V an [t] 1< 1 canl, (66)

Substituting Eq.(64) into Eq.(66) and rearranging ( R, p, M > 0 ) it, we have

1 - C an ( 1 + 1 / M )( 1 + M · L) < L

where L ==exp( - 2 canR/ p).

(67)

(68)

Taking the logarithm of both side, expanding by progression, and neglecting the
higher order term, we have

2R/p «I+I/M)(I+M·L). (69)

Since E an is small enough, we can see L = 1, and then the right hand side
have the minimum value of 2 p at M = 1 (J.1. = Can) • Hence, the illost strong
condition for convergence is expressed as p > R / 2 .

Generalizing the analysis above, we can obtain the following conditions for
convergence based on the contraction mapping· theorem.

I1 Jg(V) 11 < 1, (70)

where J g ( V ) is Jacobian of g ( V). If we assume the changing ratio of J..l
and the distribution of neural states V, we can derive the convergence
conditions for general case from Eq.(70). However, this condition is too strong
for the practical calculation, since we do not have to consider the extreme case
that all the neurons always converge. Besides, we do not always need the link
flows by OD pairs X:S, but rather need the link flow without distinguishing OD
pairs x. Therefore, we may be able to achieve the convergence according to
more weak conditions in many cases. Unfortunately, the analytical derivation of
the weak convergence condition in general case would be extremely complicated,
and the practical assumption on the distribution of neural states is not clear.
Thus, we investigate the convergence properties of this method by some
numerical experiments in the following chapter.

6. NUMERICAL EXPERIMENTS

We apply the method of neural network (we call it MNN below) to solve the
user equilibrium assignment problem in practical size network, and the accuracy
of the solution and the convergency of the method are investigated in this
numerical experiment.

We implement the method in a road network of Sioux Falls city in South
Dakota, which has 76 links, 24 nodes (all the nodes are OD nodes), and 529 OD
pairs. The network is same one where Leblanc et al (1) investigated the
performance of Frank-Wolfe method for solving the fixed demand user
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equilibriunl assignment problem, and the OD flows and the link performance
function paranleters are the same as the Leblanc's experiment.

The conditions in MNN are summarized as follows:

CD Number of neurons per link: 30
@ Revising equation of temperature parameter p : Eq.(15) , p max = 10.0
@ Revising equations of penalty parameter R. i (i=1,2):

Ri = R max - A X t, R max = 15.0, A =0.01

@ Revising equations of Lagrange nlultipliers:

j.J.~ [t+l] = j.J.~ [t] + R 1· h k(V[t]) (71)

A ijn [t+l] = Aijn [t] + R 2 · g ijn ( V [t]) (72)

(ID Equations of neural dynanlics: Eq.(31),(32),(33)

Figure 6 shows the convergence pattern of MNN in this experiments. From
the theoretical view point, we can not obtain the rigorous solution by MNN, since

there exists the neural entropy and we adopted the discrete representation of
the link flows. The solution is, however, very close to the rigorous solution,
when we set the lower bound of parameter p as in this numerical example.
Also, the correlation coefficient between the rigorous solution and the neural
network solution after the 1000 th change of neural states is 0.996. It is
appropriate to note from these fact that MNN can prociuce the solution which has
practical accuracy.

where x· is the rigorous solution.

Convergence( % )
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Figure 6 Convergence Pattern of Neural-Network Method
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Figure 7-1 Convergence patterns for the various relations between RI andR2,
where p is determined by Eq.(15) and p max=10.0 for all cases.

Next, we examine the influence of the change of parameter value on the
convergence. Although we implemented the experiments for various cases, it is
difficult to show all the results comprehensively in this paper. We concentrate
on showing sonle important facts founded in the experiments.

convergejce(~) i i ! (i j i i i
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20 .. . ~ i···········~ i········ .. ~ ! ~ ~ i··········i
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· ..: ..........j..·....·.. j..........t· ..·..·..·j·........·\"..·....·j· ..........j
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Figure 7-1 depicts the comparative experiments of convergence pattern with
the change of the relation between R 1 and R 2. Judging from our some
experiments (in addition to this example), it is appropriate to make R 1 and R 2
almost same value.

Convergence(% )
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Nu.ber of Iterations
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Figure 7-2 Convergence patterns for the various values of R, where p is
determined by Eq.(15) and p max=10.0 for all cases.

Also, we had better decrease R i in accordance with the convergence.
Figure 7-2 shows the example suggesting this fact. When R i is l~rge

throughout the iteration, the neural state often oscillates, and furthermore, it
converge to the point different from rigorous solution. The reason can be infer
that if R i has large value, the errors caused by the discrete representation
scheme of the link flows are amplified. In the case that R i is too small, the
convergence rate is very slow, though the neural states shows stable
convergence.
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Figure 7-3 Convergence patterns for the various values of p, where R is
determined by Ri=15.0 - 0.015 X t (i=1,2) for all cases.

As for p, we can suggest that p should have large value at the first stage
of the iteration (the change of neural state), and p should be gradually
decreased. As seen from Figure 7-3, when p is too small from beginning to
end, the convergence rate is slow, and the neural states easily oscillate. On the
other hand, when we set large value for p throughout the iteration, the
converged states are different from the rigorous solutions, though the neurons
behave the stable convergence. The reason is that "neural entropy" term in
Lyapunov function can not be negligible when p has large value.
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7. DISCUSSIONS

7.1 Features of Neural Network Method

Changing the state of all the neurons in the neural network method
corresponds to the calculation of one iteration in conventional algorithm.
Therefore, if a neural computer available with parallel processing is realized in
future, the computational time required in each iteration may be negligibly
small, and the total time to solve the equilibrium problem can be radically
reduced, comparing with conventional algorithm.

Besides this features, our method can easily solve the equilibrium
assignment problem with capacity constraints. Specifically, the capacity
constrained assignment problem can be solved just by adjusting the number of
neurons representing the link flows, since the flows above capacities can not be
loaded on the links because of the relation between the link flow and the neurons
in our number representation method. This can be one of the advantages over
the complicated treatment (for example, the method of obtaining initial feasible
solution and line search must be devised in Frank-Wolfe method) in conventional
algorithm.

Moreover, the simplicity of the method may be the one of advantages. In
emulating the method in conventional computer, the required code in a module
for the calculation is less than some dozens of lines when we use proper
computer language(eg. FORTRAN, C, PASCAL etc), since we only to describe the
procedures for the iterative calculation of the equations of dynamics.

We described some advantages of neural network method above. We examine
the deficiencies of our nlethod. Firstly, it may be posed a question that the
number of neurons required in this method becomes too numerous. Judging
from our some numerical experinlents, assigning only a fe",,' scores of neuron per
link is enough for practical accuracy (2 -- 3 digit) of the solution..Besides, we
can utilize some hundred thousands of neurons (§) even in the currently
available neuro-conlputer emulation system. Considering these facts, it would
not be the serious problem in practical.

Next, the problenl of convergency and convergence rate in this nlethod can be
pointed out. Since the times required in changing the state of all the neurons
are very small because of the parallel dynamics of neurons, the problenl of the
convergence rate can not be fatal, even if the convergence rate is slo\\I to sonle
extent. Ho\vever, whether the neural dynanlics converges to the equilibrium
solution or not is an inlportant problem. For the sure conver,gence, it is
required to make the value of R snlall to sonle degree in response 'to the value
of p. On the other hand, too snlall value of R slows dow"n the convergence
rate.

Finally, the accuracy of the solution, which is also relating to the problenl
above, should be considered. Since we derived the equations of dynamics
neglecting the neuron entropy term in ~apunov function, our method can not
necessarily produce the rigorous soluti n from the theoretical view· point. As
seen from the numerical experiments in p evious chapter, however, satisfactory
accuracy may be obtained practically wi~ 1 sufficient number of neurons and low
temperature. Nevertheless, the number of neurons and the value of p should
be determined by the trade off relation between the accuracy and the
convergence rate, since too many neurons and too small value of p worsen the
convergence condition.

Last two problems may depend on the following factors:
CD the number representation method on neural network;
® the method of setting the Lyapunov function;
@ the method of discretizing the continuous equations;
@ the value and changing ratio of temperature parameter p
@ the value and changing ratio of penalty parameter R;
® the unit flow represented by ar neuron;
GJ the congestion rate in transportation network;
@ the form of the link performance functions;
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® netwTork scale( number of links, nodes, OD pairs etc.), and
aID network structure.

First three factors (CD........, @) are concerned with the formulation of the
problem. The next threes (@........, ®) are the problem of relation between
parameter value and convergency, and the remainings ((J)........, aID) are the
problem of "congeniality" between the properties of network and the method
which has been also discussed in conventional algorithm.

7.2 Correspondence between Neural Network Method and Other Theories

The features of MNN considered in this paper are summarized as follows:
CD link flows are treated as the set of the discrete unit trip by the neurons;
@ the discrete neuron variables are processed in parallel;
@ Lyapunov function of neural network coincides with the augmented Lagrangian
of assignment problem;
@ Lagrange multipliers are revised according to the theory of multiplier method,

In examining these features, we can see the characteristics common to the
theory for other problem. In relation to CD and @, We might think of the
relation with the "cost - efficiency theory" by T.E.Smith(18). He has derived
the user equilibrium assignn1ent from the consideration in the case that network
flows are represented as discrete variables. Since our MNN represents the link
flows as the discrete variables by many neurons and both theory of the neural
network and cost-efficiency have common methodology similar to statistical
mechanics, we may infer that our MNN has certain relation with his theory.

Concerning ® and @, we can see that, in the method by Hopfield( 10), the
parameters corresponding to the Lagrange nlultiplier are determined en1pirically
by trial-and-error, and the value of neural threshold ( I ) and the
interconnection strength ( T ) are constant. On the other hand, our method is
generalized to be able to treat with general case, since the Lagrange nlultiplier (
JJ., A ) and the value of neural threshold ( I ) are not constant but are revised
with the change of neural state. Note that cost variables ( jJ., A ) also can be
representeel on the neural networks, though w'e represent, for simplicity, only
the flow variables on neural network in this paper. The reason and the way can
be shown below". Our method in this paper is eqldvalent to solve the primary
problem by the certain gradient nlethod, since the equations of dynanlics of
neural state V representing the flo\\! variables nl0ve to the gradint direction (
with respect to X ) of the augnlented Lagrangian. On the other hand, the
method of revising ( !J., A ) in this paper is equivalent to solving the dual problem
by a gradient nlethod. Therefore, revision of ( jJ., A ) can be described by the
equations of dynanlics of neural state, as in prinlary problenl. In other words,
though our MNN in this paper iterates to solve the prinlary problen1 on neural
network and to solve the dual problem by the conventional gradient rnethod, the
latter also can be calculated on the neural network. Thus, if we make two
stratified neural net\vork, that is, the network for the flow variables and for the
cost variables, \\Te can obtain the solution only on the neural networks by
changing the state of neurons in each network in turn, giving and taking the
mutual information.

8. CONCLUSIONS

This paper considered a nlethod of parallel processing on neural network for
solving some equilibriunl assignment problems. The major remarks are
sunlmarized below.
(1) Parallel processing nlethod based on the neural network theory is proposed
for solving the transportation eq uilibriurn assignment problem. ~10re specifically,
the method is based on the correspondence between the augnlented Lagrangian of
equivalent optimization problenl and the Lyapunov function of neural network.
(2) The interconnection matrix and the equations of dynalnics of neurons for the
parallel calculation on neural networks are derived for the user equilibrium
assignment problem with many to many OD pairs.
(3) Applying this method to practical network, the convergence properties and

I
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the accuracy of the solution are investigated and the results are encouraging for
the practical use.
(4) An equivalent optimization problem for logit based stochastic equilibrium
assignment model represented by only link variables is formulated. Using this
program, it is shown that neural network method can be applied to the stochastic
equilibrium assignment problem as in deterministic case.
(5) It is suggested that the neural network method proposed in this paper has
some correspondences between T.E.Smith's cost-efficiency principle.
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