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Abstract

This research deals with the dynamic traffic assignment on an over saturated network for a
one-to-many origin-destination pattern under the user equilibrium principle. The purpose
of this study is to obtain time dependent cumulative arrival curves at each of the nodes
explicitly taking into account the effects of queues given time dependent OD volumes;
that is, the departure times of users are assumed to be known. We first show that the
problem can be decomposed with respect to the starting time from an origin. It is then
shown that the problem forms a loop structure, which is formulated as an extension of
the static assignment using two kinds of unknowns, link flows and arrival times at nodes.
The solution is proved to exist, provided that the link travel time is monotone increasing
in the link flow. However, a unique solution is not generally guaranteed. An algorithm to
obtain the solution is finally proposed and applied to a simple network.

1 Introduction

This research deals with the dynamic traffic assignment on an over saturated network
with queues under the user equilIbrium principle. The time dependent origin-destination
demand is a one-to-many pattern which is assumed given; that is, only route choices are
considered in this paper but departure time choices from an origin are given.

Several researchers have studied the dynamic traffic assignment on the discrete demand
space and networks consisting of links and nodes. Merchant et. al. [1, 2] formulated the
dynamic flow model under the system optimal principle, given a one-to-many OD demand.
The formulation by Merchant et. al. was then further investigated by Ho [3] and Carey [4].
Friesz et. al. [5] also considered this type of model and extended the model so that it could
dealt with a many-to-many OD pattern. Wie et. al. [6] and Boyce et. al. [7] studied the
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similar models under the user optimal principle instead, where they assumed that users
chose the fastest routes to destinations based on the instantaneous information on link
travel times. Most of these s·tudies assumed that the link travel time was a function of the
number of vehicles on the link, which was evaluated using the so called exit function. The
exit function determined the departure flow rate as a function of the number of vehicles
existing on the link as well. Although they developed mathematically interesting models,
there was no clear connection between the exit function they introduced and real queuing
phenomena. Also, we should note that the user optimal principle proposed by Wie and
Boyce does not establish the usual user equilibrium where no one can find a better route
than one he is currently assigned.

Recently, Smith et. al. [8,9] studied the dynamic assignment under the user equilibrium
principle. They considered the existence of queues on a network more explicitly and
disclosed several different characteristics of the dynamic assignment from the static one.
However, the formulation of the assignment is still in a primitive stage.

On the other hand, the different type of queuing problems for the morning and evening
commute trips have been studied on a continuum demand space with a many-to-one
OD pattern [10 - 17]. Given commuters' work schedules, their departure times as well
as routes were determined so as to establish an equilibrium. Although they considered
queuing delay (waiting time in a queue) explicitly, the study has been so far restricted
to a network with a limited number of bottlenecks. In particular, every commuter was
assumed to pass a bottleneck only once in most studies in this category.

This research can be considered as an extension of the above queuing analyses to more
general networks possibly having many queues, but we deal with a discrete demand space
and consider only route choices similar to the evening commute problem.

2 An Outline of the Study

A network consists of links and nodes, and the given time dependent OD demand is
assumed to be generated from a single origin and absorbed in various destination nodes.
Every user is assumed to choose a route so as to minimize his travel time which consists
of the static free flow travel time and time dependent queuing delay.

Figure 1 shows an example of the cumulative arrival and departure curves on link (i,j)
where all the variables are defined with respect to the arrival time at node i, tie The
trip cost of a vehicle entering link (i,j) at time ti is shown as Tij(ti). Our objective is
to determine cumulative arrival curves Aij(t) for every link (i,j) for all time t so as to
establish an equilibrium.

Under the user equilibrium state, the order of vehicle arrivals at any node can be shown
to be the same as the order in which those vehicles depart from the single origin. For this
reason, the arrival time at node i, ti, is related to departure time from the single origin
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s in an equilibrium condition and all the variables in Fig.l can be redefined with respect
to time s.

Fig.l Cumulative Arrivals and Departures on link (ij)

timet
1

11

~(s)

Cumulative
VehiclesSuppose that a vehicle which

leaves the origin at time s en­
ters link (i,j) at time ti( s). The
vehicle must spend travel time
Tij(ti(S)) on the link, but un­
der FIFO (First In First Out),
its travel time essentially depends
only on the arrival curve Aij(t)
before the arrival time ti(s) but
independent of Aij(t) thereafter.
Thus, together with the above
discussion on the order of arrivals,
it is concluded that the vehicle's
travel time depends only on route
choices of others leaving the single
origin before its departure time s.

The equilibrium assignment can be, therefore, decomposed so that we consider the equi­
librium sequentially in the order of departures from the single origin. For instance, the
time axis is divided into small intervals, and we start considering the equilibrium route
choices only for vehicles leaving the origin during the first time interval. Then, the equi­
librium in the next interval should be analyzed given the route choices up to the previous
interval, and so on.

3 Dynalllic Net"Work Flo"Ws and Link Travel Time
"With Queues

3.1 Network and Traffic Demand

A network consists of links and nodes. Sequential numbers from 1 to N are allocated to
N nodes. The number of links is L and a link from node i to j is denoted as link (i,j).

A time-dependent one-t~manyOD demand is assumed to be given, which is denoted as

cumulative OD demand from the single origin r to destination
node j generated at the origin by time s (given).

Let us also introduce demand functions with respect to the arrival time at a node, t.
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Rr (t) cumulative trips generated at single origin r by time t,
Lj Qrj(t),

Sj(t) cumulative trips absorbed at destination node j by time t.

Here, s means the starting time from the single origin and t represents the arrival time
at a node. Since, at the origin, clearly starting time s is equal to the arrival time at
origin r, Rr(t) can be known from the given Qrj(s). However, in general, arrival time at
node j (J' :f:. r) can not be known in advance. Thus, Sj (t) can be normally evaluated only
through the dynamic assignment.

3.2 Cumulative Functions and Link Travel Time

The cumulative arrival and departure curves are defined as follows:

Aij(t)
Dij(t)
Aij(t)
Pij (t)
pij

the cumulative arrivals at link (i,j) by time t,
the cumulative departures from link (i,j) by time t,
the arrival rate at link (i,j) at time t == dAij(t)/dt,
the departure rate from link (i,j) at time t == dDij(t)/dt,
the maximum departure rate from link (i,j), (given).

The travel time on link (i,j) at time t consists of a static free flow travel time mij and
time dependent queuing delay Wij(t) as shown in (1) and Fig.2. Although it is possible
to introduce costs of travel rather than the real travel time as the conventional traffic
assignment, the link travel time is not here converted to monetary term to eliminate
further complication. The queuing delay is evaluated based on the point queue concept
in which a queue has no physical length and the FIFO queue discipline. In other words,
a queue is assumed to form vertically at the end of each link. Thus, as shown in Fig.2,
Tij(t) is evaluated as the horizontal distance between Aij(t) and Dij(t) at arrival time
t. And apparently, once the arrival curve, Aij(t), were known by time t, 7ij(t) could be
determined; that is, Tij(t) depends only on arrivals by time t.

Based on the above assumptions, the queuing delay of a vehicle entering link (i,j) at time
t, Wij(t), is described using the number of vehicles in the queue, Xij(t), which consists of
vehicles entering link (i,j) by time t :

Since a queue is assumed to vertically form at the end of the link, X ij Ct) is the vertical
distance between the cumulative arrival curve at time t and the departure curve at time
t + mij as shown in Fig.2. Consequently, the queuing delay can be written as follows:
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As a whole, travel time ~j(t) is summarized also as a function of Xij(t):

(1)

m"'tJ

Xij(t)
Wij(t)

static free flow travel time on link (i,j),
which is given,
Aij(t) - Dij(t + mij),
Wij(Xij(t)),
time dependent queuing delay for a vehicle entering
link (i,j) at time t.

time

Free Flow
Travel Time

Compared to the previous stud­
ies, many of them assumed that
link travel time, 1ij(t), was a
function of the number of vehi­
cles existing on the link, which
is almost equivalent to Xij(t) de­
fined here. Then, the exit func­
tion was introduced to determine
the departure flow rate, J-lij(t) , as
a function of Xij(t) as well. How­
ever, this research evaluates the
departure flow rate based on the
deterministic queuing theory un­
der the FIFa discipline, instead.

Cumulative
Vehicles

slope

Cum.Arr.

.-- slope=J.lij(t) < Jlij*
I

I Dij(t+ffiil

Using the link travel time, the
flow conservation on link (i,j) is
written as:

Fig.2 Cumulative CulVes and Link Travel Time

(2)

This equation means that a vehicle entering link (i,j) at time t reaches node j at the later
time by the travel time of Tij(t) under FIFa. Although the flow conservation on a link is
related to its travel time Tij (t) in this way, this property has been neglected in most of
the previous studies.

On the other hand, the flow conservation at node j is written as

- L Dij(t) + L Ajk(t) - Rj(t) + Sj(t) == 0, J' == 1,2, ..... , N. (3)
k

in which Rj (t) == 0 if j is not equal to single origin r by the definition. The first and
last terms give the cumulative number of vehicles flowing into node j by time t, while the
other terms describe the number of vehicles leaving node j by t. '
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4 Dynalllic User Equilibrium Assignment

4.1 Definition of the User Equilibrium

Every vehicle is assumed to choose the route so as to minimize the travel time to its
destination. Then, in general, the user equilibrium is defined as a condition where no
vehicle can find a faster route than one it is currently assigned. Let li( s) be the earliest
arrival time at node i for a vehicle leaving the origin at time s. In other words, time
interval li(S) - S is the fastest travel time from the origin to node i. Under the user
equilibrium state, in order for link (i,j) to be used by a vehicle leaving the origin at s,
the link must be on the fastest route. Similar to the static assignment, the equilibrium
condition is defined such that

(if a vehicle starting the origin at s uses link (i,j)),
(otherwise).

(4)

This condition means that if a vehicle starting from the origin at s uses link (i,j), the
vehicle must enter the link at li (s), spend Tij (li( s)) on the link, and reach node j at
li(S) + Tij(/i(S)) which must be equal to the earliest arrival time of Ij(s).

4.2 Decomposition of the assignment by starting times from
the origin

Let us first consider the order of arrivals at a node. In general, under the equilibrium
state, a vehicle departing from one particular origin earlier must arrive at any node earlier
than the others leaving the same origin later than the vehicle. Suppose that two vehicles
1 and 2 travel two routes 1 and 2 respectively from the same origin to a node. Vehicle
1 departs from the origin at time SI and vehicle 2 departs at time S2 (> SI), and they
respectively take routes 1 and 2, and reach the node at time t 1 and t2 • If vehicle 2 arrives
at the node earlier than vehicle 1 (t 2 < tt), this is not the equilibrium state. The reason
is that, in this situation, if vehicle 1 took route 2 instead of route 1, it could arrive earlier
than vehicle 2 because of SI < S2 under the FIFO discipline. Within vehicles leaving the
same origin, this property must be met even for a many-to-many OD pattern.

However, here we have only one origin. Therefore, under the equilibrium state, the order
of arrival at any node must be the same as the order of departure from the single origin.
And, by the definition of the equilibrium, the arrival time at node i must be equal to the
earliest time Ti( s), which is related to the departure time from the origin, s.

As defined in section 3.2, link travel time 1ij(li(S)) depends only on cumulative arrivals
and departures before time li(S), Therefore, together with the above discussion on the
order of arrivals at a node, it is concluded that 1ij(/i (S)) depends only on route choices of
those leaving the single origin before time s. Consequently, we can consider the equilibrium
assignment sequentially in the order of departures from the single origin.
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4.3 Formulation of the Equilibrium Assignment

Based on the above discussion on the order of arrivals at a node, let us formulate the
dynamic equilibrium assignment. First, since the arrival time at link (i,j), t, is related to
the starting time from the origin, s, such that t = Ti(S), the travel time defined in (1),
1ij(t) = Tij(Xij(t)), is written as

Second, according to the definition of the equilibrium, (4), if link (i,j) is used by vehi­
cles leaving the origin at time s, Tj(S) must be equal to Ti(S) + Tij(Ti(S)). Thus, flow
conservation (2) becomes

Aij(Ti( s)) = Dij (Tj(S )).

Applying this relationship to (3), we obtain the flow conservation in the following way
eliminating Dij :

- L: Aij(Ti(S)) + L: Ajk(Tj(S)) - Rj(Tj(S)) + Sj(Tj(S)) = o.
i k

(5)

We should notice that now the OD demand ~f not only R)· but also Sj can be known as
Sj(Tj(S)) = Qrj(s), since only vehicles starting from the origin before time s can reach
node j by time I)·(S). This flow conservation must be satisfied at each node j, j = 1, 2,
.... , N ; however, only (N - 1) of them are independent each other because the sum of Sj
over node j must be equal to Rj . This flow conservation is also described using the arrival
flow rate by taking derivative with respect to starting time s:

- L: dAij (/i( s))/ds + L: dAjk (Tj( s))/ds
k

dRj{Tj(s))/ds + dSj(Tj(s))/ds = 0, (6)

in which dAij (Ti( s))/ds means the rate of arrivals at link (i,j) for vehicles leaving the single
origin at time s. This flow conservation (6) as well as (4) are the required conditions to
establish the dynamic equilibrium.

In order to solve the problem, we however discretize the starting time. Let 5s be a
fixed unit interval of the starting time from the origin. In the previous section, we have
concluded that the assignment problem can be decomposed regarding the starting time
from the single origin. Let us therefore consider only vehicles leaving the origin during
an interval [s - 5s, s] assuming that the equilibrium flow pattern of vehicles leaving the
origin before time s - 5s has been obtained (thick lines in Fig.3).
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For flow conservation (6), if we integrate each term over a time period of [s-8s, s], the
following simple description is yielded:

where

Yij

8Rj

=

8Sj

=

- LYij + LYjk - oRj + oSj = 0,
i k

j $ dAjk(rAs))jds· ds = Aij(ri(s)) - Aij{ri(S - os)),
s-lJs

j $ dRArJ(s))jds· ds = Rj(rj(s)) - Rj(rj(s - os)),
s-lJs

L Qjk(S) - L Qjk(S - os),
k k

j~/j$ dSj{rj(s))jds· ds = Sj{rj(s)) - SArAs - os)),

Qrj(s) - Qrj(s - os).

(7)

The Yij can be considered as the number of vehicles entering link (i,j) during the period
of [s - os, s] as shown in Fig.3. Also since the number of vehicles in a queue on link (i,j),
Xij(ri(s)), is approximated as

travel time 1ij(Xi)'(ri(s))) defined in (1) is rewritten as follows:

mij + Xij(ri(s))/J.-l:j

mij + (Aij(ri(s - os)) + Yij - Dij(ri(s) + mij))/J-l:j

Tij(ri(s - os)) + Yij/J.-l:j - (ri(s) - ri(s - 8s)) 2 mij·

Travel time of link (i,j) is now described as a function of Yij and ri(s) , Tij(Yij, Ti( s)), since
unknowns are only them in the above equation but 1ij(ri(s - 8s)) and Ti(S - 8s) have
been evaluated from thick lines in Fig.3.

And the equilibrium condition (4) becomes

Yij > 0)
Yij = 0).

(8)

In this formulation, unknowns are Yij'S of all L links and Ti(S)'S at all nodes except the
origin, but both oRj and 8Sj are known from the given OD demand, Qjk'S, as explained
above. In Fig.3, if Yij and Ti(S) were obtained, arrival curve Aij(t) could be extended
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Out of the two kinds of un­
knowns, if 7i(S) were known,
the problem becomes exactly the
same as the well known static as­
signment:

to time Ti(S), and consequently
departure curve Dij(t) could be
also drawn to time 7j (s ) based
on the deterministic queuing the­
ory. Usually, the static assign­
ment determines only link flows,

which correspond to Yij'S here;
however, the dynamic problem
contains one more dimension of
7i( s )'s.

Fig.3 Travel Time on link (ij) for a vehicle starting from

the origin at time s

P(r): min F(y, r)
Y

s.t. hj(y)

gij(Yij)

= min L f
Yij

T;j{w, Ti)dw,
Y ij lo

- LYij + LYjk - 8Rj + 8Sj == 0,
k

-Yij ::; 0, for all (i,j).

for all j,

where

7i 7i( s)
r a column vector of 7i'S with (N-l) elements == (71, , 7i, , 7N_I)t

Y a column vector of Yij'S with L elements == (Y12' , Yij, )t

The Yij'S are determined so as to minimize the objective function. The Lagrangean of the
optimization problem is

(9)
7,)

where Lagrangean multipliers 1] and <p are column vectors of 7]/s with (N-l) elements and
cPij'S with L elements respectively. The Kuhn-Tucker condition is generally described as:

aLloy" == T... (y .. r:) - 'n' + 'n' - A. .. == 07,) ~) 't)' 't • I) • It. 'f'~) (10)
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hj(Y) = 0

1Jijgij(Yij) -1JijYij = 0

1Jij > 0

From (10), (12), and (13), we obtain the condition below:

(11)
(12)
(13)

{if
(if

Yij > 0)
Yij = 0)

(14)

Compared to (8), the dynamic equilibrium is established if fJi is equal to ri for all i.

As a whole, the dynamic problem forms a loop as illustrated below. Given r, link flow
Y and the associated link travel time vector T are simultaneously obtained through opti­
mization problem P{r) as a function of r. Then, from the link travel times, the earliest
arrival times at nodes are obtained as the Lagrangean multiplier, 17, which must be the
same as the assumed r for the equilibrium.

17 <----------------- T
! i
r -------P{r)--------> Y

As discussed so far, once arrival times ri's are known, the problem is reduced to the
conventional static assignment. However, for a general network with queues, ri's cannot
be known in advance except rT at origin r, which is clearly equal to s. Therefore, an
iterative method should be normally applied to determine ri's as explained later.

There are however a few special cases in which arrival times ri's can be known without
any difficulty. For instance, if none of the links has a queue during the concerned period
of [s - os, s], the problem is apparently the same as the static assignment. An arrival
time at a link can be immediately evaluated as the time later than the starting time s by
the fastest free flow travel time to the link. Namely, the time period of ri{s) - ri{s - os)
must be equal to os for any node i, and equilibrium link flows Yij'S are simply determined
from P{r).

For the other extreme, if queues form on all the links, the dynamic problem can be
reduced to the simultaneous equations. Since the departure rate at every link must be its
maximum rate with a queue, link flow Yij is written as J-lij{rj{s) - rj{s - os)); that is, L
unknown Yij'S can be described using (N-l) unknown arrival times of rj(S )'s. Then, if this
relationship is applied to flow conservation (7), (N-1) independent simultaneous equations
with (N-1) unknown rj(s)'s are obtained. Therefore, if queues were known to form on
all the links, the dynamic problem could be completed by solving the simultaneous flow
conservation equations.
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5 Properties of the Dynamic Assignlllent

5.1 Existence of the Solution

The existence of the solution is proved based on the Brouwer's Fixed Point theorem.
As explained in the previous section, the loop structure of the dynamic assignment is
considered as the map of T on itself through P(T ). For this type of problem, the Fixed
Point theorem guarantees that if

1. the set of T, Sr, is closed convex and

2. the mapping from T to T is continuous,

then the fixed point exists.

Regarding the first condition, arrival time Ti is basically evaluated from link travel times
along the fastest route such that:

where

7ik == arrival time to node i via route k E Sk

L 1ijbij,k + S,

f,J

k==1,2, .... ,p

{~
(if route k passes link (i,j))
(otherwise)

Tij clearly has lower and upper bounds, since 1ij must be larger than or equal to the free
flow travel time mij and its maximum value must be finite because the traffic demand is
finite. Then, a set of the arrival times via route k, tik E Sk, is closed convex, since the
Tij's are bounded and tik is a linear combination of Tij's. Also, since Ti is the minimum
of 7ik

, the set of Ti denoted as Sr is also closed convex (see Appendix 2).

For the second condition, we have to analyze optimization problem P(T) to examine the
continuity of the mapping. Based on the standard stability analysis on the optimization
problem [19], if

(i) the constraints and the objective function of P(T) are continuous
in T E Sr and

(ii) a unique set of optimal link flow Yij is obtained for any T E Sr,
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then the mapping is continuous in TEST.

In our formulation, the objective function is indeed continuous in T and the constraints do
not contain T. Thus, condition (i) is satisfied. Regarding condition (ii) on the uniqueness
of the solution, it has been known that if the objective function is strictly convex in Yij,

a unique set of optimal link flows is obtained. However, our objective function is convex
in link flow Yij but not strictly convex, since link travel time Tij is a constant value of
mij without a queue on link (i,j). Thus, the solution of Yij'S is not always unique and
consequently the mapping would not be continuous in T in general from the mathematical
point of view.

As a result, the first condition on the convexity' of a set of T is satisfied, while the second
condition on the continuity of the mapping is met .provided that the objective function of
P(T) is strictly convex in Yij. Then, the existence of the solution is guaranteed.

We fail to prove the existence property for the link travel time introduced here perhaps
due to the approximation using the discretized starting times. However, it is difficult to
find cases with no equilibrium solution from the engineering sense. An analysis from a
different angle might provide a proof, which relies on the future research.

5.2 Sensitivity Analysis and the Uniqueness of the Solution

As discussed in the previous section, the whole problem has a loop structure. To find ri

so as to be equal to 'rJi, we need know how 'rJi moves through P(T), when input values ri's
change.

Since the optimal solution must satisfy the Kuhn-Tucker condition, we can analyze the
sensitivity of 1]i through them. By differentiating (10), (11), and (12) with respect to r/s,
derivati~e of V'T11 is obtained as shown below (see Appendix 1 for the detailed derivation).
Here, notation \lQP generally stands for a (m x n) matrix representing the derivative of
vector P = (PI, P2, ..... , Pm) with respect to vector Q = (ql' Q2, ..... , qn) in which 8pi/8qj is
an (i,j) element of \lQP.

(15)

where

\lT 11 a (N - 1 x N - 1) matrix
J a (L xL) Jacobian matrix of link travel time (diagonal),
n a (L x N - 1) link-node incidence matrix,
e a (L x N - 1) matrix whose row and column represent links

and nodes. If the k th link is link (i,j), the (k,i) element
of e is 1.



Because ·of the N - 1 independent
flow conservations as mentioned
earlier, the symmetric matrix of
[O t J- I O] is (N - 1 x N - 1) and
has its inverse because the rank
of the link-node incidence matrix,
0, is N-1 and the link time Jaco­
bian, J, is diagonal.

As an example, let's consider a
simple network with four nodes
and five links shown in Fig.4, in
which nodes 1 and 4 are the ori­
gin and destination nodes. The
maximum departure rate of each
link is shown left:

origin
node 1

197

node 2

node 3

) = Maximum Departure Rate of link (ij), J.1ij*

Fig.4 A Simple Network

Table 1. Maximum Departure Rate of Links

link sequential number 1 2 3 4 5
link (i,j) (1,2) (1,3) (2,3) (2,4) (3,4)
J-lij [veh/ unit time] 2400 1200 800 400 800
mij [unit time] 1 1 1 1 1

In this example, Jacobian J is a (5 x 5) matrix, and nand e are (5 x 3) matrices as shown
below. Originally, the incidence matrix is (5 x 4) matrix but here node 4 is eliminated
because the rank is only 3. When all the links have queues, the inverse of Jacobian matrix
J is written as

2400 0 0 0 0
0 1200 0 0 0

J-1 == 0 0 800 0 0
0 0 0 400 0
0 0 0 0 800

And matrices nand 8 are described below:
1 -1 0 1 0 0
1 0 -1 1 0 0

0== 0 1 -1 e== 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1

Hence, from (15), \IT?] is written as:

\7T?] == [ot J-10]-lnt J-1e

(

59/126 8/21
== 1/400 8/21 3/7

13/42 2/7
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To investigate the uniqueness of the solution, let 1jJ(T) be the difference between 11 and
" 11 - " which should be zero when the loop is closed. As seen from the schematic
illustration of Fig.5, if 1/;(,) is monotone in " an intersection of 'ljJ(,) and the horizontal
axis is unique. From (15), the derivative of 'ljJ(,) is given by:

\7r1j;(,)

where I is a (L x L) unit ma­
trix (diagonal). If \7r'ljJ(,) is pos­
itive definite, the monotonicity is
guaranteed. However, since the
right hand side of this equation
depends on nand 8 which rep­
resent the network configuration,
it is difficult to generally prove
the monotonicity of 'ljJ(,) and the
uniqueness of the solution would
not be warranted for a general
network.

5.3 Solution Algorithm

\7r l1- 1
[ot J-1 0 ]-1 otJ-18 - I,

11(n) - t<o)

~n)

Fig.5 A Schematic Illustration of 'If{'t)

(16)

Suppose that, at the n th iteration, input vector T(n) yields l1(n) through P(T(n»). If the
Newton's method is applied, the revised direction of vector ,en) denoted as ~,(n) is given
by the condition:

\7 r1/;(,(n»)~T(n) = _1jJ( ,en»)

[ \7 r 1J(n) - I ]~,(n) = -[ l1(n) _ ,en) ] (17)

As you see from Fig.5, the slope \7 r'ljJ(T(n»), which can be evaluated from the result of the
sensitivity analysis (16), determines ~T(n) as an intersection of the slope and horizontal
axis. The solution algorithm is briefly summarized below:

1. Let n be equal to 1 and assume initial vector ,en).

2. By solving optimization problem p(T(n»), vectors yen) and
1J(n) are obtained.

3. If ,en) and 1J(n) is sufficiently close to each other, stop.
Otherwise, calculate new vector ,(n+1) based on (17) using
appropriate step size a as shown below and return to step 2.
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For step 2, we can employ some efficient methods to solve the static assignment such as
the Frank - Wolf e algorithm to estimate y(n) and 1J(n) without enumerating routes.

6 Examples

The proposed algorithm is applied to a simple network shown in Fig.4. The free flow
travel time, mij, and the maximum departure rate, pi)·, of each link are shown in Table
1. The OD demand from node 1 to 4 is assumed constant rate of 4800 [veh/ unit time]
for all t ~ o. We also assume that there is no vehicle on the network in the initial state
at time 0 and the time interval of 0.1 [unit time] is employed for starting interval 85.

Iteration Number

Fig.6 Convergence of the Route Flows

Route 2

Route 3

Route 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
o+--f---y----f~r___~::::a:,..~~~..._:=;;~==.__.,..e~___....__::=:o~

o

500

2000

3000

2500

1500

1000

Fig.6 shows the convergence of
route flows during time period of
[0,0.1] using the step size of l/n,
where n is the iteration number.
Initial values of 1f'S are set based ]'
on the free flow travel times. Ba- f-4

sically, there are three alternative ;§
routes; however, route 2 via links :d'
(1,2), (2,3), and (3,4) takes 3 [unit >­
time] without queues. Therefore, ~

Cl)

vehicles would choose either route ca
~

1 or 3 at first. In the equilibrium, ~
f 0

the demand rate of 4800 [veh/ fi:
unit time] is divided into 1600 ~

and 3200 on routes 1 and 3, and ~

the cumulative arrival curves are
drawn as shown in Fig.7, in which
arrival times at node 1, 2, 3, and
4 are 0.1, 1.1, 1.27,2.4 [unit time]
respectively. In Fig.7, the cumu­
lative arrivals and departures are
classified by routes; that is, A7j(t)
means the cumulative number of
vehicles entering link (i,j) by time
t via route k.

As a queue is growing on link (1,3) because of the demand rate of 3200 greater than the
maximum departure rate of 1200 but not on link (1,2), the travel time to node 3 via link
(1,3) becomes equal to one via links (1,2) and (2,3) at time 0.6 [unit time] as in Fig.7.
That is, a vehicle starting the origin at time 0.6 arrives at node 3 at time 2.6 via both
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routes 2 and 3. Thus, after this time, all the three routes start having flows. The flow
rate of three routes are then 1600, 1280, and 1920 [veh/ unit time].

Since all the links have queues after time 0.6 [unit time], the dynamic problem can be
also considered as the simultaneous equation system as explained earlier. The fl'ow con­
servation (7) at nodes 1, 2, and 3 are now written using the given maximum departure
rates and unknown arrival times at the nodes. For instance, for the time period of [0.6,
0.7],

4800 x 0.1 = 2400(72 -1.6) + 1200(73 - 2.6),

2400( 72 - 1.6) = 800(73 - 2.6) + 400( 74 - 4.4),

800(73 - 2.6) + 1200(73 - 2.6) = 800( 74 - 4.4).

Solving the simultaneous equations, we obtain the earliest arrival times at nodes for
starting time s = 0.7 [unit time] (= 71) as below:

Cum. Number of Veh(Veh)

5

Route I

43
L.L-------''-'--+------'---fC----~--_r_--L.--~ Un it 'rime

1000

500

150

lOO

2.76

5

2000

1500

1000

500

Route 3

-=-=----="""~~_-~-----o.-.,___--_.__--'---~ Unit Time
0.1 0.6 1 1.27 2 2.4 2.6 3 4 4.4

Fig.? Cumulative Arrivals and Departures of the 3 Routes

(A~and Di~mean the cum. arrivals and departures on link (i, j) via Route k)
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72 == 1.72, 73 == 2.76, and 74 == 4.80.

Although the solution is obtained in this case from simultaneous equations, we would not
be generally able to know whether queues grow on all the links in advance for a more
complex network.

7 Summary and Conclusion

This research deals with the dynamic traffic assignment on an over saturated network with
queues for a one-to-many origin-destination pattern under the user equilibrium principle,
given a time dependent OD demand. The major remarks are summarized below:

1. The dynamic assignment problem is decomposed with respect to the starting time
from the fingle origin, since the order of vehicle arrivals at any node must be the
same as the order in which those vehicles depart from the single origin, under the
equilibrium. It is then shown that the problem forms the loop structure, which is
formulated using two kinds of unknowns, link flows and arrival times at no.<les, as
an extension of the static assignment.

2. Based on the Fixed Point theorem, the solution is proved to exist provided that
the link travel time is monotone increasing in link flow Yij'S. We cannot success
to prove the existence of the solution for the link travel time function used in this
study, which takes a constant value of free flow travel time until a queue forms.
On the other hand, the unique solution is not generally guaranteed in the dynamic
equilibrium assignment.

3. A solution algorithm which does not require the route enumeration is proposed
based on the sensitivity analysis of arrival times at nodes, and demonstrated in a
simple network.

For future research, an analysis on the existence of the equilibrium solution from a different
angle might relax the required condition concluded above so that the travel time function
introduced here is warranted to have the solution. Also, the inclusion of the departure
time choice in the dynamic equilibrium scheme in addition to the route choice, which may
not be difficult, and the extension of the OD pattern to a many- to-many seem to be some
of interesting fut ure topics.
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Appendix 1

Let Fl, F2, and F3 be vectors whose elements are (10), (11), and (12) respectively as
shown below:

Fl (8L/8Y12' , 8L/8Yij, ),
F2 (h1(y), , hj(y), ),

F3 = (4J12g12, , 4Jijgij, ).

Derivatives of Fl, F2, and F3 with respect to T are written in a matrix form:

= (~t
-«I>

where

J = a (L xL) Jacobian matrix of link travel time (diagonal)
n a (L x N - 1) link-node incidence matrix
I a (L xL) unit matrix (diagonal)
H a (N - 1 x N - 1) diagonal matrix with elements of hj's
q> a (L xL) diagonal matrix with elements of 4Jij'S
Y a (L x L) diagonal matrix with elements of Yij'S
o a (L x N - 1) matrix whose row and column represent links

and nodes. If the k th link is link (i,j), the (k,i) element
of 8 is 1.

Regarding (11), the number of independent constraints is N-l, only which we consider
here.

The matrix description is rewritten as

J\7 rY + 0\7r1J - 1\7riP

ot\7rY + H\lr1J

-«I>\l rY - Y\7 riP

8,

0,

o.

(18)
(19)
(20)
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However, from the node conservation, hj(y) must be always zero which means H = o.
Also, if we consider only links with positive Yij, <Pij must be zero from the Kuhn-Tucker
condition, and hence \7 r«P = o. Then, (18) and (19) become

\7rY + J-1n\7r1J = J-1S,

nt \7rY = O.

Therefore,

Appendix 2

The earliest travel time to node i, ri E Sr is given by

where a set of tik denoted as Sk is closed convex. For rj E Br and r: E Br, if

8ri + (1 - 8)r: E Br 0 :::; 8 :::; 1,

a set of T can be said a closed convex set.

Suppose that ri and r/ are

T: = ~n(7ill, 7i2/, ,7ik/ , ,7iP/ ),

and both tik E Sk and 7ikl E Sk. If 7im is the minimum of ri and r/:

T m - . (. ') - . (T1 ITP IT11 ITPI)i - mIn rt, ri - mIn i' ·······'.l.i ,.l.i , ,.l.j ,

the following inequality is valid:

7im < 8ri + (1 - 8)r[

87im + (1 - 8)r:

< r:
~n(7ill, 7i2/, ,7ik/ , ,7iP/)

< 7iml
.

Therefore,

and consequently,

Ori + (1 - 0)7:
. ('Ill '121 rrm-ll 0 (1 0) I ITm+ll ITPI)mIn .li ,.li ,······,.li ,ri + - ri,.li ,·······'.l.i·
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Since all the elements of the right hand side are in Sk, k == 1,2, ..... , p, Bri + (1 - B)r[ is in
ST. Thus, ST is closed convex.
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