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ABSTRACT

This paper demonstrates that the capacity increasing paradox in a transportation networks

as in Braess(1968) does also occur under non-stationary settings, in particular, under

dynamic traffic assignment with endogenous time-varying origin-destination (OD)

demands. Through the analyses, the analytical fonnulae for the solutions of the dynamic

equilibrium ,assignment are explicitly derived for two kind of networks: the networks

with a one-ta-many OD pattern and the reversed networks with a many-to-one OD pattern;

the formulae clarify the significant difference- in the properties of the two dynamic flow

patterns. This also leads us to the findings that one of the crucial conditions that

determine whether the paradox occurs or not is the OD pattern of the underlying

networks.

1. INTRODUCTION

301

Local improvements in a transportation network do not necessarily lead to the improvement

of the global perfonnance of the network. This fact has been well recognized as "Braess's
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paradox"(Braess (1968)) or HSmith's paradox"(Smith (1978)). The paradoxes stimulated many

researchers in the field, and a considerable number of studies have been made on the relevant

topics such as the network design problem or the sensitivity analysis of the equilibrium traffic

assignment. Almost all the studies are, however, based on the framework of static (equilibrium)

traffic assignment; only a few attempts have so far been made to study non-stationary (dynamic)

traffic flow patterns with queues. Since the properties of the dynamic flow with queues are

significantly different from those of the static flow without queues, many basic problems on the

paradox under non-stationary settings are yet to be investigated.

The purpose of this paper is first to demonstrate that the capacity increasing paradox does

also occur under non-stationary settings, in particular, under dynamic traffic assignment with

endogenous, time-varying origin-destination (OD) demands. The paper also aims to capture the

conditions that determine whether the paradox is likely to occur or not; we disclose that the OD

pattern of the underlying networks is one of the crucial conditions.

In order to achieve the purpose, we first disclose that the analytical solution of the

dynamic user equilibrium (we call this DUE) traffic assignment with elastic OD demands (i.e.

the assignment considering users' departure-time choice behavior) can be obtained explicitly in

a particular type of network satisfying some conditions. The solutions are derived for two

kinds of network: (i) networks with single origin and multiple destinations (regarded as an

"Evening rush hour" on a network of a city with a single CBD; we refer to this "E-net" hereafter);

and (ii) networks with single destination and multiple origins (obtained by reversing the direction

of all links and origin/destinations of the E-net, we may regard it as a "Morning rush hour" on the

same network above; we refer to this "M-net"). Through the analyses of the two cases, we see

the significant difference in the properties of the two dynamic flow patterns for not only the case

where time-varying OD demands are given but also for the case of elastic OD demand due to

user's departure time choice. These basic results for the DUE assignment then enables us to

demonstrate the dynamic version of the capacity increasing paradox and to discuss the

significant effect of OD pattern on the occurrence of the paradox.

The organization of this paper is as follows. In the second chapter, we briefly explain the

basic properties of dynamic user equilibrium assignment, restricting ourselves to the minimum

knowledge required for considering our problem. The third chapter explores the structure of the

dynamic equilibrium assignment with exogenous OD demands for E-net and M-net. The

analytical solution formulae of the equilibrium flow patterns for E-net and M-net are derived. The

fourth. chapter extends the analyses to the model with endogenous OD demand; not only the route

choice but also the departure time choice are simultaneously considered in the model. For an

appropriate set of boundary conditions, the explicit equilibrium flow patterns are derived for E-net

and M-net. By using the results obtained in Chapters 3 and 4, we demonstrate a dynamic version

of Braess's paradox in the fifth chapter. We first discuss the paradox for the model with

exogenous OD demand; the analysis on a simple network exhibits that the paradox arises only on a
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particular condition for the network with a one-to-many OD pattern, while the corresponding

paradox always arises for the reversed network with a many-to-one OD pattern. We then show that

the same results also hold for the model with endogenous OD demand. Finally, the last chapter

summarizes the results and remarks on some further research topics.

2. DECOMPOSITION OF DYNAMIC EQUILIBRIUM ASSIGNMENT

2.1 Networks

Our model is defined on a transportation network G[N, L, WJ consisting of the set L of

directed links with L elements, the set N of nodes with N elements, and the set W of origin

destination (OD) nodes pairs. The origins and the destinations are the subset of N, and we denote

them by~d S, respectively. In this paper, we deal with only networks with a one-to-many OD

(i.e. the element of R is unique) or those with a many-to-one OD (i.e. the element of S is unique).

Sequential integer numbers from 1 to N are allocated to N nodes. A link from node i to j is denoted

as link (i,j). We also use the notation to indicate a link by the sequential numbers from 1 to L

allocated to all the links in the set L.

The structure of a network is represented by a node-link incidence matrix A*, which is an N

X L matrix whose (n, a) element is 1 if node n is an upstream-node of link a, -1 if node n is a

downstream-node of link a, zero otherwise. The rank of this matrix is N-1 since the sum of rows

in each column is always zero. Hence, it is convenient in representing our model to use the

reduced incidence matrix A (instead of A*), which is an (N-1) X L matrix eliminating an arbitrary

row of A*. We call the node corresponding to the elimination "reference node". It is also

convenient to "split" the matrix A into a pair of matrices, A _ and A + , defmed as follows: A _ is a

matrix that can be obtained by letting all the +1 elements ofA be zero (i.e. the (n, a) element is -1 if

link a arrives at node n, zero otherwise); A+ is a matrix that can be obtained by letting all the -1

elements of A be zero (i.e. the (n, a) element is +1 if link a leaves node n, zero otherwise); it is

needless to say that A =A_ +A+ holds.

2.2. Link Model and Dynamic Equilibrium Assignment

For a link model in our dynamic assignment, we employ a First-In-First-Out (FIFa)

principle and the point queue concept in which a vehicle has no physical length: it is assumed that

the arrival flow at link (ii) leaves the link after the free flow travel time mti if there exists no queue

on the link, otherwise it leaves the link by the maximum departure rate (capacity) Ai.

Concerning the assignment principle, we assume the dynamic user equilibrium (DUE)
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assignment, which is a natural extension of the static user equilibrium assignment; the DUE is

defined as the state where no user can reduce hislher travel time by changing hislher route

unilaterally for an arbitrary time period.

2.3. Decomposition Property of Dynamic Equilibrium Assignment

Under the DUE state, the users who depart their origin at the same time, regardless of their

routes, have the same arrival time at any node that is commonly passed through on the way to their

destination. Furthermore, under the DUE state, the order of departure from the origin must be

kept at any node through destinations. From these property, we can define the unique equilibriwn

arrival time at each node for each departure time from the origin.

As defined in the previous section, link travel time clJ{t) depends only on the vehicles which

arrived at the link before time t. Therefore, together with the above discussion on the order of

arrivals at a node, it is concluded that the travel time experienced by the vehicle that departs from

an origin at time s is independent of the flows of the vehicles that depart from the origin after time s.

Consequently, we can consider the assignment sequentially in the order of departure from the

single origin. That is, the assignment can be decomposed with respect to the departure time from

the single origin provided that the OD pattern is one-to-many. Similarly, for a many-to-one OD

pattern, we can easily conclude that the assignment can be decomposed with respect to the arrival

time at the single destination. For the detailed discussions on this property, see Kuwahara and

Akamatsu (1993) and Akamatsu and Kuwahara (1994).

3. EQUILIBRIUM FLOW PATTERNS ON SATURATED NETWORKS

- FIXED DEMAND CASE

In general, the DUE assignment is formulated as a non-linear complementarity problem

(NCP) or a variational inequality problem (VIP), which implies that it is difficult to obtain the

analytical properties of the assignment. Hence, instead of exploring the properties of the DUE

assignment under general settings, we confine our analysis to "saturated networks" where we can

obtain the analytical solution. The "saturated networks" are the networks satisfying the following

two conditions: a) there exist inflows on all links over the network, b) there exist queues on all

links over the network. The first condition a) is not very restrictive, since we can constitute the

networks satisfying this condition after knowing the set of links with positive flows. Although the

second condition b) may not be satisfied in many cases, we nevertheless employ this asswnption

because this asswnption, as shown below, gives us the explicit fonnula for the solution of the DUE

assignment, which enables us to understand the qualitative properties of interest.
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(3.1 )

We will first show the fonnulation for E-net and derive the solution in 3.1; and then the

fonnulation and the solution for M-net will be examined in 3.2.

3.1. Equilibrium on Saturated Networks with a One-to-Many Pattern

(1) Formulation

The DUE assignment on a network with a one-to-many OD pattern can be decomposed with

respect to the origin departure-time as mentioned in chapter 2. Hence, once we know the method of

solving the equilibrium pattern for one particular departure-time, we can obtain the equilibrium

pattern for whole time periods by successively applying the same procedure at the order of the

departure-time. In the following, we consider the problem of obtaining the equilibrium pattern for

vehicles departing from origin 0 at time s, assuming that the solutions for vehicles departing before

time s are already given.

In the decomposed fonnulation with origin departure time s, two kinds of variables, (Y~: , r;" ),

play a central roll: .rt is the earliest arrival time at node i for a vehicle departing from origin 0 at

time s; y~ is the link flow rate with respect to s, that is, yz. == dF;j (rt) / ds , where FIj(t) denote the

cumulative number of vehicles entered into link ij at time t. In addition, we denote the number of

vehicles with destination d departing from origin 0 until time s (cumulative OD demand by
departure-time) by Qod (s).

In the DUE state, each user choose his/her route whose travel time is (ex post) minimum over

the network. In other words, the links with positive inflows should be on the minimum path tree.

In our saturated networks, all the links have positive inflows, and therefore the minimum path

condition for users with origin departure-time s is written as c(s) + A T't =0, where c(s) is an L

dimensional column vector with elements cz. == ci.f (Tt), 't(s) is an (N-1) dimensional column

vector with elements Tt. Since the equation above should hold for any s, taking the derivative

with respect to s, we have

dc(s) + AT dt(s) = 0
ds ds

where dc(s)/ ds is an L dimensional column vector with elements dc; / ds, and dt(s)/ ds is an

N-1 dimensional column vector with elements dTt / ds .

In our link model, the point queue and the FIFO principle are assumed, and therefore, the rate

of change in link travel time is given by

dei) (t) = {(Ai) (t) / Jii) -1 if there is a queue

dt 0 otherwise

where Ai) (t) is the standard link flow rate defined as dFi) (t) / dt. Hence, in our saturated
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networks where all links have queues, the rate of change in the time needed to traverse link ij for

users with origin departure time s, dc~ / ds , can be represented as:

dc~

ds

Noticing here the definitional relationship y~. = AU(Tt)· dTt / ds, we see that the dc~ / ds

reduces to a function of y~ and T/:

d J .'l d S

2=Yu _~
d ds 's f.Ju

(3.2a)

or equivalently

Vs. (3.2b)

(3.3)

where M is a diagonal matrix whose ath diagonal element represents the maximum capacity of link
G, y(s) is an L dimensional column vector with elements y~.

Substituting (3.2) into (3.1), we obtain

M-I y(s) + (AT - A~) ~~) =0, Vs

and rearranging this yields

y(s) =-(MA~ )~~s) Vs. (3.4)

On the other hand, in the decomposed DUE fonnulation, the flow constraints that consist of

the FIFa condition for each link and the flow conservation at each node over a network reduce to

the following equations (for the detail, see Kuwahara and Akamatsu (1993), Akamatsu and

Kuwahara (1994)):

_Ay(s)_dQ(s) =0 .
ds

Vs. (3.5)

where dQ{s)/ ds is defined as an (N-l) dimensional vector with elements dQod(S)/ ds (given).

Combining (3.5) with (3.4),

(3.6)Vs.(AMA T ) dr:(s) =dQ(s)
- ds ds

Thus, we see that the DUE assignment has a unique solution (dt(s)/ ds ) if the rank of the matrix

AMA~ isN-l.

(2) Solution

The rank of the matrix AMA~ generally depends on the choice of a referen.ce node. For a
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network with a one-to-many OD, the rank of AMA~'can be less than N-l when we choose an

arbitrary node that is not an origin as the reference node. The rank, however, is always N-I when

an origin is employed as the reference node. Furthermore, since the value of dr,(s)/ ds for an

origin node is always 1 from the definition of r/ (s), it is natural to choose an origin as the

reference node. Thus, by setting an origin as the reference node, we obtain the equilibrium

solution, dt(s)/ ds , by the following fonnula:

dt{s) =(AMATt dQ{s).
ds - ds

(3.7)

In addition, we can obtain the equilibrium link flow pattern, y(s), by substituting (3.7) into (3.4).

3.2. Equilibrium on Saturated Networks with a Many-to-One Pattern

(3.8)Vu.

(1) Formulation

The DUE assignment on a network with a many-to-one OD pattern can be decomposed with

respect to the destination arrival-time as shown in chapter 2. In the following, we consider the

problem of obtaining the equilibrium pattern for vehicles arriving at a destination at time u,

asswning that the solutions for vehicles arriving before time u are already given.

For the networks with a many-to-one OD pattern, by decomposing with respect to the arrival

time at a single destination, the discussions almost parallels to those in the previous section. In the

decomposed fonnulation with destination arrival time u, two kinds of variables, (y~, T j

U

), play a

central roll: T; is the latest arrival time at node i for a vehicle reaching destination d at time u;

Y~ is the link flow rate with respect to u, that is, Y~ == dFij (T; ) / du . In addition, we denote the

nwnber of vehicles with origin 0 arriving at destination d until time u (cumulative OD demand by

arrival-time) by Qod (u ) ·

The fonnulation almost parallels the discussions in 3.1. First, the minimum path

conditions for saturated networks reduces to the following conditions:

dc(u) +AT dt(u) =0
du du

Then the link travel time with a point queue for saturated networks also should satisfy

Vu. (3.9)

Substituting (3.9) into (3.8), we obtain

y(u) =-(MA~)~~) Vu. (3.10)
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Vu.

On the other hands, the link flow y should satisfy the flow constraints:

A y(u) - dQ(u) =0
du

(3.11 )

(3.12)Vu.

Combining (3.10) with (3.11), we reach

_(AMAT)dt{u) = dQ{u)
- du du

Thus, we see that the DUE assignment has a unique solution (dt(u)/ du and y(u)) if the rank of

AMA~' is N-I.

(2) Solution

An arbitrary network with a many-to-one OD pattern can be obtained by reversing the

direction of all links and origin/destinations of a network with a one-to-many OD pattern.

Therefore, it is natural to expect that, "reversing" the result in 3.1, the rank of AMA~' become

N-l when a destination is chosen as the reference node. However, it is not the case for this

problem; the rank become less than N-l even if we set the destination as the reference node;

furthermore, we can prove that the rank is less than N-l for any choice ofthe reference node.

The reason why the rank of the matrix AMA~ becomes less than N-1 is that there exist

particular origins (we call this "pure origins") that are not traversal nodes (Le. the origin which has

no links arriving at the origin). Letting Bij be the (i,j) element of A·MA~ T , we easily see that

if i ~ j

if i=j ·
(3.13)

Hence, the colwnn vectors of AMA~ corresponding to the pure origin are always zero, and the

rank of AMA~ necessarily decreases by the number ofpure origins.

To see this fact more precisely, we divide the node set N into two sub-sets: the set of pure

origins, N], and the set of the other nodes, N2• Then, we divide A*, A*_, d r (u)/du and dQ(u)/du

into the two blocks corresponding to N] and N2 , respectively:

dt(u)
du

dQ] (u)
dQ{u) = du

du dQ 2 (u)
du

where i th element of dQ2(u) /du is defined as - Io {dQod (u ) / du} = - Ik JJkd if i is an orign,

dQijU)/du if i is a destination, zero otherwise. Note that A] _, which is the first block of A_

corresponding to N], is always 0 according to the definition of the pure origins. Rewriting (3.12)

with these partitioned variables, we have
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(3.14)

(3.15a)

(3.I5b)

This means that no condition which determines the deI / du for the pure origins is included in the

equilibrium condition (3.12), while the eft2 / du for the traversal nodes can be obtained by

dt 2(U)=_(A MAT )-1 dQ2(U).
du 2 2- du

(3.16)

Thus we see that the solution ofthe DUE assignment with a many-to-one OD pattern can not be

unique and that for the problem to have a unique solution we should add appropriate conditions to
resolve the indeterminacy ofthe del / du .

4. EQUILIBRIUM FLOW PATTERNS ON SATURATED NETWORKS

- ELASTIC DEMAND CASE

The previous chapter analyzed the solution ofthe DUE assignment where only user's route choice

is endogenously described given time-varying OD demands. This chapter extends the analyses to the

case where the time-dependent OD demands are endogenously detennined (we call the model "DUE

assignment with Elastic demand") by incorporating the user's departure time choice. The model

employed here is the simplest one that consistently unifies the two kind of dynamic equilibrimn models:

the dynamic equilibrimn assignment presented in the previous chapter and the dynamic equilibrium

model ofdeparture time choice as is well known since Vickrey (1969) or Hendrikson and Kocur (1980).

For expositional brevity, the following assmnptions are made in this paper:

1) The users with the same OD pair are homogeneous, that is, their utility fimctions are all the same and

their desired arrival time is unique;

2) The users who arrive later than the desired arrival time do not exist [This is not a restrictive

assumption but one just to make the exposition as simple as possible; it is easy to extend to the case

where late arrival is pennitted.].

3a) For the problems with one-to-many OD pattern (i.e. when we consider the problem on the basis of

the origin departure-time), the disutility fimction for the users with destination d leaving origin at time s,
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vJs), is given as the linear combination of their travel time from the origin to destination d and their

"schedule delay":

Vod (s) = a] { r d (s) - s} + a2 {Id - r d (s) } , (4.1)

where aj' a2 are positive parameters that satisfy aj > a2 , r d (s) is the destination arrival-time for the

users who start from origin at time s, and Id is the users' desired arrival time.

3b) For the problems with many-to-one OD pattern (i.e. when we consider the problem on the basis of

the destination arrival-time), the disutility function for the users with origin 0 arriving at the destination

at time u, VJu), is given as the linear combination of their travel time from origin 0 to the destination

and their "schedule delay":

Vod ( u) = a] {u - r 0 (u ) } + a2 {Id - u} , (4.2)

where r 0 (u) is the origin departure-time for the users who arrive at destination at time u.

4) The networks can be regarded as "saturated networks" that is defined in the previous chapter.

4.1. Equilibrium on Saturated Networks with a One-to-Many Pattern

(4.5)'VS, 'Vd

(1) Formulation

In this section we consider the networks with a one-to-many OD pattern where all nodes except the

origin are destination, i.e., there are no nodes that are neither origin nor destination. [This is simply for the

convenience of expositional brevity. The appropriate division of the node set easily extends our analyses

to the general case where there are some nodes that are neither origin nor destination. See Appendix.]

The elastic demand DUE employed in this chapter is defined as the state where no one can improve

his/her utility by changing either hislher route or their departure-time Wlilaterally. To fonnulate this,

consider users who choose time s as departure time. Since the users choose their optimal route

(conditional on the optimal departure time) in the DUE state, the equilibriwn conditions for the route

choice should be represented by the following differential equations as shown in Chapter 3:

(AMAT)dt(s) = dQ{s) (4.3)
- ds ds'

where the origin node is selected as a reference node as discussed in 3.1. Then, the condition that no user

can improve his utility by changing hislher departure-time in the DUE state can be represented by

aVoAs) =0 VS,Vd. (4.4)
as

Substituting the definition ofdisutility function (4.1) into this, we obtain the equilibrium mte ofchange in

the destination arrival-time as follows:

drd(s) =_a_]_
ds QJ -a2
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[We are asswning that networks can be regarded as "saturated networks" and all OD pairs have positive

OD flows during the period of time. In general we should consider the analysis period to include the time

where some OD pairs have no generation of OD flows. By introducing appropriate classification,

however, the general case can be reduced to the combination of our basic case (the case where all OD

pairs have positive OD flows during the period for our analysis) and the case presented in Appendix.].

Thus, the elastic DUE conditions are represented as the following system ofdifferential equations:

dr(s) =E_al _ (4.6a)
ds al - Q 2

dQ(s) =(AMA T ) dr:(s)
ds - ds (4.6b)

where E is an (N-1) dimensional colwnn vector whose elements are all equal to 1. It is worthwhile to

compare the equilibritnn conditions with those for the fixed demand case. In the fixed demand DUE
model, eq.(4.3) with a given constant vector dQ(sYds detennines dt(s)/ ds . On the contrast, in the

elastic demand DUE, dt(s)/ ds is first detennined from the departure-time equilibrium condition, and

then eq.(4.3) with fixed dt(s)/ ds detennines dQ(sYds.

(2) Solution
By setting appropriate OOW1daIy conditions, we can obtain the solution (-c( s), Q(s» for the

differential equation (4.6). For the bolUldaIy conditions, we first set the initial time Ss ofthe time period

(measured with respect to the origin departure-time) during which eq.(4.6) holds (i.e. the networks can be

regarded as "saturated networks" and all OD pairs have positive OD flows). Then we give the value of
cumulative OD flows for the time Ss and for the final time ofthe period:

Vd

Vd

(4.7a)

(4.Th)

where s(td ) is an origin departure-time of the final users who anive at destination d at time td (note that

we do not have to give the value of s(td ) explicitly).

Integrating the second equation of(4.6) from time Ss to s with the initial condition (4.7a), we have

Q(s) =Q+(AMA~)E-al_(s -ss), (4.8)
at -a2

where Q is an (N-1) dimensional vector with elements Q .
- -od

We then solve (4.6) with respect to1: . Integrating the first equation of (4.6) from time Ss to time

s(td ) reduces to

'id. (4.9)

where t, ,;(s.\.), and s(t) are (N-l) dimensional vectors with elements td' id (ss), and s(t~, respectively.
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The length of the time period that appears in the right hand side of (4.9), s(td )-5.\, , can be obtained by

substituting (4.7b) into (4.8):

(4.10)

Hence, from (4.10) and (4.9), we can detennine the initial equilibrilUTI arrival time corresponding to s,\.:

';(SJ) =t - (AMA~' )-] (Q -Q)

Thus, the equilibrilUTI pattem(-t(s),Q(s)) with the boundary condition (4.7) is given by

(4.11)

Vs, (4.12)

and the corresponding equilibrium disutility rd (s) is calculated by

p = (t - Ess )a] + (AMA~')-I(Q - QXa) - a2 )

4.2. Equilibrium on Saturated Networks with a Many-to-One Pattern

Vs. (4.13)

(1) Formulation

In the following we consider the networks with a many-to-one OD pattern where all nodes except

the destination are origins, i.e., there is no node that is neither origin nor destination. For the general case

where there are some nodes that are neither origin nor destination, see Appendix.

We divide the node set N into two sub sets: the set of origins N), and the set of the single

destination, N2• Then, we divide A*, A*_, dt(u)/du and dQ(u)/du into the two blocks

corresponding to NI and N2 , respectively:

dt(u) _ [dt] (u )]

d
- du ,

u 1

dQ(u) _ [dQ )(u)]
- du .

du -f..Jd
(4.14)

where A) is an (N-l)XL matrix, A 2 is an L dimensional column vector, dQ)(u)/du is an N-l

dimensional column vector with elements dQod(U)/ du, and J1d == IJ1(j .
ijeLd

The elastic demand DUE' employed here is defined as the state where no one can improve hislher

utility by changing either hislher route or their departure/arrival-time unilaterally. Since the users choose

their optimal route (conditional on having chosen his/her optimal departure/arrival-time) in the DUE state,

the equilibrium conditions for the route choice should be represented by the following differential

equations as shown in Chapter 3:
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(4.15)

Revvriting this with the variables introduced in (4.14), we have

dQ \(u ) =-(A MA r ) dt\(u) _(A MA r )
du 1 1- du \ 2-

(4.16)

(4.17)Vu, Vo.

The condition that all the users can not improve their utility by changing his/her arrival-time (or departure

time) in the DUE state can be represented as

aVoAu) = 0
8u

(4.18)Vu, Vo

Substituting the definition ofdisutility function (4.2) into this, we obtain the equilibriwn rate ofchange in

the destination arrival-time as follows: .

dro(u) = a\ -a2

du al

Thus, the elastic DUE conditions are represented as the following system ofdifferential equations:

de) (u) _ E a\ -a2--- --
du al

dQ 1(u) =-{(A MAT \r;,a\ -a2 -(A MAT )}
d 1 1-~ 1 2-

U at

(4.19)

It is worthwhile to compare the equilibrium conditions with those for the fixed demand case. In
the fixed demand DUE model, we tried to detennine dt(u) / du from the eq.(4.15) with a given constant

vector dQ(u)/du. Then we encoWltered the indetenninacyof dt(u) / du due to the decrease in the rank

ofmatrix A*MA.-. On the contrast, in the elastic demand DUE, the indetenninacy problem is resolved
since dt(u) / du is first detennined from the departure-time equilibriwn condition, and then eq.(4.16)

with fixed de(u) / du detennines dQ(u)/du.

(2) Solution

As in the case ofone-to-many OD pattern, we can obtain the solution('t(s), Q(s) for the differential

equation (4.19) by giving appropriate boWldary conditions. For the boWldary conditions, we first set the
initial time Us of the time period (measured with respect to the destination arrival-time) during which

eq.(4.19) holds (i.e. the networks can be regarded as "saturated networks" and all OD pairs have positive

OD flows). Then, on a parallel with the discussion in 4.1, it is natural to give the value ofcumulative OD
flows from Us and for the final time td :

Qod(Us) =~od = given Vo, (4.20a)

Qod (td) = Qod =given \;f0 , (4.20b)

The conditions (4.20) in conjtu1ction with (4.19) can be solved with respect to Q(u). However, these
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conditions are not enough to detennine the value of 't. Hence, instead of (4.20a), we give the time

needed to travel from origin 0 to the destination at the initial time Us as a new boundary condition:

u.t;-'o(us)=rod=given Vo. (4.20c)

Integrating the second equation of(4.19) from time u to Id with the initial condition (4.2Oc), we have

Q 1(u)== Q +{(AIMA;~)E Q
1~IQ2 +(A1MA;J}(td -u) Vu (4.21)

We next solve (4.19) with respect to't. Integrating the first equation of (4.19) from time Us to time u

with the initial condition (4.2Oc), we obtain

() (
"at - a2 " )

'tu = EU.,.-r)+E--(u-us
a

J

and the corresponding equilibrium disutility , d (s) is calculated by

p=a2 • (Id -us)E+G1r

5. PARADOXES

Vu. (4.22)

(4.23)

Having derived the fonnulae for the solution of the dynamic traffic equilibrium assignment

so far, now we can discuss the capacity increasing paradox. The paradox presented here is a

situation such that improving the capacity of a certain link on a network worsen the total travel cost

over the network; this is a dynamic version of Braess's paradox which is well known in the static

assignment. Using the results obtained in Chapters 3 and 4, we derive the necessary conditions

for the occurrence of the paradox for E-net and M-net, which are shown to be significantly

different.

5.1. A Paradox for a Network with a One-to-Many OD Pattern

We consider the paradox for the network shown in Fig. 5.1, where node 1 is a unique origin;

nodes 2 and 3 are destinations; the maximum departure rate of link a (a = 1,2,3) is given by Jlo.

Fig.5.!. Example Network with Single Origin and Two Destinations
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For the brevity of notation, we employ the superscript " • " as the derivative operation with respect

to origin departure-time s in this section. (e.g. r,(s) == dr,(s)/ ds, Qw(s) == dQw(s)/ ds ).

(1) Fixed Demand Case

For the network in Fig. 5.1, the origin (i.e. node 1) should be the reference node; the

incidence matrix A*, the reduced incidence matrix A, and the corresponding A_ are given as

follows:

Hence,

(5.2)

The equilibrium pattern for the vehicles with the departure time s from a single origin can be

calculated using the results of Chapter 3. From (3.6), we first obtain the rate of change in

equilibrium arrival time:

(5.3)

Substituting these into (3.3), we have the following equilibrium link flow pattern:

(5.4)

To discuss the "capacity increasing paradox", we employ the total travel time for the users

departing from an origin from time 0 to T as an indicator for measuring the efficiency of the

network flow pattern:

TC == L J: Ya(s)ca (s)ds =L J: Qad (s){rAs) - s}ds
a d

(5.5)

We then refer to the situation "paradox" if increasing the capacity of a certain link, JiG' causes the

increase ofTC (i.e. dTC/dJia > 0 implies "paradox").

Let us examine whether the paradox arises or not for the network in Fig. 4.1. Substituting

(5.3) into (5.5), we obtain TC :
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From (5.6), we easily see that the increase of J.l1 or J.l2 always decreases Te (note that both Ji I

and Ji2 appear in only the denominator of TC), that is, the paradox does not arise for links 1 and 2.

Increasing Ji 3' however, causes the paradox. The reason is that since

(5.7)

(5.8)

ifthe condition:

rQJ2 (S)QI3 (s)ds rQ13 (s)QI3 (s)ds
o > 0

Jil Ji2

holds, dTC/dJi3 is always positive, this means the occurrence ofthe paradox.

The (5.8) is the condition that the paradox occurs for a certain time period 0 -.., T From

this, we can also derive the condition under which the paradox occurs for an arbitrary time period:

(5.9)

The meaning of this inequality is simple. Since the increase of Ji3 always results in the increase of

Y3 (see (5.4)), suppose 1 unit of increase in flow on link 3 (== Y3). This means that the number of

users with destination 3 who pass through link 1 increases by 1 unit. The increase in flow on link 1

then causes QJ2 (s) /PI of increases in total travel time for the users with destination 2 ("User-2").

On the other hand, total travel time for the users with destination 3 ("User-3") decreases by

QJ3 (s)/ Ji2' since the flow on link 2 decreases 1 unit. Therefore, the 1 unit of increase in flow on

link 3 causes the increase of total travel time by QJ2 (s)/ Jil - QJ3 (s)/ Ji2. Thus, we see that (5.9)

means the condition that the "net benefit" for User-2 and User-3 (User-3's benefit minus User-2's

loss) due to the increase of Ji 3 becomes positive.

(2) Elastic Demand Case

The equilibrium pattern for the network in Fig. 5.1 can be calculated from the results of

Chapter 4. From (4.12), we first obtain the equilibrium arrival times and OD flows:

t"3(S)=_aJ _(s-s.\.)+(t3 - 1 QI3) (5.10)
aJ - a2 Ji2 + Ji3

where QOd == Qod - Q . Then (4.13) gives the equilibrimn disutility for each origin:-od
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We define the swn ofdisutility experienced by all users over a network, rc, as an indicator for measuring

the efficiency ofthe network usage:

rc == LPdQOd .
d

To check the occurrence ofthe paradox, we calculate dTC/ dJ.13 :

(5.13)

(5.14)

dTC ( QI2 )2 ( QI3 )2 (5.15)
dp3 = PI - J.13 - J.12 + J.13

Note that the capacity of link 1 should be greater than that of link 3 (i.e. PI > P3) in order for (5.11) to

satisfy the (physically evident) condition QI2 (s )- QI2 (5.\. )> O. Hence dTC/ dP3 > 0 holds only if
~ ~

QI2 / (J.11 - P3) > QI3 / (P2 + P3) . (5. 16a)

We see from (5.16a) that the paradox arise (with the capacity increase of link 3) independent of the value

ofP3 ifthe following condition hold:

(5.16b)

It is noteworthy that the condition (5.16b) is identical in fonn to the condition for the fixed demand case.

5.2. A Paradox for a Network with a Many-to-One OD Pattern

We consider the paradox for the network in Fig.5.2, where node 1 is a unique destination;

nodes 2 and 3 are origins; the maximum departure rate of link a (a = 1,2,3) is given by J.1a.

For the brevity of notation, we employ the superscript " • " as the derivative operation with respect

to destination arrival time u in this section. (e.g. i;(u) == dr;(u)/ du ,Qod(U) == dQod(U)/ du)

.. 71'--
Q21+Q3r--(D Jl3

Jl2 3

Fig. 5.2. Example Network with Two Origins and Single Destination
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(1) Fixed Demand Case

For the network in Flg. 5.2, node 3 is the pure origin; we divide the incidence matrix At, the

corresponding A
t

_ and the OD flow vector as follows:

Al =[0 1

A _1- 1 -1
~kcL-ll 0

Hence,

1] (node3) A1_ = [0 0 0 ] dQ
1
(u) / du = [Q31 (u)]

o] (nodel) , A2_=[-01 -1 0 ], dQ 2(u) / du =[-(J!I + JL2)].
-1 (nodt:L) 0 -1 Q21 (u)

(5.17)

(5.18)

The equilibrium pattern for the vehicles with the arrival time u at a single destination can be

calculated from the results in Chapter 3. From (3.16), we first obtain the rate of change in

equilibriwn arrival time for nodes 1 and 2:

i1(u}= PI + Jl2 =1,
III + J12

(5.19)

Substituting these into (3.1 0) yields the link flow rates (with respect to u):

YI(u)=lll' Y2(U)=fi2' Y3(U)=J1I-Q21(U) (5.20)

Note that this flow pattern is significantly different from that for the reversed network (see (5.4».

In order to detennine the rate of change in equilibrilUll arrival time for node 3 (= the pure

origin), adding an appropriate condition is required. Here we assume for node 3 that the OD flow
rate measured at the origin l q31 == dQ31 (u) / d'3 (u) = Q31 (u)/ i 3(u) , is given. On the other hand,

the OD flow rate measured at the destination, q31 == Q31 (u), is determined from (3.15a):

(5.21)

Substituting this into the definitional relationship between qod and qod :

!!.oAu) = dQoAu) I dQoAu) = dro(u)
qod(U) du d,o{u) du'

we obtain the rate ofchange in equilibrium arrival time at node 3:

(5.22)

Defming the total travel time for the users arriving at an destination from time 0 to T as an

indicator for measuring the efficiency ofthe network flow pattern:

re == L J:Ya(u)ca(u)du =L J: QoAs){u - To (u)}du ,
a 0

(5.23)
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let us examine whether the paradox arises or not in the network in Fig. S.L. Substituting (5.19),

(5.21) and (5.22) into (5.23), we obtain the Te" for this network:

+ Q' (uJu- (PI + P2)U - Q21 (u) - r (0)1 :I'd'U
31 1 Q31 3 fJ

whereQ31(u) =J: qod(u)du. We see from this equation that the increase in PI or 112 will

always decrease TC; the paradox does not arise for links 1 and 2. However, the increase in the

capacity of link 3 always results in the occurrence of the paradox. This fact can be easily

examined as follows. Calculating the derivative ofTC with respect to /1 3) vve have

(5.25)

Note that t 2 (u) should be positive in the DUE state. The reason is that if t 2 (u) is not positive

the users with the destination arrival time u'> u must depart from their origin before the users with

arrival time u, and this contradict the assumption that the state is in the DUE. Therefore, from the
(5.25) and the fact that t 2 (u) >0 for any u, the inequality dTC / dJ.13 > 0 always holds; we see

that the paradox for link 3 takes place without any additional conditions.

(2) Elastic Demand Case

The equilibrium pattern for the network in Fig. 5.2 can be calculated from the results of

Chapter 4. For the network in Fig.5.2, the matrices AtMAi_ andA 2MA;"_ defined in 4.2 are

A MAT = [f.13 0]
1 1- ° '- JL3

(5.26)

Hence, from (4.21) and (4.22), we obtain the equilibrium arrival times and OD flows:

We also get the equilibrium disutility from (4.23):

P2 =a2(t-uS)+alr2t(uS)' P3 =a2(t-uS)+alr31(uS)· (5.29)

Let us define the sum ofdisutility experienced by all users over a network, rc, as an indicator for

measuring the efficiency ofthe network usage:
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(5.30)

Substituting (5.29) into the definition (5.30), we get the re" for the network in Fig.5.2:

re = P2 (Q21 - Q21 (u.\. ))+ P3 (Q31 - Q3\ (u.\.))

{ (
,,) (" )}{([[\ - [[2 )J.13 - al J.11 ( ")}=-G2 !-u s +G 1r2,U, G

1

!-U,

{ ( ,,) (" )}{ ([[\ - a2 ) J.13 + a1J.12 ( ")}
+G2 !-u,+G1r3I u, G, !-U,

To check the occurrence ofthe paradox, we calculate drC/ dJ.13 :

Note that the relationship

or equivalently,

(5.31 )

(5.32)

(5.33)

(5.34)

should holds as long as the network in Fig.5.2 is a saturated network. The reason can be proved

by contradiction: consider two users with origin 2 and 3, denoted as U2 and U3, who arrive at

the destination at the same time u.\.; suppose that the (5.34) does not hold, then it implies that

U2 should leave his origin earlier than U3 does; this clearly contradict the assumption of the
saturated network. Thus, from (5.32) and (5.33), we see that dTC/d/-l3 > 0 always holds; in

other words, the occurrence of the paradox is inevitable when the capacity of link 3 is

increased. It is worth noting that we eventually obtained the same result as in the fixed

demand case.

6. Concluding Remarks

This paper discussed a capacity increasing paradox under a dynamic equilibrium assignment

with elastic OD demands: the paradox is a situation such that improving the capacity of a certain

link on a network worsen the total travel cost over the network. Our analysis in a simple network

disclosed that the paradox arises only on a particular condition for a network with a one-to-many

OD pattern, while the corresponding paradox always arises for the reversed network with a many

to-one OD pattern. This is the asymmetrical result that can not be seen in the classical static

assignment framework; it is particular to the dynamic assignment with queue. Furthermore, we

show that this property holds not only for the assignment with fixed OD demands but also for the

assignment with elastic OD demands.
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In this paper, particular simple networks were employed to demonstrate the paradox. Note,

however, that the examples presented here are not the exceptional ones that can hardly be observed

in practical situations but the ones that can be seen universally if we regard the example networks

as a macroscopic representation of real road networks. Therefore, we think that the examples,

despite their simplicity, describe one of the essential points that should be considered in deciding

practical traffic management operations such as ramp metering or addition of lanes in freeways.

We recognize that there are still several relevant topics to be studied. First, we should extend

our analysis to the paradox in a more complex network by exploiting the analytical fonnula of the

DUE solution derived in this paper; it may be possible to obtain systematic methods for general

networks that detect (without computing the equilibrium patterns) the links where the paradox

takes place; the exploration of this possibility would be an interesting future topic. Secondly, we

should analyze more realistic case where the assumption of "saturated networks" are relaxed; the

exploration would be achieved by employing not only the analytical approach just as shown in this

paper but also the numerical approach based on the recent convergent algorithms for the DUE

assignment (see Akamatsu (1998)). Finally, we should explore the case where physical queues

are explicitly incorporated into the analysis. Though the incorporation of physical queues may

cause very complex phenomena as shown in Daganzo(1998), comprehensive studies on this topic

would be indispensable for a clear understanding of the properties ofdynamic network flows.
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In Chapter 4 it is assumed that all the OD pairs have always positive flows during the

period of analysis. In this appendix, we briefly demonstrate how the formulation can be

extended to the case where some OD pairs have no OD flows. The formulations for the one-to

many OD problem and the many-to-one are presented in turn.

(1) One-to-Many OD pattern

We first divide the node set N (where the origin is excluded as a reference node) into two sub

sets: the set of destinations with positive OD flows, NI' and the set of the other destinations, N2•

Then, we divide A, A_, dt(s)/ds and dQ(s)/ds into the two blocks corresponding to NI and N 2 ,

respectively:

(A-I)

For the destinations with positive OD flows, the arrival times are governed by the departure

time equilibrium condition (4.5):

dt] (s) =E_G_I_
ds GI -G2

(A-2)

For the other destination nodes, the arrival times should be determined from the route choice

equilibrium condition (3.6). Rewriting the condition (3.6) with the variables defined above,

dtl (s)
ds

dt 2(s)
ds

(A-3)

or equivalently,

o = A MAT dt](s) + A MAT dt2 (s)
2 1- ds 2 2- ds

Thus, the elastic DUE conditions are represented as the following system ofdifferential equations:

dt](s) =E_GI _ dt2(s) = -(A MAT )-I(A MAT ~ aI

d 'd 2 2- 2 1-~ ,
S GI - a2 s GI - a2

dQI(s) = f'A MAT )-(A MAT XA MAT )-I(A MAT)l at
d t 1 1- t 2- 2 2- 2 1- lE
s ~-~

(A-4a)

(A-4b)

(A-5)
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(A-7)

(2) Many-to-One OD pattern

We first divide the node set N into two sub sets: the set oforigins with positive OD flows, NI'

and the set of the other nodes (including the destination), N2• Then, we divide A, A_, dt(u)/du

and dQ(u)/du into the two blocks corresponding to NI and N2 , respectively:

where dQ I (u)/ du is a column vector with element dQoju)/du, dQ 2 / du is a column vector

whose element is Jld = LJikd if it corresponding to the destination, otherwise zero.
k

For the origins with positive OD flows, the departure times are governed by the

departure-time equilibrium condition (4.18):

de){u) =E al -a2

du a l

For the other destination nodes, the arrival/departure times should be detennined from the

route choice equilibrium condition (3.12). Rewriting the condition (3.12) with the variables

defined above,

dQ 1(u) dtl(u)

d~u{u ) =-[~:JM[Ai~ A~~ ~(u)
du du

or equivalently,

dQ 1(u) =-(A MAT ~at -a2 -(A MAT )dt2 (u)
d 1 1-~ 1 2- d

u at u

dQ 2 (u) =-(A MAT ~al -a2 -(A MAT )dt2 (u)
d 2 1-~ 2 2- d

u at u

Thus, the elastic DUE conditions are represented as the following system ofdifferential equations:

de) (u) = E a l - a2 de2(u) = -(A MAT )T{(A MAT \r.. a) -a2 + dQ 2 (u)}
d 'd 2 2- 2 1- JL d'u al u at u

dQ)(u) =)'A MAT )-(A MAT XA MAT )-I(A MAT)l a1 -a2

d
t 1 1- 1 2- 2 2- 2 1- JE

u at

+(A MAT XA MAT )-1 dQ2(U).
t 2- 2 2- du

(A-8)

(A-9a)

(A-9b)

(A-IO)
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