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Hexagonal population distributions of several sizes are shown to be self-organized from a
uniformly inhabited state, which is modeled by a system of places (cities) on a hexagonal
lattice. Microeconomic interactions among the places are expressed by a core-periphery model
in new economic geography. Lösch’s ten smallest hexagonal distributions in central place theory
are guaranteed to be existent by equivariant bifurcation analysis on D6 +̇ (Zn ×Zn), and are
obtained by computational analysis. The missing link between central place theory and new
economic geography has thus been discovered in light of the bifurcation analysis.
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1. Introduction

In central place theory of economic geography,1 self-
organization of hexagonal market areas of three
kinds shown in Fig. 1 was proposed by Christaller
[1966] based on market, traffic, and administra-
tive principles. The ten smallest hexagons shown in
Fig. 2 were presented as fundamental sizes of mar-
ket areas by Lösch [1954]. The assemblage of hexag-
onal market areas with different sizes is expected to

produce hierarchical hexagonal distributions of the
population of places (cities, towns, villages, etc.).

In economics, a criticism on central place the-
ory was raised that it is not derived from market
equilibrium conditions [Fujita et al., 1999, p. 27].
Early studies of the formation of patterns were con-
ducted by Clarke and Wilson [1985], Munz and
Weidlich [1990]. Hexagonal distributions, as envi-
sioned with central place theory, were inferred to be

∗Author for correspondence
1For books and reviews for central place theory, see, for example [Lösch, 1954; Lloyd & Dicken, 1972; Isard, 1975; Beavon,
1977].
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(a) (b)
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Fig. 1. Three systems predicted by Christaller (the area of a circle indicates the size of population). (a) k = 3 system,
(b) k = 4 system, and (c) k = 7 system.

self-organized in core-periphery models in two
dimensions by Krugman [1996]. Core-periphery
models are capable of expressing the migration of
population among cities underpinned by microeco-
nomic mechanism [Krugman, 1991; Combes et al.,
2008]. Yet most studies for these models were con-
fined to overly simplified geometry of two-city case.

Fig. 2. Lösch’s ten smallest hexagons (b = d/
√

3).

To transcend the two-city case, studies on the
racetrack economy, which comprises a system of
identical cities spread uniformly around the circum-
ference of a circle, have been conducted: Krugman
[1993, 1996] conducted local analysis (linearized
eigenproblem) of the racetrack economy to iden-
tify the emergence of several bifurcating spatial fre-
quencies, Tabuchi and Thisse [2011] have shown
the occurrence of spatial period-doubling bifur-
cation cascade for this economy. The description
of this cascade as a hierarchical bifurcation of
Dn-symmetric system with n = 2m is under way
[Ikeda et al., 2012].

Hexagonal patterns have been observed for
several physical phenomena, including the Bénard
problem [Bénard, 1900], and the Faraday experi-
ment [Kudrolli et al., 1998]. The hexagonal pat-
terns in the planar Bénard problem were studied
by Sattinger [1978] under a simplifying assumption
that solutions are doubly periodic with respect to
a hexagonal lattice. Mathematical analysis is con-
ducted on the D6 +̇T2-symmetric hexagonal lat-
tice with periodic boundary conditions [Buzano &
Golubitsky, 1983], where D6 is the dihedral group
expressing local hexagonal symmetry and T2 is the
two-torus of translation symmetries. Equivariant
bifurcation analysis of six- and twelve-dimensional
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irreducible representations of the group D6 +̇ T2 has
been conducted to search for possible bifurcated
patterns:

• For six-dimensional ones, hexagons, as well as
rolls and triangles, are shown to be existent
[Buzano & Golubitsky, 1983; Dionne & Golubit-
sky, 1992; Golubitsky & Stewart, 2002].

• For twelve-dimensional ones, simple hexagons
and super hexagons are shown to be existent
[Kirchgässner, 1979; Dionne et al., 1997; Judd &
Silber, 2000].

During the course of this, equivariant branching
lemma has come to be used as a pertinent means in
guaranteeing the existence of a bifurcated solution
of a given symmetry [Vanderbauwhede, 1980; Golu-
bitsky et al., 1988]. Nonlinear competition between
hexagonal and triangular patterns were studied
[Skeldon & Silber, 1998; Silber & Proctor, 1998].
Bifurcated patterns of a honeycomb structure were
classified in [Saiki et al., 2005; Ikeda & Murota,
2010, Chapter 16].

The objective of this paper is to demon-
strate the self-organization of Lösch’s ten smallest
hexagons in Fig. 2 for a core-periphery model
in two dimensions. It is an important informa-
tion drawn from the study of the hexagonal pat-
terns by equivariant bifurcation theory that the
two-city with D2-symmetry and the racetrack with
Dn-symmetry, which are currently used for the
study of core-periphery modes, are insufficient as
spatial platforms for the hexagonal distributions for
these models. As a pertinent spatial platform, we
use a hexagonal lattice with periodic boundaries
that comprises uniformly distributed n × n places
that are connected by roads of the same length
forming a regular-triangular mesh. The mechanism
of microeconomic interactions and migration of
workers among the places are expressed by a core-
periphery model. The equivariant bifurcation anal-
ysis is conducted on a finite group D6 +̇ (Zn × Zn)
that represents the symmetry of uniformly inhab-
ited state of the workers. In comparison with the
group D6 +̇ T2, the symmetries of bifurcated solu-
tions of which have been thoroughly obtained in the
aforementioned literature, the study of D6 +̇ (Zn ×
Zn) poses some additional issues such as the values
of n that give the patterns of interest. To be spe-
cific, the values of n, the multiplicity of bifurcation
points, and irreducible representations correspond-
ing to Lösch’s ten smallest hexagons are given and

classified. Although there are bifurcation points of
various kinds, those which produce the hexagonal
patterns are identified and the emergence of those
hexagons is successfully demonstrated by computa-
tional bifurcation analysis.

This paper is organized as follows: A system
of places that is uniformly spread on an infinite
hexagonal lattice in two dimensions is modeled
in Sec. 2. Section 3 introduces a core-periphery
model and predicts its bifurcation mechanism pro-
ducing hexagonal distributions by group-theoretic
bifurcation theory. Group-theoretical prediction
of hexagonal distributions for D6 +̇ (Zn × Zn)-
symmetric system is carried out in Sec. 4. Compu-
tational bifurcation analysis of the n×n hexagonal
lattice is conducted to find bifurcated patterns
that represent hexagonal market areas in Sec. 5.
Details of the core-periphery model are given in
Appendix A. Equivariant bifurcation analysis of
twelve-dimensional irreducible representations is
carried out in Appendix B.

2. System of Places on a Hexagonal
Lattice

We introduce in this section an n×n hexagonal lat-
tice with periodic boundaries comprising a system
of uniformly distributed n×n places, and prescribe
groups expressing the symmetry of this lattice. As
a spatial configuration of a system of places, we
use the hexagonal lattice because it is geometrically
consistent with the hexagonal market areas that are
predicted to appear in the literature of economic
geography [Lösch, 1954, pp. 133–134].

2.1. Hexagonal lattice

Figure 3 portrays the hexagonal lattice, which com-
prises regular triangles and which covers an infi-
nite two-dimensional domain. A place is allocated
at each node of this lattice, expressed by

p = n1�1 + n2�2, (n1, n2 ∈ Z),

where �1 = (d, 0)� and �2 = (−d/2, d
√

3/2)� are
oblique basis vectors (d is the length of these vec-
tors); Z is the set of integers.

In this paper, we consider a finite n× n hexag-
onal lattice with periodic boundary conditions: an
example for n = 2 is shown by the dashed lines in
Fig. 3. A system of n × n places are allocated at
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Fig. 3. Hexagonal lattice.

hexagonal lattice points

p = n1�1 + n2�2, (n1, n2 = 0, 1, . . . , n − 1)

in a finite two-dimensional domain. Neighboring
places, in view of the periodic boundaries, are con-
nected by straight lines2 of equal length d to form
a regular-triangular mesh.

2.2. Two-dimensional periodicity
and hexagonal distributions

If the population distribution of a system of places
(i.e. a subset of nodes) has two-dimensional period-
icity, then we can set a pair of independent vectors

(t1, t2), (1)

called the spatial period vectors, such that the sys-
tem remains invariant under the translations associ-
ated with these vectors. The spatial periods (T1, T2)
are defined as

Ti = ‖ti‖, (i = 1, 2).

The tilted angle ϕ between �1 and t1 is defined as

cos ϕ =
(�1)�t1

‖t1‖ . (2)

Although the choice of the vectors (t1, t2) is not
unique, T1 and T2 must be chosen to be as small
as possible, and then to choose the smallest non-
negative ϕ.

To consider hexagonal distributions among pos-
sible doubly-periodic distributions, we specifically

examine (t1, t2) of the form

t1 = α�1 + β�2, t2 = −β�1 + (α − β)�2,

(α, β ∈ Z), (3)

for which T1 = T2(≡ T ) is satisfied and the angle
between t1 and t2 is 2π/3. The associated normal-
ized spatial period is given by

T

d
=

√√√√(
α − β

2

)2

+

(
β
√

3
2

)2

=
√

α2 − αβ + β2.

(4)

We consider a positive integer

a = α2 − αβ + β2, (5)

which can take some specific integer values, such
as 1, 3, 4, 7, . . . , and rewrite the normalized spatial
period in (4) as

T

d
=

√
a, (6)

which takes some specific values, such as
√

1,
√

3,√
4,
√

7, . . . , and lies in the range 1 ≤ T/d ≤ n in the
n×n system. We refer to the hexagonal distribution
with a = 1 as the uniform distribution [Fig. 4(a)].
In particular, a = 3, 4, 7 correspond respectively to
Christaller’s k = 3, 4, 7 systems [Figs. 4(b)–4(d)].
The values of (α, β) for these systems are given, for
example, for Lösch’s ten smallest hexagons as listed
in Table 1. The tilted angle ϕ in (2) for the hexag-
onal distributions is given by

ϕ = arcsin


 β

√
3

2√
α2 − αβ + β2


, (7)

and its values are listed in Table 1. With reference
to the tilted angle ϕ defined by (7), we can classify
hexagonal distributions into



hexagonal distributions of type V,

ϕ = 0, a = 4, 9, 16, 25,

hexagonal distributions of type M,

ϕ =
π

6
, a = 3, 12,

tilted hexagonal distributions,

otherwise, a = 7, 13, 19, 21,

(8)

2These straight lines are interpreted as roads in the core-periphery model in Sec. 3.1.
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=

=

(a) (b)

(c) (d)

Fig. 4. Hexagonal distributions on the hexagonal lattice. (a) a = 1, type V, (α, β) = (1, 1), (b) a = 3, type M, (α, β) = (2, 1)
(Christaller’s k = 3 system) (c) a = 4, type V, (α, β) = (2, 0) (Christaller’s k = 4 system) and (d) a = 7, tilted, (α, β) = (3, 1)
(Christaller’s k = 7 system).

in which “V” signifies that the vertices of the
hexagons are located on the x-axis and “M” denotes
that midpoints of sides of the hexagons are located
on the x-axis. The classification of hexagonal distri-
butions is listed in Table 1. The translational sym-
metry and the compatible value of n listed in this
table are derived later in Sec. 2.3.

2.3. Groups expressing the
symmetry

For the study of the agglomeration pattern of pop-
ulation distribution on the n× n hexagonal lattice,
we use group-theoretic bifurcation theory: an estab-
lished mathematical tool for investigating pattern
formation. In this theory, the symmetries of possible
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Table 1. The values of (α, β), tilted angle ϕ, type of hexagon, local and translational symmetries, and compatible n for
Lösch’s ten smallest hexagons.

Tilted Type of Local Translational Lattice Size n
a (α, β) Angle ϕ Hexagons Symmetry G′

local Symmetry G′
trans (m = 1, 2, . . .) M

3 (2, 1) π/6 M 〈r, s〉 〈p2
1p2, p−1

1 p2〉 3m 2

4 (2, 0) 0 V 〈r, s〉 〈p2
1, p2

2〉 2m 3

7 (3, 1) 0.106π Tilted 〈r〉 〈p3
1p2, p−1

1 p2
2〉 7m 12

9 (3, 0) 0 V 〈r, s〉 〈p3
1, p3

2〉 3m 6

12 (4, 2) π/6 M 〈r, s〉 〈p4
1p2

2, p−2
1 p2

2〉 6m 6

13 (4, 1) 0.077π Tilted 〈r〉 〈p4
1p2, p−1

1 p3
2〉 13m 12

16 (4, 0) 0 V 〈r, s〉 〈p4
1, p4

2〉 4m 6

19 (5, 2) 0.130π Tilted 〈r〉 〈p5
1p2

2, p−2
1 p3

2〉 19m 12

21 (5, 1) 0.061π Tilted 〈r〉 〈p5
1p2, p−1

1 p4
2〉 21m 12

25 (5, 0) 0 V 〈r, s〉 〈p5
1, p5

2〉 5m 6

bifurcated solutions are determined with resort to
the group that labels the symmetry of the system.
Hence the first step of the bifurcation analysis is to
identify the underlying group.

2.3.1. Symmetry of the n × n hexagonal
lattice

Symmetry of the n× n hexagonal lattice is charac-
terized by invariance with respect to:

• r: counterclockwise rotation about the origin at
an angle of π/3.

• s: reflection y �→ −y.
• p1: periodic translation along the �1-axis (i.e. the

x-axis).
• p2: periodic translation along the �2-axis.

Consequently, the symmetry of the hexagonal
lattice is described by the group

G = 〈r, s, p1, p2〉, (9)

where 〈· · ·〉 denotes a group generated by the
elements therein, with the fundamental relations
given by

r6 = s2 = (rs)2 = pn
1 = pn

2 = e,

rp1 = p1p2r, rp2 = p−1
1 r,

sp1 = p1s, sp2 = p−1
1 p−1

2 s, p2p1 = p1p2,

where e is the identity element. Each element of G
can be represented uniquely in the form of

slrmpi
1p

j
2, i, j ∈ {0, . . . , n − 1};

l ∈ {0, 1}; m ∈ {0, 1, . . . , 5}.

(For group theory, see [Curtis & Reiner, 1962; Serre,
1977].)

The group G contains the dihedral group
〈r, s〉 
 D6 and cyclic groups 〈p1〉 
 Zn and
〈p2〉 
 Zn as its subgroups. Moreover, it has the
structure of semidirect product of D6 by Zn × Zn,
which is denoted as

G = D6 +̇ (Zn × Zn) (10)

or G = D6 � (Zn × Zn) in another notation. This
means, in particular, that 〈p1, p2〉 is a normal sub-
group of G.

Remark 2.1. For the group D6 +̇ T2, where T2

denotes the two-dimensional torus, a thorough clas-
sification of the symmetries of bifurcated solutions
has been obtained in the literature using the stan-
dard approach based on the equivariant branch-
ing lemma [Buzano & Golubitsky, 1983; Dionne
et al., 1997]. Naturally, this is closely related to
the present study of the bifurcation problem equiv-
ariant to D6 +̇ (Zn × Zn). Considering the discrete
case, with finite n, poses some additional issues. For
example, we may be concerned with the values of n
that give the patterns of interest, which are impor-
tant in computational studies.

2.3.2. Subgroups

Among many subgroups of G = 〈r, s, p1, p2〉 = D6 +̇
(Zn × Zn), we are interested in those subgroups
expressing Lösch’s ten smallest hexagons. Such sub-
groups G′ are represented as the semidirect product
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Lösch’s Hexagons in Economic Agglomeration for Core-Periphery Models

of a subgroup G′
local of D6 by a subgroup G′

trans of
Zn × Zn; i.e.

G′ = G′
local +̇ G′

trans. (11)

For example, G′
local = 〈r, s〉 and G′

trans = 〈p2
1p2,

p−1
1 p2〉 for the system with a = 3. It should be clear

that G′
local represents the local symmetry and G′

trans

the translational symmetry.
The local symmetry of the hexagons of Type

V or Type M is described by G′
local = 〈r, s〉. The

tilted hexagons, lacking in reflection symmetry s,
have the local symmetry of G′

local = 〈r〉. Thus the
classification of hexagons in (8) gives

G′
local =

{
〈r, s〉 for a = 3, 4, 9, 12, 16, 25,

〈r〉 for a = 7, 13, 19, 21.

The translational symmetry is given as

G′
trans = 〈pα

1 pβ
2 , p−β

1 pα−β
2 〉.

Here α and β are the non-negative integers in (3),
which are listed in Table 1. From this translational
symmetry we can derive a compatibility condition
on the size n of the hexagonal lattice for specified
a value. For example,

• For a = 3 with (α, β) = (2, 1), we have (p2
1p2) ×

(p−1
1 p2)−1 = p3

1, which represents a translation
in the direction of the �1-axis at the length of
3d; accordingly, n must be a multiple of 3. The
spatial period vectors are given by (t1, t2) =
(2�1 + �2,−�1 + �2). The spatial period elongates
as T/d = 1 → √

3 (=
√

a).
• For a = 4 with (α, β) = (2, 0), the symme-

try of p2
1 and p2

2 implies that n is a multiple
of 2. The spatial period vectors are given by
(t1, t2) = (2�1, 2�2). The spatial period elongates
as T/d = 1 → √

4 (=
√

a).
• For a = 7 with (α, β) = (3, 1), we have (p3

1p2)2 ×
(p−1

1 p2
2)

−1 = p7
1, from which follows that n is a

multiple of 7. The spatial period vectors are given
by (t1, t2) = (3�1 + �2,−�1 + 2�2). The spatial
period elongates as T/d = 1 → √

7 (=
√

a).

Likewise, for a = 9, 12, 13, 16, 19, 21, 25, respec-
tively, compatible n is a multiple of 3, 6, 13, 4, 19,
21, 5, as listed in Table 1.

Example 2.1. For n = 3, the population distribu-
tion h for a = 3 is given uniquely as

h = (b, c, c; c, c, b; c, b, c)� , (12)

where (b, c) = (1/9 + 2δ, 1/9 − δ) with −1/18 ≤
δ ≤ 1/9. This distribution has the symmetry G′ =
〈r, s, p2

1p2, p
−1
1 p2〉 with G′

local = 〈r, s〉 and G′
trans =

〈p2
1p2, p

−1
1 p2〉 = 〈p2

1p2〉. The population distribution
h for n = 3m (m = 2, 3, . . .) can be obtained by spa-
tially repeating the distribution in (12) for (b, c) =
(1/n2 + 2δ, 1/n2 − δ) with −1/(2n2) ≤ δ ≤ 1/n2.

Example 2.2. For n = 7, the population distribu-
tion h for the hexagonal distribution with a = 7 is
given uniquely as

h = (b, c, c, c, c, c, c; c, c, c, b, c, c, c; c, c, c, c, c, c, b;

c, c, b, c, c, c, c; c, c, c, c, c, b, c; c, b, c, c, c, c, c;

c, c, c, c, b, c, c)� , (13)

where (b, c) = (1/49 + 6δ, 1/49 − δ) with −1/294 ≤
δ ≤ 1/49. This distribution has the symmetry
G′ = 〈r, p3

1p2, p
−1
1 p2

2〉 with G′
local = 〈r〉 and G′

trans =
〈p3

1p2, p
−1
1 p2

2〉 = 〈p3
1p2〉. The population distribution

h for n = 7m (m = 2, 3, . . .) can be obtained by spa-
tially repeating the distribution in (12) for (b, c) =
(1/n2 + 6δ, 1/n2 − δ) with −1/(6n2) ≤ δ ≤ 1/n2.

3. Core-Periphery Model and
Bifurcation

In this section, we present a multiregional core-
periphery model. The group-equivariance of this
model for the system of places is introduced and
the mechanism of bifurcation producing hexago-
nal distributions is studied. Details are given in
Appendix A.

3.1. Core-periphery model

We employ a core-periphery model by Forslid and
Ottaviano [2003] that replaces the production func-
tion of Krugman with that of Flam and Helpman
[1987].

The economy is composed of K places (labeled
i = 1, . . . ,K), two factors of production (skilled and
unskilled labor), and two sectors (manufacture M
and agriculture A). There, H skilled and L unskilled
workers consume two final goods: manufactural-
sector goods and agricultural-sector goods. Workers
supply one unit of each type of labor inelastically;
here H is a constant expressing the total number
of skilled workers. Skilled workers are mobile across
places, and the number of skilled workers in place
i is denoted by hi. Unskilled workers are immobile

1230026-7
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and equally distributed across all places with the
unit density (i.e. L = 1×K). Hence the population
in place i is equal to hi + 1.

The governing equation of this model is formu-
lated in a standard form of static equilibrium as

F(h, τ) = HP(h) − h = 0. (14)

Therein h = (hi) ∈ R
K is a K-dimensional vec-

tor expressing the population distribution of the
skilled workers, τ ∈ R is a (bifurcation) parame-
ter corresponding to the transport parameter, and
F: R

K × R → R
K is a sufficiently smooth non-

linear function in h and τ ; P = (Pi) ∈ R
K is a

K-dimensional vector given by

Pi(h, τ) ≡ exp[θvi(h, τ ;µ, σ)]
K∑

j=1

exp[θvj(h, τ ;µ, σ)]

,

i = 1, . . . ,K, (15)

where θ is the constant representing the inverse
of variance of the idiosyncratic tastes, µ is the
constant expenditure share on industrial varieties,
σ expresses the constant elasticity of substitution
between any two varieties, and vi(h, τ ;µ, σ) (i =
1, . . . ,K) are nonlinear functions representing the
components of an indirect utility function vector
v(h, τ ;µ, σ).

The equality H =
∑K

i=1 hi is satisfied by any
solution of (14) because

∑K
i=1 Pi(h, τ) = 1 by (15).

As a normalization we put H = 1 in the subsequent
analysis.

3.2. Exploiting symmetry of
core-periphery model

For investigation of the patterns of the bifurcated
solutions, it is crucial to formulate the symmetry
that is inherent in the governing equation. In group-
theoretic bifurcation theory, the symmetry of the
equation for the system of n×n places on the hexag-
onal lattice is described as

T (g)F(h, τ) = F(T (g)h, τ), g ∈ G, (16)

in terms of an orthogonal matrix representation T of
group G = 〈r, s, p1, p2〉 in (9) on the K-dimensional
space R

K . The condition (or property) (16) is called
the equivariance of F(h, τ) to G. The most impor-
tant consequence of the equivariance (16) is that the
symmetries of the whole set of possible bifurcated
solutions can be obtained and classified.

In our study of a system of n × n places on
the hexagonal lattice, each element g of G acts as a
permutation among place numbers (1, . . . ,K) for
K = n2 and hence each T (g) is a permutation
matrix. Then we can show the equivariance (16)
of the core-periphery model to G = 〈r, s, p1, p2〉 =
D6 +̇ (Zn × Zn).

Proof. By expressing the action of g ∈ G as g :
i �→ i∗ for place numbers i and i∗, we have
vi(T (g)h, τ) = vi∗(h, τ) and Pi(T (g)h, τ) =
Pi∗(h, τ) by (15) for any g ∈ G. Therefore, we have

Fi(T (g)h, τ) = HP i(T (g)h, τ) − hi∗

= HP i∗(h, τ) − hi∗

= Fi∗(h, τ).

This proves the equivariance (16). �

The group-theoretic bifurcation analysis pro-
ceeds as follows. Consider a critical point (hc, τc) of
multiplicity M (≥ 1), at which the Jacobian matrix
of F has M zero eigenvalues. Throughout this paper
we assume that a critical point is generic (or group-
theoretic) in the sense that the M -dimensional ker-
nel space of the Jacobian matrix is irreducible with
respect to the representation T . See Remark 3.1.

Using a standard procedure called the
Lyapunov–Schmidt reduction with symmetry [Sat-
tinger, 1979; Golubitsky et al., 1988; Ikeda &
Murota, 2010], the full system of equations

F(h, τ) = 0 (17)

in h ∈ R
K [see (14)] is reduced, in a neighborhood

of (hc, τc), to a system of M equations (called bifur-
cation equations)

F̃(w, τ̃) = 0 (18)

in w ∈ R
M , where F̃ : R

M × R → R
M is a function

and τ̃ = τ − τc denotes the increment of τ . In this
reduction process the equivariance of the full sys-
tem, which is formulated in (16), is inherited by the
reduced system (18) in the following form:

T̃ (g)F̃(w, τ̃ ) = F̃(T̃ (g)w, τ̃ ), g ∈ G, (19)

where T̃ is the subrepresentation of T on the M -
dimensional kernel space of the Jacobian matrix.
The symmetry of the kernel space, sometimes
referred to as the kernel symmetry, is expressed
by the subgroup {g ∈ G | T̃ (g) = I}. It is this
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inheritance of symmetry that plays a key role in
determining the symmetry of bifurcating solutions.

The reduced equation (18) is to be solved for
w as w = w(τ̃), which is often possible by virtue of
the symmetry of F̃ described in (19). Since (w, τ̃ ) =
(0, 0) is a singular point of (18), there can be many
solutions w = w(τ̃) with w(0) = 0, which give rise
to bifurcation. Each w uniquely determines a solu-
tion h of the full system (17).

The symmetry of h is represented by a sub-
group of G defined by

Σ(h) = Σ(h;G,T ) = {g ∈ G |T (g)h = h}, (20)

called the isotropy subgroup of h. The isotropy sub-
group Σ(h) can be computed in terms of the sym-
metry of the corresponding w as

Σ(h;G,T ) = Σ(w;G, T̃ ), (21)

where

Σ(w;G, T̃ ) = {g ∈ G | T̃ (g)w = w}. (22)

The relation (21) enables us to determine the sym-
metry of bifurcated solutions h through the analysis
of bifurcation equations in w.

Remark 3.1. The number Nd of d-dimensional irre-
ducible representations of G = D6 +̇ (Zn × Zn) is
given in Table 2(a). Here m is a positive integer. For
some values of n (treated in Sec. 5), the numbers
Nd of the d-dimensional irreducible representations
are listed in Table 2(b).

Remark 3.2. Simple bifurcation points do not play
a role in the present analysis. The one-dimensional
irreducible representations of the group G =
〈r, s, p1, p2〉 in (9), which we label as (+,+), (+,−),
(−,+), and (−,−), are given by

T (+,+)(r) = 1, T (+,+)(s) = 1,

T (+,+)(p1) = 1, T (+,+)(p2) = 1,

T (+,−)(r) = 1, T (+,−)(s) = −1,

T (+,−)(p1) = 1, T (+,−)(p2) = 1,

T (−,+)(r) = −1, T (−,+)(s) = 1,

T (−,+)(p1) = 1, T (−,+)(p2) = 1,

T (−,−)(r) = −1, T (−,−)(s) = −1,

T (−,−)(p1) = 1, T (−,−)(p2) = 1.

Table 2. Number Nd of d-dimensional irreducible represen-
tations of D6 +̇ (Zn × Zn).

(a)

1 2 3 4 6 12

n\d N1 N2 N3 N4 N6 N12

6m 4 4 4 1 2n − 6 (n2 − 6n + 12)/12

6m ± 1 4 2 0 0 2n − 2 (n2 − 6n + 5)/12

6m ± 2 4 2 4 0 2n − 4 (n2 − 6n + 8)/12

6m ± 3 4 4 0 1 2n − 4 (n2 − 6n + 9)/12

(b)

1 2 3 4 6 12

n\d N1 N2 N3 N4 N6 N12
P

Nd

2 4 2 4 10
3 4 4 1 2 11
4 4 2 4 4 14
5 4 2 8 14
6 4 4 4 1 6 1 20
7 4 2 12 1 19
8 4 2 4 12 2 24
9 4 4 1 14 3 26

10 4 2 4 16 4 30
11 4 2 20 5 31
12 4 4 4 1 18 7 38
13 4 2 24 8 38
14 4 2 4 24 10 44
15 4 4 1 26 12 47
16 4 2 4 28 14 52
17 4 2 32 16 54
18 4 4 4 1 30 19 62
19 4 2 36 21 63
20 4 2 4 36 24 70
21 4 4 1 38 27 74
...

...
...

...
...

...
...

...
25 4 2 48 40 94

In general (+,+) is associated with a limit point
of the bifurcation parameter τ , and (+,−), (−,+),
and (−,−) with a simple bifurcation point with
Σ(h) = 〈r, p1, p2〉, 〈s, p1, p2〉, and 〈sr, p1, p2〉, respec-
tively. Yet, for the present definition of h = (hi)
in Sec. 3.1 for the hexagonal lattice with n × n
places, such bifurcation points are nonexistent since
〈p1, p2〉-symmetry restricts h to be G = 〈r, s, p1,
p2〉-symmetric, which corresponds to the uniform
population. Alternatively, we can say in more
technical terms that the irreducible representa-
tions (+,−), (−,+), and (−,−) are not contained
in the representation T (g) for the core-periphery
model.
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4. Theoretically Predicted
Hexagonal Distributions

By using group-theoretic bifurcation theory, we
present in this section a possible bifurcation mech-
anism that can produce Lösch’s ten smallest
hexagons (Sec. 2.2). It is noted first that uniformly
distributed population of the skilled workers, given
by h1 = · · · = hn2 = 1/n2, is the simplest hexago-
nal distribution associated with the pre-bifurcation
solution of the governing equation (14). The sym-
metry of this solution is labeled by the group

G = 〈r, s, p1, p2〉 = D6 +̇ (Zn × Zn)

in (9) and (10).
The symmetry of a bifurcated solution h of the

governing equation (14), in general, is expressed by
a subgroup Σ(h) of G in (20). Among many possible
symmetries of bifurcated solutions, we are particu-
larly interested in those bifurcated solutions, if any,
for which Σ(h) coincides with subgroups in (11)
corresponding to Lösch’s ten smallest hexagons
(Table 1):

G′
local +̇ G′

trans

=




〈r, s〉 +̇ 〈p2
1p2, p

−1
1 p2〉 for a = 3,

〈r, s〉 +̇ 〈p2
1, p

2
2〉 for a = 4,

〈r〉 +̇ 〈p3
1p2, p

−1
1 p2

2〉 for a = 7,

〈r, s〉 +̇ 〈p3
1, p

3
2〉 for a = 9,

〈r, s〉 +̇ 〈p4
1p

2
2, p

−2
1 p2

2〉 for a = 12,

〈r〉 +̇ 〈p4
1p2, p

−1
1 p3

2〉 for a = 13,

〈r, s〉 +̇ 〈p4
1, p

4
2〉 for a = 16,

〈r〉 +̇ 〈p5
1p

2
2, p

−2
1 p3

2〉 for a = 19,

〈r〉 +̇ 〈p5
1p2, p

−1
1 p4

2〉 for a = 21,

〈r, s〉 +̇ 〈p5
1, p

5
2〉 for a = 25.

(23)

The main message of this section is that such
bifurcated solutions do exist, and therefore Lösch’s
ten smallest hexagons can be understood within the
framework of group-theoretic bifurcation theory.
We shall see that Lösch’s ten smallest hexagons
emerge from bifurcation points of multiplicity M =
2, 3, 6, and 12, but not of M = 1 and 4. Specifically,
we have

a =




3 for M = 2,
4 for M = 3,
9, 12, 16, 25 for M = 6,
7, 13, 19, 21 for M = 12.

Lösch’s hexagons with a = 9, 12, 16, 25 for M = 6
are called “hexagons” in [Buzano & Golubitsky,
1983] and Lösch’s hexagons with a = 7, 13, 19, 21
for M = 12 are called “simple hexagons” in [Dionne
et al., 1997].

Our analysis for specific cases are described
below (Secs. 4.2–4.5) and mathematical analysis of
the bifurcation equations at group-theoretic bifur-
cation points of multiplicity M = 12 is worked out
in Appendix B. The emergence of these hexagons
is confirmed numerically in Sec. 5 by the computa-
tional bifurcation analysis of the hexagonal lattice
with various sizes n.

4.1. Analysis by equivariant
branching lemma

The emergence of Lösch’s hexagons is proved by
applying the equivariant branching lemma [Van-
derbauwhede, 1980] to the bifurcation equation
F̃(w, τ̃) in (18); see, e.g. [Golubitsky et al., 1988] for
this lemma. Recall that bifurcation equation is asso-
ciated with an irreducible representation of G and
that the isotropy subgroup Σ(h) in (20) expressing
the symmetry of a bifurcated solution h is identical
with the isotropy subgroup Σ(w) in (22) of the cor-
responding solution w for the bifurcation equation,
i.e. Σ(h) = Σ(w) as shown in (21). A subgroup Σ
is said to be an isotropy subgroup if Σ = Σ(h) for
some h.

The analysis based on the equivariant branch-
ing lemma proceeds as follows:

• Specify an isotropy subgroup Σ of G for the sym-
metry of a possible bifurcated solution as well as
an irreducible representation T̃ of G that can pos-
sibly be associated with the bifurcation point.

• Obtain the fixed-point subspace Fix(Σ) for the
isotropy subgroup Σ with respect to the irre-
ducible representation T̃ , where

Fix(Σ) = {w ∈ R
M | T̃ (g)w = w for all g ∈ Σ}.

(24)

• Calculate the dimension dim Fix(Σ) of this sub-
space.

• If dim Fix(Σ) = 1, a bifurcated solution with
symmetry Σ is guaranteed to exist generi-
cally by the equivariant branching lemma. If
dimFix(Σ) = 0, a bifurcated solution with sym-
metry Σ is nonexistent. If dimFix(Σ) ≥ 2, no
definite conclusion can be reached by the equiv-
ariant branching lemma.
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Isotropy subgroups with dim Fix(Σ) = 1 are called
axial subgroups and the associated spatially doubly
periodic solutions are called axial planforms [Golu-
bitsky et al., 1994].

In our present analysis, we employ the above
procedure with Σ = G′ for each G′ in (23) and for
each irreducible representation T̃ of G; note that
each G′, representing the symmetry of a Lösch’s
hexagon, is an isotropy subgroup. Since the dimen-
sion of T̃ is either d = 1, 2, 3, 4, 6 or 12, the multi-
plicity M of the critical point is generically either
1, 2, 3, 4, 6 or 12. The equivalent branching lemma
applies only if dim Fix(Σ) = 1. Fortunately, it
will turn out (see Secs. 4.2–4.4) that, in all cases
of our interest in (23), we have dimFix(Σ) ≤ 1
and therefore we can always rely on the equiva-
lent branching lemma to determine the existence
or nonexistence of bifurcated solutions for Lösch’s
ten smallest hexagons.

4.2. Hexagon with a = 3: Bifurcation
point of multiplicity 2

When n is a multiple of 3, hexagons with a = 3
appear generically as a branch from a double bifur-
cation point (M = 2) that is associated with the
irreducible representation given by

T (r) =

[
1 0

0 −1

]
, T (s) =

[
1 0

0 1

]
,

T (p1) = T (p2) =




cos
2π
3

−sin
2π
3

sin
2π
3

cos
2π
3


.

(25)

This is one of the four two-dimensional irreducible
representations of D6 +̇ (Zn × Zn) = 〈r, s, p1, p2〉
(Table 2).

The general procedure in Sec. 4.1 is applied to

Σ = 〈r, s, p2
1p2, p

−1
1 p2〉

= 〈r, s〉 +̇ 〈p2
1p2, p

−1
1 p2〉, (26)

which describes the symmetry of the hexagon with
a = 3 (Christaller’s k = 3 system) in Fig. 4(b).
The fixed-point subspace Fix(Σ) with respect to
T̃ = T in (25) is a one-dimensional subspace of
R

2 spanned by (1, 0)�. Then, by the equivariant
branching lemma, there exists a bifurcated path
with the symmetry of (26).

It is mentioned that the standard results for
a double bifurcation point for the dihedral group

symmetry can be adapted to this case with (25).
In particular, the concrete form of the bifurcation
equations can be determined and the number and
the asymptotic form of bifurcated paths can be ana-
lyzed; see [Sattinger, 1979; Golubitsky et al., 1988;
Ikeda & Murota, 2010, Chapter 8].

Remark 4.1. For n = 3m (m is a positive integer),
there are successive bifurcations associated with a
hierarchy of subgroups

D6 +̇ (Zn × Zn) → D6 +̇ 〈p2
1p2, p

−1
1 p2〉

→ D6 +̇ (Zn/3 × Zn/3)

→ · · · → D6 +̇ 〈p2n/3
1 p

n/3
2 , p

−n/3
1 p

n/3
2 〉

→ D6 +̇ (Z1 × Z1) = D6, (27)

where → means the occurrence of bifurcation. These
successive bifurcations produce a set of nested
hexagons (see computational analysis in Sec. 5.1).
The spatial period is multiplied

√
3-times succes-

sively as

T

d
= 1 →

√
3 → 3 → · · · → n√

3
→ n. (28)

This fact can be proved as follows. The sub-
group

D6 +̇ 〈p2
1p2, p

−1
1 p2〉 = D6 +̇ 〈p2

1p2, p
3
1〉

= D6 +̇ 〈q1, q2〉
(q1 = p2

1p2, q2 = p3
1) has the two-dimensional irre-

ducible representation

T (r) =

[
1 0

0 −1

]
, T (s) =

[
1 0

0 1

]
,

T (q1) =




cos
2π
3

−sin
2π
3

sin
2π
3

cos
2π
3


, T (q2) =

[
1 0

0 1

]
.

(29)

Since the bifurcation equation equivariant with
respect to (29) takes the same form as that for
the direct bifurcation associated with (25), by the
analysis of this equation, we see that

Σ(h) = 〈r, s, q3
1 , q2〉 = 〈r, s, p6

1p
3
2, p

3
1〉

= 〈r, s, p3
1, p

3
2〉. (30)

This process is repeated to prove (27).
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4.3. Hexagon with a = 4: Bifurcation
point of multiplicity 3

When n is a multiple of 2, hexagons with a = 4 are
predicted to branch from a triple bifurcation point
that is associated with the three-dimensional irre-
ducible representation given as

T (r) =



0 1 0

0 0 1

1 0 0


, T (s) =



1 0 0

0 0 1

0 1 0


; (31)

T (p1) =




1 0 0

0 −1 0

0 0 −1


, T (p2) =



−1 0 0

0 1 0

0 0 −1


.

(32)

This corresponds to one of the four three-dimen-
sional irreducible representations of D6 +̇ (Zn ×
Zn) = 〈r, s, p1, p2〉 (Table 2).

The general procedure in Sec. 4.1 is applied to

Σ = 〈r, s, p2
1, p

2
2〉 = 〈r, s〉 +̇ 〈p2

1, p
2
2〉


 D6 +̇ (Zn/2 × Zn/2), (33)

which expresses the symmetry of the hexagon with
a = 4 of type V (Christaller’s k = 4 system) in
Fig. 4(c). The fixed-point subspace Fix(Σ) with
respect to T̃ = T in (31) and (32) is a one-
dimensional subspace of R

3 spanned by (1, 1, 1)�.
Then, by the equivariant branching lemma, there
exists a bifurcated path with the symmetry
of (33).

It is mentioned that a slight extension of a pre-
existing result can be utilized to obtain the concrete
form of the bifurcation equations and the asymp-
totic form of bifurcated paths. Specifically, the irre-
ducible representation in (31) and (32) is denoted
as T (3,1) in [Ikeda & Murota, 2010, Chapter 16], and
the flower mode solution there corresponds to the
solution expressing Lösch’s hexagon with a = 4.

Remark 4.2. For n = 2m (m is a positive integer),
there are successive bifurcations associated with a
hierarchy of subgroups

D6 +̇ (Zn × Zn) → D6 +̇ (Zn/2 × Zn/2)

→ · · · → D6 +̇ (Z2 × Z2)

→ D6 +̇ (Z1 × Z1) = D6, (34)

where → means the occurrence of bifurcation. These
successive bifurcations produce a set of nested

hexagons (see computational analysis in Sec. 5.2).
The spatial period doubles successively as

T

d
= 1 → 2 → · · · → n

2
→ n, (35)

which is called spatial period-doubling bifurcation
cascade.

4.4. Hexagons with a = 9, 12, 16, 25:
Bifurcation point of
multiplicity 6

A hexagon with a = 9, 12, 16 or 25 branches from
a bifurcation point of multiplicity 6. The hexagons
with a = 9(= 32), 16(= 42), 25(= 52) are of type V
with ϕ = 0, and the hexagon with a = 12 is of type
M with ϕ = π/6.

The group D6 +̇ (Zn × Zn) = 〈r, s, p1, p2〉, with
n ≥ 3, has six-dimensional irreducible representa-
tions. By defining

T (k,�,j)(r) =




S

S

S


,

T (k,�,j)(s) = σj




I

I

I


,

(36)

T (k,�,j)(p1) =




Rk

R�

R−k−�


,

T (k,�,j)(p2) =




R�

R−k−�

Rk


,

(37)

where σ1 = 1, σ2 = −1, and

R =




cos
2π
n

−sin
2π
n

sin
2π
n

cos
2π
n


, S =

[
1 0

0 −1

]
, (38)

we can designate the six-dimensional irreducible
representations by

(k, 	, j) = (k, 0, j) with 1 ≤ k ≤
⌊

n − 1
2

⌋
,

j ∈ {1, 2}; (39)
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or

(k, 	, j) = (k, k, j) with 1 ≤ k ≤
⌊

n − 1
2

⌋
,

k �= n

3
; j ∈ {1, 2}. (40)

The action given in (36) and (37) on six-
dimensional vectors, say, (w1, . . . , w6), can be
expressed for complex variables (z1, z2, z3) = (w1 +
iw2, w3 + iw4, w5 + iw6) as

r :




z1

z2

z3


 �→




z2

z3

z1


,

s :




z1

z2

z3


 �→




σjz2

σjz1

σjz3


,

(41)

p1 :




z1

z2

z3


 �→




ωkz1

ω�z2

ω−k−�z3


,

p2 :




z1

z2

z3


 �→




ω�z1

ω−k−�z2

ωkz3


,

(42)

where ω = exp(i2π/n).
Recall from Sec. 2.3 that Lösch’s hexagons with

a = 9, 12, 16, 25 are endowed with the symmetry
of

Σ(α,β) = 〈r, s〉 +̇ 〈pα
1 pβ

2 , p−β
1 pα−β

2 〉, (43)

where

(α, β;n) =




(3, 0; 3m) for a = 9,

(4, 2; 6m) for a = 12,

(4, 0; 4m) for a = 16,

(5, 0; 5m) for a = 25.

(44)

To apply the general procedure in Sec. 4.1 to
Σ = Σ(α,β) in (43) we search for irreducible repre-
sentations (k, 	, j) such that

Fix(Σ(α,β)) = {z = (z1, z2, z3) |T (k,�,j)(g) · z
= z for all g ∈ Σ(α,β)} (45)

is nontrivial with dimFix(Σ(α,β)) ≥ 1. Here
T (k,�,j)(g) · z means the action of g given in (41)
and (42), and the dependence of Fix(Σ(α,β)) on
(k, 	, j) is implicit in the notation.

Lemma 1. For (α, β;n) in (44) we have the follow-
ing.

(i) Fix(〈r, s〉) = {(ρ, ρ, ρ) | ρ ∈ R} for each (k, 	, j)
with j = 1; and Fix(〈r, s〉) = {0} for each
(k, 	, j) with j = 2.

(ii) Fix(Σ(α,β)) = {(ρ, ρ, ρ) | ρ ∈ R} holds for

(k, 	, j;n) =




(m, 0, 1; 3m) for a = 9,

none for a = 12,

(m, 0, 1; 4m) for a = 16,

(m, 0, 1; 5m),

(2m, 0, 1; 5m) for a = 25

(46)

or

(k, 	, j;n) =




none for a = 9,

(m,m, 1; 6m) for a = 12,

(m,m, 1; 4m) for a = 16,

(m,m, 1; 5m),

(2m, 2m, 1; 5m) for a = 25.

(47)

Proof

(i) This is immediate from (41).
(ii) The invariance of z = (z1, z2, z3) = (ρ, ρ, ρ)

with ρ �= 0 to pα
1 pβ

2 is expressed as

kα + 	β ≡ 0,

	α − (k + 	)β ≡ 0, (48)

−(k + 	)α + kβ ≡ 0 mod n,

whereas the invariance to p−β
1 pα−β

2 as

−kβ + 	(α − β) ≡ 0,

−	β − (k + 	)(α − β) ≡ 0,

(k + 	)β + k(α − β) ≡ 0 mod n,

which is equivalent to (48). For (k, 	) = (k, 0),
(48) is simplified to

kα ≡ 0, kβ ≡ 0, −kα + kβ ≡ 0 mod n,

(49)

and the parameter values (k, 	) = (k, 0) satis-
fying (49) in the range of (39) are enumerated
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by (46). For (k, 	) = (k, k), on the other hand,
(48) is reduced to

kα + kβ ≡ 0,

kα − 2kβ ≡ 0, (50)

−2kα + kβ ≡ 0 mod n,

and the parameter values (k, 	) = (k, k) satis-
fying (50) in the range of (40) are enumerated
by (47). �

The following is the main result of this section.

Proposition 1. Lösch’s hexagons with a = 9, 12,
16, and 25 arise as bifurcated solutions from bifur-
cation points of multiplicity 6 associated with the
irreducible representations given in (46) or (47).

Proof. For the parameter values in (46) or (47)
we have dimFix(Σ(α,β)) = 1 by Lemma 1(ii). Then
the equivariant branching lemma guarantees the
existence of a bifurcated solution h with Σ(h) =
Σ(α,β). �

Knowledge about the possible bifurcation
points given in Proposition 1 and Lemma 1 is help-
ful in conducting numerical analysis.

Remark 4.3. There exist no bifurcated solutions for
a = 3 or a = 4 from a bifurcation point of multi-
plicity 6. This follows from the fact that Eq. (48)
with (α, β) = (2, 1) or (2, 0) has no solution (k, 	)
satisfying (39) or (40).

Remark 4.4. There exist no bifurcated solutions for
a = 7, 13, 19, 21 (tilted hexagons) from a bifurca-
tion point of multiplicity 6. This follows from the
fact that Eq. (48) with (α, β) given later in (58)
has no solution (k, 	) satisfying (39) or (40).

4.5. Hexagons with a = 7, 13, 19, 21:
Bifurcation point of
multiplicity 12

A hexagon with a = 7, 13, 19 or 21 branches from a
bifurcation point of multiplicity 12. These hexagons
are tilted (ϕ �= 0, π/6) in contrast to the other
hexagons obtained in Secs. 4.2–4.4. The emergence
of such tilted hexagons is most phenomenal in the
present study.

The group D6 +̇ (Zn × Zn) = 〈r, s, p1, p2〉,
with n ≥ 6, has 12-dimensional irreducible rep-
resentations. We can designate them by (k, 	)

with

1 ≤ 	 ≤ k − 1, 2k + 	 ≤ n − 1, (51)

where the irreducible representation (k, 	) is defined
as

T (k,�)(r) =




S

S

S

S

S

S



,

T (k,�)(s) =




I

I

I

I

I

I




,

(52)

T (k,�)(p1) =




Rk

R�

R−k−�

Rk

R�

R−k−�




,

T (k,�)(p2) =




R�

R−k−�

Rk

R−k−�

Rk

R�



,

(53)

where

R =




cos
2π
n

−sin
2π
n

sin
2π
n

cos
2π
n


, S =

[
1 0

0 −1

]
. (54)

The action given in (52) and (53) on 12-
dimensional vectors, say, (w1, . . . , w12), can be
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expressed for complex variables zj = w2j−1 + iw2j

(j = 1, . . . , 6) as

r :




z1

z2

z3

z4

z5

z6




�→




z3

z1

z2

z5

z6

z4




, s :




z1

z2

z3

z4

z5

z6




�→




z4

z5

z6

z1

z2

z3




, (55)

p1 :




z1

z2

z3

z4

z5

z6




�→




ωk z1

ω� z2

ω−k−� z3

ωk z4

ω� z5

ω−k−� z6




,

p2 :




z1

z2

z3

z4

z5

z6




�→




ω� z1

ω−k−� z2

ωk z3

ω−k−� z4

ωk z5

ω� z6




,

(56)

where ω = exp(i2π/n).
Recall from Sec. 2.3 that Lösch’s hexagons with

a = 7, 13, 19, 21 are endowed with the symmetry
of

Σ(α,β)
0 = 〈r〉 +̇ 〈pα

1 pβ
2 , p−β

1 pα−β
2 〉, (57)

where

(α, β;n) =




(3, 1; 7m) for a = 7,

(4, 1; 13m) for a = 13,

(5, 2; 19m) for a = 19,

(5, 1; 21m) for a = 21.

(58)

To apply the general procedure in Sec. 4.1 to
Σ = Σ(α,β)

0 we search for irreducible representations
(k, 	) such that

Fix(Σ(α,β)
0 ) = {z = (z1, z2, z3, z4, z5, z6) |T (k,�)(g) · z

= z for all g ∈ Σ(α,β)
0 } (59)

is nontrivial with dimFix(Σ(α,β)
0 ) ≥ 1. Here

T (k,�)(g) · z means the action of g given in (55)

and (56), and the dependence of Fix(Σ(α,β)
0 ) on

(k, 	) are implicit in the notation.

Lemma 2. For (α, β;n) in (58) we have the follow-
ing.

(i) Fix(〈r〉) = {(ρ, ρ, ρ, ρ′, ρ′, ρ′) | ρ, ρ′ ∈ R} for
each (k, 	).

(ii) dim Fix(Σ(α,β)
0 ) ≤ 1 for each (k, 	).

(iii) If dim Fix(Σ(α,β)
0 ) = 1, then

Fix(Σ(α,β)
0 ) = {(ρ, ρ, ρ, 0, 0, 0) | ρ ∈ R} or

(60)

Fix(Σ(α,β)
0 ) = {(0, 0, 0, ρ′, ρ′, ρ′) | ρ′ ∈ R}.

(61)

(iv) (60) holds for

(k, 	;n) =




(2m,m; 7m) for a = 7,

(3m,m; 13m) for a = 13,

(3m, 2m; 19m),

(6m, 4m; 19m) for a = 19,

(4m,m; 21m),

(8m, 2m; 21m) for a = 21.

(62)

(v) (61) holds for

(k, 	;n) =




none for a = 7,

(5m, 2m; 13m) for a = 13,

(7m,m; 19m) for a = 19,

(6m, 3m; 21m) for a = 21.

(63)

Proof

(i) is immediate from the action of r in (55).
For the proof of (ii) to (v) we first consider

the symmetry of z = (z1, z2, z3, z4, z5, z6) = (ρ, ρ,
ρ, 0, 0, 0) with ρ �= 0. The invariance of such z to
pα
1 pβ

2 is expressed as

kα + 	β ≡ 0,

	α − (k + 	)β ≡ 0, (64)

−(k + 	)α + kβ ≡ 0 mod n,

whereas the invariance to p−β
1 pα−β

2 as

−kβ + 	(α − β) ≡ 0,

−	β − (k + 	)(α − β) ≡ 0,

(k + 	)β + k(α − β) ≡ 0 mod n,
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which is equivalent to (64). The parameter values
(k, 	) satisfying (64) in the range of (51) are enu-
merated by (62), as can be verified easily using the
relation n = (α2 − αβ + β2)m, which follows from
(5) and (58). Hence we have

Fix(Σ(α,β)
0 ) ⊇ {(ρ, ρ, ρ, 0, 0, 0) | ρ ∈ R} (65)

for (k, 	) in (62).
Next we consider, in a similar manner, the sym-

metry of z = (z1, z2, z3, z4, z5, z6) = (0, 0, 0, ρ′, ρ′, ρ′)
with ρ′ �= 0. The invariance of such z to pα

1 pβ
2 and

p−β
1 pα−β

2 is expressed as

kα − (k + 	)β ≡ 0,

	α + kβ ≡ 0, (66)
−(k + 	)α + 	β ≡ 0 mod n.

The parameter values (k, 	) satisfying (66) in the
range of (51) are enumerated by (63), and therefore

Fix(Σ(α,β)
0 ) ⊇ {(0, 0, 0, ρ′ , ρ′, ρ′) | ρ′ ∈ R} (67)

for (k, 	) in (63).
Since no (k, 	) is common to (62) and (63), (65)

and (67) cannot be true simultaneously. Further-
more, we can see from the above argument that if
z = (ρ, ρ, ρ, ρ′, ρ′, ρ′) ∈ Fix(Σ(α,β)

0 ), then we must
have ρ = 0 or ρ′ = 0. This shows the assertions (ii)
and (iii). Then the assertions in (iv) and (v) follow
from (65) and (67). �

Remark 4.5. We note the relation

k̂2 + k̂	̂ + 	̂2 ≡ 0 mod n̂ (68)

as a consequence of (64), where

k̂ =
k

gcd(k, 	, n)
, 	̂ =

	

gcd(k, 	, n)
,

n̂ =
n

gcd(k, 	, n)
,

in which gcd(k, 	, n) denotes the greatest common
divisor of k, 	, n. To see this, we first rewrite
(64) as

k̂α + 	̂β ≡ 0,

	̂α − (k̂ + 	̂)β ≡ 0,

−(k̂ + 	̂)α + k̂β ≡ 0 mod n̂,

and then eliminate β or α to obtain

(k̂2 + k̂	̂ + 	̂2)α ≡ 0, (k̂2 + k̂	̂ + 	̂2)β ≡ 0 mod n̂.

This implies (68), since α or β is relatively prime to
n̂ in each case of our interest in (58).

The following is the main result of this section.
Recall Fig. 4(d) for the hexagon with a = 7.

Proposition 2. Lösch’s hexagons with a = 7, 13,
19 and 21 arise as bifurcated solutions from bifur-
cation points of multiplicity 12 associated with the
irreducible representations given in (62) or (63).

Proof. For the parameter values in (62) or (63)
we have dimFix(Σ(α,β)

0 ) = 1 by Lemma 2. Then
the equivariant branching lemma guarantees the
existence of a bifurcated solution h with Σ(h) =
Σ(α,β)

0 . �

Detailed analysis of the bifurcation equations
is carried out in Appendix B. It shows, for exam-
ple, that the ρ versus τ curve at the bifurcation
point at (ρ, τ) = (0, 0) is given asymptotically as
Aτ + Bρ = 0. Knowledge about the bifurcated
solutions obtained through this analysis, as well as
about the bifurcation points stated in Lemma 2, is
helpful in conducting numerical analysis.

Remark 4.6. Bifurcated solutions representing
hexagons of type V from a bifurcation point of
multiplicity 12 are considered here. Such solutions
are characterized by the symmetry 〈r, s〉 +̇ 〈pα

1 , pα
2 〉

with α ≥ 2, which can be denoted as Σ(α,0), i.e.
Σ(α,β) with β = 0, in the notation of (43). Then we
have a = α2 in (5). First, by (55) we have

Fix(〈r, s〉) = {(ρ, ρ, ρ, ρ, ρ, ρ) | ρ ∈ R} (69)

for each (k, 	). We have dim Fix(Σ(α,0)) = 1 if
(k, 	) satisfies (64) and (66) for β = 0; other-
wise dim Fix(Σ(α,0)) = 0. This condition for (k, 	)
reduces to kα ≡ 	α ≡ 0 mod n, where (k, 	)
must lie in the range of (51). Then we must have
n = αm for some integer m, and (k, 	) is given as
(k, 	) = (pm, qm) with

1 ≤ q ≤ p − 1, 2p + q ≤ α − 1, p, q ∈ Z.

Such (k, 	) does not exist for α ≤ 5, showing that
there exist no bifurcated solutions from a bifurca-
tion point of multiplicity 12 that represent Lösch’s
hexagons with a = 4, 9, 16, 25 associated respec-
tively with α = 2, 3, 4, 5 (Table 1). For α ≥ 6, on the
other hand, the following parameter values satisfy
the above-mentioned condition.
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a (α, β) n (k, �)

36 (6, 0) 6m (2m, m)
49 (7, 0) 7m (2m, m)
64 (8, 0) 8m (2m, m), (3m, m)
81 (9, 0) 9m (2m, m), (3m, m), (3m, 2m)
...

...
...

...

These parameter values generically give rise to
bifurcated solutions representing hexagons of type
V. It is noted that when m = 1, we have α = n,
and hence the symmetry 〈r, s〉 +̇ 〈pα

1 , pα
2 〉 reduces to

〈r, s〉 = D6 (see Remark 4.8).

Remark 4.7. Bifurcated solutions representing
hexagons of type M from a bifurcation point
of multiplicity 12 are considered here. Such
solutions are characterized by the symmetry
〈r, s〉 +̇ 〈p2β

1 pβ
2 , p−β

1 pβ
2 〉, which can be denoted as

Σ(2β,β), i.e. Σ(α,β) with α = 2β, in the notation
of (43). Then we have a = 3β2 in (5). The expres-
sion (69) for the subspace Fix(〈r, s〉) is again valid
for each (k, 	). We have dim Fix(Σ(2β,β)) = 1 if
(k, 	) satisfies (64) and (66) for (α, β) = (2β, β);
otherwise dimFix(Σ(2β,β)) = 0. This condition is
equivalent to

(2k + 	)β ≡ (k + 2	)β ≡ (k − 	)β ≡ 0 mod n,

where (k, 	) must lie in the range of (51). Then we
must have n = 3βm for some integer m, and (k, 	)
is given as (k, 	) = (pm, qm) with

1 ≤ q ≤ p − 1, p − q ≡ 0 mod 3,

2p + q ≤ 3β − 1, p, q ∈ Z.

Such (k, 	) does not exist for β ≤ 3, showing that
there exist no bifurcated solutions from a bifurca-
tion point of multiplicity 12 that represent Lösch’s
hexagons with a = 3, 12 associated respectively
with β = 1, 2 (Table 1). For β ≥ 4, on the other
hand, the following parameter values satisfy the
above-mentioned condition.

a (α, β) n (k, �)

48 (8, 4) 12m (4m, m)
75 (10, 5) 15m (4m, m), (5m, 2m)

108 (12, 6) 18m (4m, m), (5m, 2m), (6m, 3m), (7m, m)
...

...
...

...

These parameter values generically give rise
to bifurcated solutions representing hexagons of
type M.

Remark 4.8. Bifurcated solutions with D6-
symmetry are considered here. Take z = (ρ, ρ, ρ,
ρ, ρ, ρ) with ρ �= 0. Since z ∈ Fix(〈r, s〉) by (69),
we have Σ(z) ⊇ 〈r, s〉. We often have Σ(z) = 〈r, s〉,
since, except for some special values of (k, 	) such as
those listed in Remarks 4.6 and 4.7, there exists no
nontrivial (α, β) that satisfies (64) and (66). Note
in this connection that we must have

(k − 	)α ≡ (2k + 	)α ≡ (2	 + k)α ≡ 0 mod n,

(k − 	)β ≡ (2k + 	)β ≡ (2	 + k)β ≡ 0 mod n

as a consequence of (64) and (66). For (k, 	;n) =
(k, k − 1;n) with 2 ≤ k ≤ n/3, for example, we
must have α ≡ β ≡ 0 mod n, and hence Σ(z) =
〈r, s〉. For the parameter values of (k, 	) for which
Σ(z) = 〈r, s〉 holds, the subgroup D6 = 〈r, s〉 is an
axial subgroup and, by the equivariant branching
lemma, there exist bifurcated solutions with D6-
symmetry (lacking translational symmetry). It is
noted that the normalized spatial period is given
as T/d =

√
a = n with (α, β) = (n, 0) or (0, n) in

(4) and (5). Figure 5 illustrates the pattern of such
solution for (k, 	;n) = (2, 1; 6). D6-symmetric bifur-
cated solutions correspond to “super hexagons”
investigated for the group D6 +̇ T2 in [Kirchgässner,
1979; Dionne et al., 1997].

Fig. 5. Pattern with D6-symmetry (n = 6).
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5. Computationally Obtained
Hexagonal Distributions

In this section, we examine spatial agglomeration
patterns of the population of skilled workers among
a system of places spread uniformly on a two-
dimensional domain. Computational bifurcation
analysis is conducted to obtain bifurcated solutions
from the uniformly distributed state of population
of the skilled workers for a system of n × n places
on the hexagonal lattice for n = 9, 16, and 19 to
observe several Lösch’s ten smallest hexagons. We
employ the following parameter values:

• The length d of the road connecting neighboring
places is d = 1/n.

• The constant expenditure share µ on industrial
varieties is µ = 0.4.

• The constant elasticity σ of substitution between
any two varieties is σ = 5.0.

• The inverse θ of variance of the idiosyncratic
tastes is θ = 1000.

• The total number H of skilled workers is H = 1.

5.1. Hexagons with a = 3 and a = 9
for 9 × 9 places

For the 9× 9 places with D6 +̇ (Z9 ×Z9)-symmetry,
we conducted the computational bifurcation

analysis to obtain the maximum population hmax

versus the transport parameter τ curves in Fig. 6(a).
Although several bifurcation points are found on the
trivial solution OABC with uniform population, we
specifically examine the bifurcation points A and B
of multiplicity M = 2, from which a hexagonal dis-
tribution with a = 3 emanates, and the bifurcation
point C of multiplicity M = 6, from which a hexag-
onal distribution with a = 9 emanates. Among
many bifurcation points of multiplicity M = 6, we
have chosen the bifurcation point C with the kernel
symmetry 〈p3

1, p
3
2〉.

On the bifurcated path ADB that branches
from the bifurcation points A and B of multiplicity
M = 2, we encounter Lösch’s smallest hexagon with
a = 3 that has 〈r, s, p2

1p2, p
−1
1 p2〉-symmetry and the

spatial period T/d =
√

a =
√

3 (Sec. 4.2).
On the bifurcated path DEC that branches

from the bifurcation point C of multiplicity M = 6,
we encounter Lösch’s fourth smallest hexagon with
a = 9 that has 〈r, s, p3

1, p
3
2〉-symmetry and has the

spatial period T/d =
√

a = 3 (Sec. 4.4).
At the bifurcation point D of multiplicity

2 on the primary bifurcated path ADB, we
encounter a secondary bifurcation. This is the
spatial period

√
3-times cascade (Remark 4.1), in

which the spatial period T is extended
√

3-times
repeatedly as

T

d
: 1 → √

3 → 3

(t1, t2) : (�1, �2) → (2�1 + �2,−�1 + �2) → (3�1, 3�2)

group : D6 +̇ (Z9 × Z9) → D6 +̇ (Z9 × Z3) → D6 +̇ (Z3 × Z3)

path : OABC → ADB → DEC

5.2. Hexagons with a = 4 and
a = 16 for 16 × 16 places

For the 16 × 16 places with D6 +̇ (Z16 × Z16)-
symmetry, Fig. 6(b) shows the maximum popula-
tion hmax versus the transport parameter τ curves.
Several bifurcation points are found on the trivial
solution OABC with uniform population. We specif-
ically examine the bifurcation points A and B of
multiplicity M = 3, from which a hexagonal distri-
bution with a = 4 emanates, and the bifurcation
point C of multiplicity M = 6, from which a hexag-
onal distribution with a = 16 emanates. Among
many bifurcation points of multiplicity M = 6, we
chose the bifurcation point C with the kernel sym-
metry 〈p4

1, p
4
2〉.

On the bifurcated path ADB that branches
from the bifurcation points A and B of multiplicity
M = 3, we encounter Lösch’s smallest hexagon with
a = 4 that has 〈r, s, p2

1, p
2
2〉-symmetry and the spa-

tial period T/d =
√

a =
√

4 (Sec. 4.3).
On the bifurcated path DEC that branches

from the bifurcation point C of multiplicity M = 6,
we encounter Lösch’s six–seventh smallest hexagon
with a = 16 that has 〈r, s, p4

1, p
4
2〉-symmetry and has

the spatial period T/d =
√

a =
√

16 (Sec. 4.4).
At the bifurcation point D of multiplicity 3 on

the primary bifurcated path ADB, we encounter a
secondary bifurcation. This is the spatial period-
doubling cascade, in which the spatial period T is
doubled repeatedly as
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(a)

ABC

D

M=6
M=12

M=2

0.1

0.05

0.01
0 1 2 3 4

maxh

Transport parameter

E

O

h

(b)

 
 

M=6
M=12

M=3

ABC

D

0.05

0.01

0 1 2 3 4

maxh

Transport parameter

E0.06

0.07

0.02

0.03

0.04

0.00
5 6 7

O

(c)

h

         

M=6
M=12

AB

CD0.05

0.01

0 1 2 3 4

maxh

Transport parameter

0.02

0.03

0.04

0.00
5 6 7

O
8

Fig. 6. Maximum population hmax versus the transport parameter τ curves. (The solid curve is stable and the dashed curve
is unstable. The hexagonal window is cut from the infinite domain that is obtained by repeating the n × n hexagonal lattice
spatially; and the area of each circle is proportional to the population of the skilled workers at that place.) (a) Hexagons with
a = 3 and a = 9 for 9 × 9 places, (b) Hexagons with a = 4 and a = 16 for 16 × 16 places, and (c) Hexagon with a = 19 for
19 × 19 places.
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T

d
: 1 → 2 → 22

(t1, t2) : (�1, �2) → (2�1, 2�2) → (22�1, 22�2)

group : D6 +̇ (Z16 × Z16) → D6 +̇ (Z8 × Z8) → D6 +̇ (Z4 × Z4)

path : OABC → ADB → DEC

This hierarchy is in agreement with the theoreti-
cally predicted hierarchy (34) and (35) for n = 16.

5.3. Hexagons with a = 19 for
19 × 19 places

For the 19 × 19 places with D6 +̇ (Z19 × Z19)-
symmetry, Fig. 6(c) shows the maximum popula-
tion hmax versus the transport parameter τ curves.
Several bifurcation points are found on the trivial
solution OAB with uniform population. We specif-
ically examine the bifurcation points A and B of
multiplicity M = 12 from which hexagonal distri-
butions of interest emanate. On the bifurcated path
ACDB that branches from these two bifurcation
points A and B we encounter Lösch’s eighth small-
est hexagon with a = 19 that has 〈r, p5

1p
2
2, p

−2
1 p3

2〉-
symmetry and the spatial period T/d =

√
a =

√
19

(Sec. 4.5).

6. Conclusion

For a two-dimensional system modeled by a core-
periphery model in new economic geography, self-
organization of hexagonal population distributions
for Lösch’s ten smallest hexagons in central place
theory is predicted by equivariant bifurcation anal-
ysis, and its existence is verified by computational
bifurcation analysis. The equivariant bifurcation
analysis has displayed its usefulness to predict pos-
sible bifurcating agglomeration patterns among a
system of places in two dimensions, often associated
with successive elongation of spatial periods.

Information about symmetries of bifurcated
solutions offered by the equivariant bifurcation
analysis is important in the computational analy-
sis for choosing a bifurcation point that produces
hexagonal distributions of interest. In particular,
it is to be emphasized that tilted hexagons (super
hexagons) that are directed towards different direc-
tions than the original hexagonal lattice do branch
from bifurcation points of multiplicity 12.

The inherent capability of the core-periphery
model to express those systems, provided with

pertinent spatial platforms, is demonstrated. Major
results of this paper, in principle, are applicable
to other core-periphery models, and its applica-
tion to other core-periphery models is a topic in
the future.

Acknowledgments

Discussion with Dr. Kono and Dr. Takayama was
important in this study. Support of Grant-in-Aid
for Scientific Research (B) 19360227/21360240 is
acknowledged. This research is partially supported
by the Aihara Project, the FIRST program from
JSPS, initiated by CSTP.

References

Beavon, K. S. O. [1977] Central Place Theory: A Rein-
terpretation (Longman, London).

Bénard, H. [1900] “Les tourbillons cellulaires dans une
nappe liquide,” Rev. Gén. Sci. Pure Appl. 11, 1261–
1271, 1309–1328.

Buzano, E. & Golubitsky, M. [1983] “Bifurcation on the
hexagonal lattice and the planar Bénard problem,”
Phil. Trans. Roy. Soc. London A 308, 617–667.

Christaller, W. [1966] Central Places in Southern Ger-
many (Prentice Hall, Englewood Cliffs).

Clarke, M. & Wilson, A. G. [1985] “The dynamics of
urban spatial structure: The progress of a research
programme,” Trans. Inst. British Geographers, New
Ser. 10, 427–451.

Combes, P. P., Mayer, T. & Thisse, J. F. [2008] Economic
Geography (Princeton University Press, Princeton).

Curtis, C. W. & Reiner, I. [1962] Representation The-
ory of Finite Groups and Associative Algebras (Wiley
(Interscience), NY).

Dionne, B. & Golubitsky, M. [1992] “Planforms in two
and three dimensions,” Zeit. Angew. Math. Phys. 43,
36–62.

Dionne, B., Silber, M. & Skeldon, A. C. [1997] “Stabil-
ity results for steady, spatially, periodic planforms,”
Nonlinearity 10, 321–353.

Flam, H. & Helpman, E. [1987] “Industrial policy
under monopolistic competition,” J. Int. Econ. 22,
79–102.

1230026-20

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
O

H
O

K
U

 U
N

IV
E

R
SI

T
Y

 o
n 

09
/1

8/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 21, 2012 16:12 WSPC/S0218-1274 1230026
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Appendix A

Core-Periphery Model

Details of the core-periphery model in Sec. 3 are
presented. After presenting basic assumptions, we
describe the short-run equilibrium and define the
long-run equilibrium and its stability.

A.1. Basic assumptions

Preferences U over the M- and A-sector goods are
identical across individuals, where M signifies man-
ufacture and A stands for agriculture. The utility
of an individual in place i is3

U(CM
i , CA

i ) = µ ln CM
i + (1 − µ) ln CA

i ,

(0 < µ < 1), (A.1)

where µ is the constant expenditure share on
industrial varieties, CA

i is the consumption of
the A-sector product in place i, and CM

i is the

3We take logarithms of the Forslid and Ottaviano [2003] type (i.e. Cobb–Douglas-type) utility function to facilitate the analysis.
This transformation has no influence on the properties of the model.
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manufacturing aggregate in place i and is defined
as

CM
i ≡


∑

j

∫ nj

0
qji(k)(σ−1)/σdk




σ/(σ−1)

,

where qji(k) is the consumption in place i of a vari-
ety k ∈ [0, nj ] produced in place j, nj is the con-
tinuum range of varieties produced in place j, often
called the number of available varieties, and σ > 1 is
the constant elasticity of substitution between any
two varieties. The budget constraint is given as

pA
i CA

i +
∑

j

∫ nj

0
pji(k)qji(k)dk = Yi, (A.2)

where pA
i is the price of A-sector goods in place i,

pji(k) is the price of a variety k in place i produced
in place j and Yi is the income of an individual in
place i. The incomes (wages) of the skilled worker
and the unskilled worker are represented, respec-
tively, by wi and wL

i . We denote by K the number
of places, and therefore i and j run through 1 to K.

An individual in place i maximizes (A.1)
subject to (A.2). This yields the following demand
functions:

CA
i = (1 − µ)

Yi

pA
i

, CM
i = µ

Yi

ρi
,

qji(k) = µ
pA

i ρσ−1
i Yi

pji(k)σ
,

(A.3)

where ρi denotes the price index of the differenti-
ated product in place i, which is

ρi =


∑

j

∫ nj

0
pji(k)1−σdk




1/(1−σ)

. (A.4)

Since the total income and population in place i are
wihi +wL

i and hi +1, respectively, we have the total
demand Qji(k) in place i for a variety k produced
in place j:

Qji(k) = µ
pA

i ρσ−1
i

pji(k)σ
(wihi + wL

i ). (A.5)

The A-sector is perfectly competitive and pro-
duces homogeneous goods under constant returns
to scale technology, which requires one unit of
unskilled labor in order to produce one unit of out-
put. For simplicity, we assume that the A-sector

goods are transported freely between places and
that they are chosen as the numèraire. These
assumptions mean that, in equilibrium, the wage
of an unskilled worker wL

i is equal to the price of
A-sector goods in all places (i.e. pA

i = wL
i = 1 for

each i = 1, . . . ,K).
The M-sector output is produced under increas-

ing returns to scale technology and Dixit–Stiglitz
monopolistic competition. A firm incurs a fixed
input requirement of α units of skilled labor and a
marginal input requirement of β units of unskilled
labor. Given the fixed input requirement α, the
skilled labor market clearing implies that, in equi-
librium, the number of firms in place i is determined
by ni = hi/α. An M-sector firm located in place i
chooses (pij(k) | j = 1, . . . ,K) that maximizes its
profit

Πi(k) =
∑

j

pij(k)Qij(k) − (αwi + βxi(k)),

where xi(k) is the total supply. The transportation
costs for M-sector goods are assumed to take the
iceberg form.4 That is, for each unit of M-sector
goods transported from place i to place j �= i, only
a fraction 1/φij < 1 arrives. Consequently, the total
supply xi(k) is given as

xi(k) =
∑

j

φijQij(k). (A.6)

To put it concretely, we define the transport cost
φij between the two places i and j as

φij = exp(τDij), (A.7)

where τ is the transport parameter and Dij

represents the shortest distance between places
i and j.

Since we have a continuum of firms, each firm is
negligible in the sense that its action has no impact
on the market (i.e. the price indices). Therefore, the
first-order condition for profit maximization gives

pij(k) =
σβ

σ − 1
φij . (A.8)

This expression implies that the price of the M-
sector product does not depend on variety k, so
that Qij(k) and xi(k) do not depend on k. There-
fore, we describe these variables without the argu-
ment k. Substituting (A.8) into (A.4), we have the

4This is a standard term in economics; see, for example [Fujita et al., 1999].
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price index

ρi =
σβ

σ − 1


 1

α

∑
j

hjdji




1/(1−σ)

, (A.9)

where dji = φ1−σ
ji is a spatial discounting factor

between places j and i; from (A.5) and (A.9), dji

is obtained as (pjiQji)/(piiQii), which means that
dji is the ratio of total expenditure in place i for
each M-sector product produced in place j to the
expenditure for a domestic product.

A.2. Short-run equilibrium

In the short run, skilled workers are immobile
between places, i.e. their spatial distribution (h =
(hi) ∈ R

K) is assumed to be given. The short-run
equilibrium conditions consist of the M-sector goods
market clearing condition and the zero-profit con-
dition because of the free entry and exit of firms.
The former condition can be written as (A.6). The
latter condition requires that the operating profit
of a firm is absorbed entirely by the wage bill of its
skilled workers:

wi(h, τ) =
1
α



∑

j

pijQij(h, τ) − βxi(h, τ)


.

(A.10)

Substituting (A.5), (A.6), (A.8) and (A.9) into
(A.10), we have the short-run equilibrium wage:

wi(h, τ) =
µ

σ

∑
j

dij

∆j(h, τ)
(wj(h, τ)hj + 1),

(A.11)

where ∆j(h, τ) ≡ ∑
k dkjhk denotes the mar-

ket size of the M-sector in place j. Consequently,
dij/∆j(h, τ) defines the market share in place j of
each M-sector product produced in place i.

The indirect utility vi(h, τ) is obtained by sub-
stituting (A.3), (A.9), and (A.11) into (A.1):5

vi(h, τ) = Si(h, τ) + ln[wi(h, τ)], (A.12)

where

Si(h, τ) ≡ µ(σ − 1)−1 ln ∆i(h, τ).

For convenience in conducting the following analy-
sis, we express the indirect utility function v(h, τ)
in vector form, using the spatial discounting matrix
D = (dij), as

v(h, τ) = S(h, τ) + ln[w(h, τ)], (A.13)

w(h, τ) =
µ

σ
[I − W(h, τ)]−1w(L)(h, τ), (A.14)

where

S(h, τ) ≡ [S1(h, τ), . . . , SK(h, τ)]�,

ln[w] ≡ [ln w1, ln w2, . . . , ln wK ]�,

I is a unit matrix, and W(h, τ), w(H), w(L) and M
are defined as

W ≡ µ

σ
Mdiag[h], w(H) ≡ Mh, w(L) ≡ M1,

(A.15a)

M ≡ D∆−1, ∆ ≡ diag[D�h], 1 ≡ [1, . . . , 1]�.

(A.15b)

A.3. Adjustment process, long-run
equilibrium and stability

In the long run, the skilled workers are inter-
regionally mobile. They are assumed to be heteroge-
neous in their preferences for location choice. That
is, the indirect utility for an individual s in place i
is expressed as

v
(s)
i (h, τ) = vi(h, τ) + ε

(s)
i .

In this equation, ε
(s)
i , which is distributed con-

tinuously across individuals, denotes the utility
representing the idiosyncratic taste for residential
location.

We present the dynamics of the migration of
the skilled workers to define the long-run equilib-
rium and its stability with respect to small pertur-
bations (i.e. local stability). We assume that at each
time period t, the opportunity for skilled workers to
migrate emerges according to an independent Pois-
son process with arrival rate λ. That is, for each
time interval [t, t + dt), a fraction λdt of skilled
workers have the opportunity to migrate. Given an
opportunity at time t, each worker chooses the place
that provides the highest indirect utility v

(s)
i (h, τ),

5We ignore the constant terms, which have no influence on the results below.
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which depends on the current distribution h = h(t).
The fraction of skilled workers who choose place i
under distribution h is Pi(v(h), τ), where

Pi(v, τ) = Pr[v(s)
i > v

(s)
j , ∀ j �= i].

Therefore, we have

hi(t + dt) = (1 − λdt)hi(t) + λdtHPi(v(h(t)), τ).

By normalizing the unit of time so that λ = 1, we
obtain the following adjustment process:

ḣ(t) = F(h(t), τ) ≡ HP(v(h(t)), τ) − h(t),
(A.16)

where ḣ(t) denotes the time derivative of h(t), and
P(v(h), τ) = (Pi(v(h), τ)). For the specific func-
tional form of Pi(v, τ), we use the logit choice
function:

Pi(v, τ) ≡ exp[θvi]∑
j

exp[θvj]
, (A.17)

where θ ∈ (0,∞) is the parameter denoting the
inverse of variance of the idiosyncratic tastes. This
implies the assumption that the distributions of
(ε(s)

i )’s are Gumbel distributions, which are iden-
tical and independent across places [McFadden,
1974]. The adjustment process described by (A.16)
and (A.17) is the logit dynamics, which has been
studied in evolutionary game theory [Fudenberg &
Levine, 1998; Hofbauer & Sandholm, 2002; Sand-
holm, 2010].

Next, we define the long-run equilibrium and
its stability. The long-run equilibrium is a station-
ary point of the adjustment process of (A.16).

Definition A.1. The long-run equilibrium is
defined as the distribution h∗ that satisfies

F(h∗, τ) ≡ HP(v(h∗), τ) − h∗ = 0. (A.18)

The heterogeneous worker case includes the con-
ventional homogeneous worker case. Indeed, when
θ → ∞, the condition given in (A.18) reduces to
that for the homogeneous worker case:{

V ∗ − vi(h∗, τ) = 0 if h∗
i > 0,

V ∗ − vi(h∗, τ) ≥ 0 if h∗
i = 0,

where V ∗ denotes the equilibrium utility.

We restrict our concern to the neighborhood
of h∗, and define the stability of h∗ in the sense of
asymptotic stability, the precise definition of which
is the following.

Definition A.2. A long-run equilibrium h∗ is
asymptotically stable if, for any ε > 0, there is
a neighborhood N(h∗) of h∗ such that, for every
h0 ∈ N(h∗), the solution h(t) of (A.16) with an
initial value h(0) ≡ h0 satisfies ||h(t) − h∗|| < ε for
any time t ≥ 0, and limt→∞ h(t) = h∗. It is unstable
if equilibrium h∗ is not asymptotically stable.

In dynamic system theory, h∗ is asymptotically
stable if all the eigenvalues of the Jacobian matrix
∇F(h, τ) ≡ (∂Fi(h, τ)/∂hj) of the adjustment pro-
cess of (A.16) have negative real parts; otherwise h∗
is unstable [Hirsch & Smale, 1974]. Therefore, the
asymptotic stability can be assessed by examining
the following Jacobian matrix:

∇F(h, τ) = HJ(v(h), τ)∇v(h, τ) − I, (A.19)

where J(v, τ) and ∇v(h, τ) are K-by-K matri-
ces, the (i, j) entries of which are, respectively,
∂Pi(v, τ)/∂vj and ∂vi(h, τ)/∂hj . For the logit
choice function of (A.17), it is easily verified that
the former Jacobian matrix J(v, τ) is expressed as

J(v, τ) = θ{diag[P(v, τ)] − P(v, τ)P(v, τ)�}.
(A.20)

The latter Jacobian matrix ∇v(h, τ) is given as

∇v(h, τ) = ∇S(h, τ) + diag[w(h, τ)]−1∇w(h, τ),
(A.21)

∇w(h, τ) =
µ

σ
[I − W(h, τ)]−1

×{∇ŵ(H)(h, τ) + ∇w(L)(h, τ)},
(A.22)

where the matrices ∇S(h, τ), ∇ŵ(H)(h, τ),
∇w(H)(h, τ) and ∇w(L)(h, τ) are obtained as

∇S(h, τ) = µ(σ − 1)−1M�, (A.23)

∇ŵ(H)(h, τ) = Mdiag[w(h, τ)]

−Mdiag[w(h, τ)]diag[h]M�,

(A.24)

∇w(H)(h, τ) = M − Mdiag[h]M�, (A.25)

∇w(L)(h, τ) = −MM�. (A.26)
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Appendix B

Bifurcated Solutions at Bifurcation
Point of Multiplicity 12

We consider a group-theoretic bifurcation point of
multiplicity 12. To investigate Lösch’s hexagons
with a = 7, 13, 19, 21, we restrict ourselves to the
cases of n = 7m, 13m, 19m, and 21m with m = 1,
2, . . . (58).

B.1. Equivariance of bifurcation
equation

Our objective here is to demonstrate that Lösch’s
hexagons with a = 7, 13, 19, 21 can be understood as
bifurcated solutions from bifurcation points of mul-
tiplicity 12. As it turns out, not every bifurcation
point of multiplicity 12 serves for this possibility,
but only if it is associated with a 12-dimensional
irreducible representation (k, 	) in (52) and (53)
with some special values of k and 	.

To be specific, we investigate the following
cases:

(n, k, 	) = (7m, 2m,m), (13m, 3m,m),

(19m, 3m, 2m), (21m, 4m,m), (B.1)

where m = 1, 2, . . . , corresponding to some of
Lösch’s ten smallest hexagons. We define

n̂ =
n

m
, k̂ =

k

m
, 	̂ =

	

m
, (B.2)

to obtain

(n̂, k̂, 	̂) = (7, 2, 1), (13, 3, 1), (19, 3, 2), (21, 4, 1).

(B.3)

Note that n̂, k̂, and 	̂ are pairwise relatively prime
and satisfy

n̂ = k̂2 + k̂	̂ + 	̂2, (B.4)

which plays a key role in the subsequent derivation.
The bifurcation equation for the group-

theoretic bifurcation point of multiplicity 12 is a
12-dimensional equation over R. This equation can
be expressed as a six-dimensional complex-valued
equation in complex variables z1, . . . , z6 as

Fi(z1, . . . , z6, τ) = 0, i = 1, . . . , 6, (B.5)

where

(z1, . . . , z6, τ) = (0, . . . , 0, 0)

is assumed to correspond to the bifurcation point.
We often omit τ in the subsequent derivation.

Since the group D6 +̇ (Zn ×Zn) is generated by
the four elements r, s, p1, p2, the equivariance of the
bifurcation equation to the group D6 +̇ (Zn ×Zn) is
equivalent to the equivariance to the action of these
four elements. Therefore, the equivariance condition
for (B.5) can be written as

r : F3(z1, z2, z3, z4, z5, z6)

= F1(z3, z1, z2, z5, z6, z4), (B.6)

F1(z1, z2, z3, z4, z5, z6)

= F2(z3, z1, z2, z5, z6, z4), (B.7)

F2(z1, z2, z3, z4, z5, z6)

= F3(z3, z1, z2, z5, z6, z4), (B.8)

F5(z1, z2, z3, z4, z5, z6)

= F4(z3, z1, z2, z5, z6, z4), (B.9)

F6(z1, z2, z3, z4, z5, z6)

= F5(z3, z1, z2, z5, z6, z4), (B.10)

F4(z1, z2, z3, z4, z5, z6)

= F6(z3, z1, z2, z5, z6, z4); (B.11)

s : Fi+3(z1, z2, z3, z4, z5, z6)

= Fi(z4, z5, z6, z1, z2, z3),

Fi(z1, z2, z3, z4, z5, z6)

= Fi+3(z4, z5, z6, z1, z2, z3),

i = 1, 2, 3; (B.12)

pj : ωjiFi(z1, . . . , z6)

= Fi(ωj1z1, . . . , ωj6z6), j = 1, 2;

i = 1, . . . , 6, (B.13)

where

(ω11, . . . , ω16) = (ωk, ω�, ω−k−�, ωk, ω�, ω−k−�),

(ω21, . . . , ω26) = (ω�, ω−k−�, ωk, ω−k−�, ωk, ω�).

We expand F1 as

F1(z1, z2, z3, z4, z5, z6)

=
∑
a=0

∑
b=0

· · ·
∑
u=0

Aabcdeghijstu(τ)

× za
1zb

2z
c
3z

d
4ze

5z
g
6z1

hz2
iz3

jz4
sz5

tz6
u.

(B.14)
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Since (z1, z2, z3, z4, z5, z6, τ) = (0, 0, 0, 0, 0, 0, 0) cor-
responds to the bifurcation point of multiplicity 12,
we have

A000000000000(0) = 0, (B.15)

A100000000000(0) = A010000000000(0)

= · · · = A000000000001(0). (B.16)

The equivariance conditions (B.6)–(B.8) with
respect to r give

F1(z1, z2, z3, z4, z5, z6) = F2(z3, z1, z2, z5, z6, z4)

= F3(z2, z3, z1, z6, z4, z5)

= F1(z1, z2, z3, z4, z5, z6),

from which we see that Aab···tu are real. Then
F2, . . . , F6 are obtained from the equivariance con-
ditions (B.6)–(B.11) and (B.12) with respect to r
and s as

F2(z1, z2, z3, z4, z5, z6) = F1(z2, z3, z1, z6, z4, z5),

(B.17)

F3(z1, z2, z3, z4, z5, z6) = F1(z3, z1, z2, z5, z6, z4),

(B.18)

F4(z1, z2, z3, z4, z5, z6) = F1(z4, z5, z6, z1, z2, z3),

(B.19)

F5(z1, z2, z3, z4, z5, z6) = F1(z5, z6, z4, z3, z1, z2),

(B.20)

F6(z1, z2, z3, z4, z5, z6) = F1(z6, z4, z5, z2, z3, z1).

(B.21)

Next we determine the set of indices (a,
b, . . . , t, u) of nonvanishing coefficients Aab···tu(τ) in
(B.14). The equivariance conditions (B.13) with
respect to p1 and p2 yield

k(a − h) + 	(b − i) − (k + 	)(c − j)

+ k(d − s) + 	(e − t) − (k + 	)(g − u)

≡ k mod n, (B.22)

	(a − h) − (k + 	)(b − i) + k(c − j)

− (k + 	)(d − s) + k(e − t) + 	(g − u)

≡ 	 mod n, (B.23)

which are equivalent, by (B.2), to

k̂(a − h) + 	̂(b − i) − (k̂ + 	̂)(c − j)

+ k̂(d − s) + 	̂(e − t) − (k̂ + 	̂)(g − u)

≡ k̂ mod n̂, (B.24)

	̂(a − h) − (k̂ + 	̂)(b − i) + k̂(c − j)

− (k̂ + 	̂)(d − s) + k̂(e − t) + 	̂(g − u)

≡ 	̂ mod n̂. (B.25)

By introducing

(m1,m2,m3) = (k̂, 	̂, −(k̂ + 	̂)) (B.26)

we can rewrite (B.24) and (B.25) as

(m1,m2,m3,m1,m2,m3)

· (a − h, b − i, c − j, d − s, e − t, g − u)

≡ m1 mod n̂, (B.27)

(m2,m3,m1,m3,m1,m2)

· (a − h, b − i, c − j, d − s, e − t, g − u)

≡ m2 mod n̂, (B.28)

where “·” denotes the inner product of vectors. We
denote by S as the set of indices (a, b, . . . , t, u) that
satisfy the above conditions, i.e.

S = {(a, b, . . . , t, u) | (B.27) and (B.28)}. (B.29)

Then (a, b, . . . , t, u) must belong to S if Aab···tu(τ) �=
0, and the converse is also true generically, except
for the cases described in (B.15) and (B.16). Hence
(B.14) can be replaced by

F1(z1, z2, z3, z4, z5, z6)

=
∑
S

Aabcdeghijstu(τ)

× za
1zb

2z
c
3z

d
4ze

5z
g
6z1

hz2
iz3

jz4
sz5

tz6
u. (B.30)

We observe here two facts that we need in
Sec. B.2. The first fact is:

a + b + c + h + i + j

≥ 1 for every (a, b, . . . , t, u) ∈ S. (B.31)

To see this we calculate [(B.24)×(k̂+ 	̂)+(B.25)×k̂]
using (B.4), to obtain

(k̂2 + 2k̂	̂)(a − h) + (	̂2 − k̂2)(b − i)

− (2k̂	̂ + 	̂2)(c − j) ≡ k̂2 + 2k̂	̂ mod n̂.
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Hence we must have

(a, b, c, h, i, j) �= (0, 0, 0, 0, 0, 0),

since k̂2 + 2k̂	̂ �≡ 0 mod n̂ for the parameter values
in (B.3). The second fact is:

(m3,m1,m2,m2,m3,m1)

· (a − h, b − i, c − j, d − s, e − t, g − u)

≡ m3 mod n̂, (B.32)

which results from the addition of (B.24) and
(B.25).

B.2. Bifurcated solutions

For the bifurcation equation (B.5) we show the pres-
ence of bifurcated solutions such that

|z1| = |z2| = |z3|, z4 = z5 = z6 = 0. (B.33)

As their conjugate solutions, there also exist bifur-
cated solutions with

z1 = z2 = z3 = 0, |z4| = |z5| = |z6|. (B.34)

Although we do not exclude the possibility of other
bifurcated solutions, those bifurcated solutions in
(B.33) and (B.34) are sufficient for our purpose
since they correspond to Lösch’s hexagons with
a = 7, 13, 19, 21, as we see below.

In the following, we focus on the solutions with
|z1| = |z2| = |z3| and z4 = z5 = z6 = 0 in (B.33).
Such solutions satisfy F4 = F5 = F6 = 0, since

(B.19)–(B.21) together with (B.31) imply

F4(z1, z2, z3, 0, 0, 0) = F1(0, 0, 0, z1 , z2, z3) = 0,

F5(z1, z2, z3, 0, 0, 0) = F1(0, 0, 0, z3 , z1, z2) = 0,

F6(z1, z2, z3, 0, 0, 0) = F1(0, 0, 0, z2 , z3, z1) = 0.

On the other hand, we see from (B.30) that

F1(z1, z2, z3, 0, 0, 0)

=
∑
P

Aabc000hij000(τ)za
1zb

2z
c
3z1

hz2
iz3

j, (B.35)

where

P = {(a, b, c, h, i, j) |
(a, b, c, 0, 0, 0, h, i, j, 0, 0, 0) ∈ S}.

For any (a, b, c, h, i, j) ∈ P we have

(m1,m2,m3) · (a − h, b − i, c − j) ≡ m1 mod n̂,

(B.36)

(m2,m3,m1) · (a − h, b − i, c − j) ≡ m2 mod n̂,

(B.37)

(m3,m1,m2) · (a − h, b − i, c − j) ≡ m3 mod n̂

(B.38)

by (B.27), (B.28) and (B.32). To find solutions for
F1 = F2 = F3 = 0, we set

zj = ρ exp(iθj) (j = 1, 2, 3).

Then, using (B.35) with (B.17) and (B.18), we
obtain

F1(z1, z2, z3, 0, 0, 0) =
∑
P

Aabc000hij000(τ)za
1zb

2z
c
3z1

hz2
iz3

j

=
∑
P

Aabc000hij000(τ)ρa+b+c+h+i+j exp i[(θ1, θ2, θ3) · (a − h, b − i, c − j)],

F2(z1, z2, z3, 0, 0, 0) = F1(z2, z3, z1, 0, 0, 0)

=
∑
P

Aabc000hij000(τ)za
2zb

3z
c
1z2

hz3
iz1

j

=
∑
P

Aabc000hij000(τ)ρa+b+c+h+i+j exp i[(θ2, θ3, θ1) · (a − h, b − i, c − j)],

F3(z1, z2, z3, 0, 0, 0) = F1(z3, z1, z2, 0, 0, 0)

=
∑
P

Aabc000hij000(τ)za
3zb

1z
c
2z3

hz1
iz2

j

=
∑
P

Aabc000hij000(τ)ρa+b+c+h+i+j exp i[(θ3, θ1, θ2) · (a − h, b − i, c − j)].
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We consider two sets of solution candidates

(θ1, θ2, θ3) =




2πt

n̂
(m1,m2,m3) (t = 0, 1, . . . , n̂ − 1),

2πt

n̂
(m1,m2,m3) + π(1, 1, 1) (t = 0, 1, . . . , n̂ − 1).

(B.39)

For the first set (θ1, θ2, θ3) = 2πt
n̂ (m1,m2,m3), we have

(θ1, θ2, θ3) · (a − h, b − i, c − j) =
2πt

n̂
(m1,m2,m3) · (a − h, b − i, c − j) ≡ 2πt

n̂
m1 = θ1 mod 2π

by (B.36). Therefore,

F1 = ρ exp(iθ1)
∑

(a,b,c,h,i,j)∈P

Aabc000hij000(τ)ρa+b+c+h+i+j−1.

Similarly, for F2 and F3, we use (B.37) and (B.38) to obtain

F2 = ρ exp(iθ2)
∑

(a,b,c,h,i,j)∈P

Aabc000hij000(τ)ρa+b+c+h+i+j−1,

F3 = ρ exp(iθ3)
∑

(a,b,c,h,i,j)∈P

Aabc000hij000(τ)ρa+b+c+h+i+j−1.

Therefore,
F1

ρ exp(iθ1)
=

F2

ρ exp(iθ2)
=

F3

ρ exp(iθ3)
=

∑
(a,b,c,h,i,j)∈P

Aabc000hij000(τ)ρa+b+c+h+i+j−1,

and the bifurcated solution curve is determined from∑
(a,b,c,h,i,j)∈P

Aabc000hij000(τ)ρa+b+c+h+i+j−1 = 0. (B.40)

The leading terms of (B.40) are given as

Aτ + Bρ = 0 (B.41)

with generically nonzero coefficients A and B (see Remark 6.1). Equation (B.41) has a solution of the form
ρ = cτ for some c �= 0, which shows the generic existence of bifurcated solutions for all (θ1, θ2, θ3) in (B.39).

For the second set (θ1, θ2, θ3) = 2πt
n̂ (m1,m2,m3) + π(1, 1, 1) in (B.39), we have

(θ1, θ2, θ3) · (a − h, b − i, c − j) =
2πt

n̂
(m1,m2,m3) · (a − h, b − i, c − j) + π(a + b + c − h − i − j)

≡ θ1 + π(a + b + c − h − i − j) mod 2π

by (B.36). Therefore,

F1 = ρ exp(iθ1)
∑

(a,b,c,h,i,j)∈P

Aabc000hij000(τ)(−1)a+b+c−h−i−jρa+b+c+h+i+j−1.

Likewise, we have
F1

ρ exp(iθ1)
=

F2

ρ exp(iθ2)
=

F3

ρ exp(iθ3)
=

∑
(a,b,c,h,i,j)∈P

Aabc000hij000(τ)(−1)a+b+c−h−i−jρa+b+c+h+i+j−1,

and the bifurcated solution curve is determined from∑
(a,b,c,h,i,j)∈P

Aabc000hij000(τ)(−1)a+b+c−h−i−jρa+b+c+h+i+j−1 = 0. (B.42)
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The leading terms of (B.42) are given as

− Aτ + Bρ = 0 (B.43)

with generically nonzero coefficients A and B (see
Remark 6.1).

Remark 6.1. The coefficients A and B in (B.41)
and (B.43) are considered here. First note that a +
b + c + h + i + j ≥ 1 for all (a, b, c, h, i, j) ∈ P
with the equality holding only for (a, b, c, h, i, j) =
(1, 0, 0, 0, 0, 0). This shows A = A′

100000000000(0),
which denotes the derivative of A100000000000(τ)
with respect to τ , evaluated at τ = 0. The other
coefficient B is given as the sum of Aabc000hij000(0)
over all (a, b, c, h, i, j) ∈ P with a + b + c +
h + i + j = 2. We have B = A000000011000(0) +
A001000100000(0) + A020000000000(0) for (n̂, k̂, 	̂) = (7,
2, 1) and B = A000000011000(0) for (n̂, k̂, 	̂) = (13,
3, 1), (19, 3, 2), (21, 4, 1).

B.3. Symmetry of solutions

To reveal the symmetry of the bifurcated solutions,
we first consider the case of (θ1, θ2, θ3) = (0, 0, 0)
in (B.39). Then z1 = z2 = z3 = ρ ∈ R, whereas
z4 = z5 = z6 = 0. This solution, say, z(0) =
(ρ, ρ, ρ, 0, 0, 0) is invariant to the action of r by (55),
and hence the isotropy subgroup Σ(z(0)) represent-
ing the symmetry of this solution contains 〈r〉. By
(56), on the other hand, this solution has the sym-
metry of the form pα

1 pβ
2 if and only if (α, β) satisfies

the relations

kα + 	β ≡ 0,

	α − (k + 	)β ≡ 0,

−(k + 	)α + kβ ≡ 0 mod n.

By (B.2) and (B.4), this equation is satisfied by

(α, β) = p(k̂ + 	̂, 	̂) + q(−	̂, k̂), p, q ∈ Z.

It therefore follows that Σ(z(0)) ⊇ 〈r, pk̂+�̂
1 p�̂

2, p
−�̂
1 pk̂

2〉,
where it can be verified that the inclusion is in fact
equality, i.e.

Σ(z(0)) = 〈r, pk̂+�̂
1 p�̂

2, p
−�̂
1 pk̂

2〉 (B.44)

=




〈r, p3
1p2, p

−1
1 p2

2〉 ((n̂, k̂, 	̂) = (7, 2, 1))

〈r, p4
1p2, p

−1
1 p3

2〉 ((n̂, k̂, 	̂) = (13, 3, 1))

〈r, p5
1p

2
2, p

−2
1 p3

2〉 ((n̂, k̂, 	̂) = (19, 3, 2))

〈r, p5
1p2, p

−1
1 p4

2〉 ((n̂, k̂, 	̂) = (21, 4, 1)).

(B.45)

The associated distributions correspond to Lösch’s
hexagons; indeed, for (α, β) = (k̂ + 	̂, 	̂) or (−	̂, k̂),
we have

T

d
=
√

α2 − αβ + β2

=
√

k̂2 + k̂	̂ + 	̂2

=




7 ((n̂, k̂, 	̂) = (7, 2, 1))

13 ((n̂, k̂, 	̂) = (13, 3, 1))

19 ((n̂, k̂, 	̂) = (19, 3, 2))

21 ((n̂, k̂, 	̂) = (21, 4, 1)).

Let z(t) denote the solution corresponding to
(θ1, θ2, θ3) = 2πt

n̂ (m1,m2,m3) in (B.39), where 0 ≤
t ≤ n̂ − 1. As shown in Table 3, we have

(m1,m2,m3) ≡ δ(	̂,−k̂ − 	̂, k̂) mod n̂ (B.46)

with δ = 2, 3, 11, 4 for n̂ = 7, 13, 19, 21, respectively.
Since (	̂,−k̂ − 	̂, k̂) corresponds to the action of p2

on (z1, z2, z3) in (56), z(t) is obtained from z(0) by
the transformation of pδt

2 , which we may designate
as z(t) = pδt

2 · z(0). Then the isotropy subgroup of
z(t) is a conjugate subgroup of that of z(0), i.e.

Σ(z(t)) = pδt
2 · Σ(z(0)) · p−δt

2 .

This means that the solutions z(t) for t ≥ 1 are
essentially (or geometrically) the same as z(0).

A bifurcated solution of the form of (B.34),
with z1 = z2 = z3 = 0 and |z4| = |z5| = |z6|,
can be obtained from z(0) by transforming z(0) with
s. The isotropy subgroup representing the symme-
try of this solution is obtained as s · Σ(z(0)) · s−1.
It is noted, however, that such conjugate solutions
should be identified from a geometrical point of
view.

Table 3. Value of δ in (B.46).

n̂ (k̂, �̂) (m1, m2, m3) ≡ (�̂,−k̂ − �̂, k̂) × δ

7 (2, 1) (2, 1,−3) ≡ (1,−3, 2) × 2 mod 7
13 (3, 1) (3, 1,−4) ≡ (1,−4, 3) × 3 mod 13
19 (3, 2) (3, 2,−5) ≡ (2,−5, 3) × 11 mod 19
21 (4, 1) (4, 1,−5) ≡ (1,−5, 4) × 4 mod 21
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