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The progress of spatial agglomeration of Krugman’s core–periphery model is investi-

gated by comparative static analysis of stable equilibria with respect to transport costs.

We set forth theoretically possible agglomeration (bifurcation) patterns for a system of

cities spread uniformly on a circle. A possible and most likely course predicted is a

gradual and successive one, which is called spatial period doubling. For example, eight

cities concentrate into four cities and then into two cities en route to the formation of a

single city. The existence of this course is ensured by numerical simulation for the

model. Such a gradual and successive agglomeration presents a sharp contrast to the

agglomeration of two cities, for which spontaneous concentration to a single city is

observed in core–periphery models of various kinds. Other bifurcations that do not take

place in two cities, such as period tripling, are also observed. The need for study of a

system of cities has thus been demonstrated.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Emergence of spatial economic agglomeration attributable to market interactions has attracted much attention of
spatial economists and geographers. Among many studies in the literature, the core–periphery model of Krugman (1991)
is touted as the first and the most successful attempt to clarify the microeconomic underpinning of the spatial economic
agglomeration in a full-fledged general equilibrium approach.1 This model2 introduced the Dixit and Stiglitz (1977) model
of monopolistic competition into spatial economics and provided a new framework to explain interactions which occur
among increasing returns at the level of firms, transportation costs, and factor mobility. Such a framework paved the way
for the development of New Economic Geography3 as a mainstream field of economics. Furthermore, in recent years, the
framework has been applied to various policy issues in areas such as trade policy, taxation, and macroeconomic growth
analysis (Baldwin et al., 2003).
ll rights reserved.
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Yet most studies in New Economic Geography have remained confined to two-city models in which spatial economic
concentration to a single city is triggered by bifurcation.4 Although the two-city model is the most pertinent starting point
by virtue of its analytical tractability, economic agglomerations, in reality, can take place at more than two locations, as
corroborated by empirical evidence (Bosker et al., 2010). Among a system of cities, indirect spatial effects emerge and
complicate the analysis. Behrens and Thisse (2007) stated that ‘‘Dealing with these spatial interdependencies constitutes
one of the main theoretical and empirical challenges NEG and regional economics will surely have to face in the future.’’
We must analyze a system of cities thoroughly in careful comparison with the two-city model to answer the question, ‘‘To
what degree can we extrapolate the predictions and implications derived from two-city analysis to a system of cities?’’

The agglomeration mechanism of a system of cities is yet to be untangled, although several attempts5 have been
conducted to transcend the two-city case.
�
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A local analysis (linearized eigenproblem) of the racetrack economy6 has been conducted. Fujita et al. (1999) identified
the emergence of several spatial frequencies. It is nonetheless difficult analytically to extract agglomeration properties
from the nonlinear equations of core–periphery models with an arbitrary discrete number of cities.

�
 Numerical simulations have identified agglomeration patterns for systems of cities. A numerical simulation including

12 symmetric cities of equal size revealed that the symmetric equilibrium often becomes unstable (Krugman, 1993).
Fujita et al. (1999) obtained post-bifurcation equilibria for three cities. Nevertheless, it seems premature to infer a
global view of agglomeration based on currently available numerical information. A naı̈ve numerical simulation for
more cities might not be promising without a systematic methodology to investigate the resulting information.
In this paper, we investigate the orientation and progress of agglomerations for a multi-regional core–periphery model
and, in turn, to test the adequacy of the two-city model as a spatial platform. Here we study comparative statics of (the set
of) stable equilibria with respect to trade costs and not the time evolution of the state variable. Although Krugman (1993)
and Fujita et al. (1999) give the orientation of the breaking of uniformity of the racetrack economy, we study the progress
of agglomerations thereafter, along with the orientation. This paper provides a general framework for bifurcation analysis
and presents the classification of a whole set of bifurcation patterns of the racetrack economy. We assume symmetry,7 i.e.,
spatially uniform distribution of agricultural labors, homogeneous transportation costs, and so on. A model with
symmetrically located places is an extreme case of equal competition among places and is of great interest to economists.
Such a symmetric model undergoes bifurcation that breaks its symmetry, the mechanism of which is described by group-
theoretic bifurcation theory.8 The general framework given in this paper is, in principle, applicable to racetrack economy of
core–periphery models of various kinds.

By group-theoretic bifurcation theory, possible agglomeration patterns occurring by bifurcations and courses of the
pattern change of a racetrack economy, as the transport cost decreases, are obtained. A possible (and the most likely)
predicted course of agglomeration is a spatial period-doubling cascade (see Proposition 5 in Section 4.3). An example of this
cascade is presented for eight cities in Fig. 1. A system of 23

¼ 8 identical cities (for some positive integer k) concentrates
into 22

¼ 4 identical larger cities, en route to the concentration to the single megalopolis. Consequently, the concentration
progresses successively in association with the doubling of the spatial period.

The occurrence and non-occurrence of such bifurcations are dependent on individual cases for individual models and
must be investigated for each case. We begin with the standard Krugman model as it is one of a few models readily
formulated for a system of cities, and it is a topic in future to deal with other important core–periphery models, such as the
Venables (1996) model and the general model by Puga (1999). The occurrence of bifurcations is investigated by
computational bifurcation analysis. A combination of the group-theoretic bifurcation theory and the computational
bifurcation theory is vital in the numerical simulation of the agglomerations of a racetrack economy with many cities. Yet
this is not the only way for the investigation and the methodology proposed by Akamatsu et al. (2009) and Akamatsu and
Takayama (2009) 9 serves as a possible alternative means for such investigation.

The possible equilibria and associated agglomeration patterns of 4, 6, 8, and 16 cities are studied theoretically
(Section 4) and are obtained numerically (Section 5) in an exhaustive manner. Several new bifurcation behavioral
characteristics of the racetrack economy, such as stable non-trivial equilibria, period-tripling, and a plethora
of bifurcated paths, are obtained, in addition to the period-doubling cascade studied in Tabuchi and Thisse (2006,
4 Two identical symmetric cities are in a stable state with high transport costs. When the costs are reduced to a certain level, a tomahawk bifurcation

gers a spontaneous concentration to a single city by breaking the symmetry (e.g., Krugman, 1991; Fujita et al., 1999; Forslid and Ottaviano, 2003).
5 For recent contributions dealing with many locations, see, for example, Tabuchi et al. (2005) and Oyama (2009b).
6 The racetrack economy uses a system of identical cities spread uniformly around the circumference of a circle. See, e.g., Krugman (1993, 1996),

ita et al. (1999), Picard and Tabuchi (2010), and Tabuchi and Thisse (2006, 2011).
7 Several recent papers (e.g., Berliant and Kung, 2009; Oyama, 2009a,b) describe the effects of asymmetries on the spatial agglomeration. Exploring

ltiple location model under such asymmetric assumption remains a task for future study.
8 The major framework of this theory has already been developed in physics (see, e.g., Golubitsky et al., 1988; Ikeda and Murota, 2002), and is

oduced in Section 3 in a manner applicable to the core–periphery model in Section 4.
9 Akamatsu et al. (2009) proposed a methodology based on the discrete Fourier transformation of the spatial discounting matrix of the racetrack

nomy to demonstrate the occurrence of period-doubling bifurcation for n¼ 2m cities. Akamatsu and Takayama (2009) applied this methodology to the

r-city model for FO model (Forslid and Ottaviano, 2003).



Fig. 1. Spatial period-doubling cascade for the eight cities (see Section 4.3 for the precise meaning of this figure; area of � denotes the size of the

associated city; the arrow denotes the occurrence of a bifurcation).
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2011).10 The racetrack economy among a system of cities, for the same value of transport cost, has increasing quantities of
stable equilibria when the number of cities increases. Such an increase of stable equilibria is a fundamental difficulty that
might instill pessimism about the usefulness of the bifurcation analysis of the racetrack economy. Nonetheless, as the most
likely course of agglomerations of a system of cities, the spatial period-doubling cascade for 4, 8, and 16 cities is actually
found through numerical simulation, thereby resolving that pessimistic view.

This paper has several contributions over previous studies, such as Tabuchi and Thisse (2006, 2011), who predicted the
period-doubling cascade: (1) this paper gives a general framework for bifurcation analysis and presents the classification
of a whole set of bifurcation patterns of the racetrack economy, and (2) enumerates a whole set of bifurcation behaviors
that involve several new characteristics, such as stable non-trivial equilibria, period-tripling, and a plethora of
bifurcated paths.

This paper is organized as follows. The core–periphery model is introduced as a recapitulation and a reorganization of
Krugman (1991) and Fujita et al. (1999, Chapter 5), and the governing equation is presented with a study of stability in
Section 2. Group-theoretic bifurcation theory is presented in Section 3. The bifurcation theory of the racetrack economy is
described in Section 4. Agglomerations of the racetrack economy with a system of cities are investigated numerically in
Section 5. Appendices offer theoretical details and proofs.

2. Core–periphery model

A core–periphery model with an arbitrary discrete number of cities is presented as a recapitulation and a
reorganization of Krugman (1991) and Fujita et al. (1999, Chapters 4 and 5) in a manner suitable for the theoretical
analysis of the racetrack economy in Section 4 and the numerical analysis in Section 5.

2.1. Market equilibrium

The economy comprises n locations (labeled i¼ 1, . . . ,n) around a circumference of a racetrack, two industrial sectors
(agriculture and manufacturing), and two factors of production (agricultural labor and manufacturing labor). The
agricultural sector is perfectly competitive and produces a homogeneous good, whereas the manufacturing sector is
imperfectly competitive with increasing returns, producing horizontally differentiated goods. Laborers of each type
consume two goods and supply one unit of labor inelastically. Agricultural laborers are immobile. Manufacturing laborers’
distribution is expressed by k¼ ðl1, . . . ,lnÞ, where li is their population at the ith city. Based on an assumption of no
population growth, k is normalized byXn

i ¼ 1

li ¼ 1, liZ0 ði¼ 1, . . . ,nÞ: ð1Þ

The domain of k, accordingly, is (n�1)-dimensional simplex. In the formulation of market equilibrium below, the spatial
allocation of manufacturing workers is assumed to be given and k is fixed and considered as a parameter, although they
are allowed to migrate in the spatial equilibrium in Section 2.2.

Every consumer shares the same Cobb–Douglas tastes that are expressed by the utility function

U ¼MmA1�m, ð2Þ

where M means a composite index of the consumption of manufactured goods, A is the consumption of agricultural goods,
and mð0omo1Þ is a constant representing the expenditure share of manufactured goods. The index M is defined using a
constant-elasticity-of-substitution (CES) function:

M¼

Z k

0
mðiÞr di

" #1=r

ð0oro1Þ, ð3Þ

where m(i) denotes the consumption of each available variety, k is the range of varieties produced, and r is an index
representing the intensity of the preference for variety in manufactured goods. We regard s¼ 1=ð1�rÞ41 as the elasticity
10 Tabuchi and Thisse (2006, 2011) predicted that the racetrack economy of a core–periphery model could exhibit a spatial period-doubling

bifurcation pattern. They also showed (by a numerical example) that a hierarchical urban system structure emerges for this model with multiple

industries.
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of substitution between differentiated goods. The consumer’s problem is to maximize the utility (2) under the budget
constraint.

The agricultural sector, which has constant returns to scale technology, requires one unit of unskilled labor in order to
produce one unit of output. For simplicity, we assume that the agricultural-sector goods are transported freely between
regions and are chosen as numéraire.

The manufacturing sector output is produced under increasing returns to scale and Dixit–Stiglitz monopolistic
competition. Technologies, which are the same for all varieties and in all locations, involve a fixed input of F and
marginal input requirement cM.

We employ the iceberg transport technology, which implies that if a manufacturing variety produced at location i is sold
at price pM

i , then the delivered price pM
ij of that variety at each consumption location j is given as pM

ij ¼ pM
i tij, where tijð40Þ

denotes the transport cost between the two cities i and j in terms of the amount of the manufactured good dispatched per
unit received.

For the racetrack economy on a circle with the unit radius, which is studied in this paper, we define the transport cost tij

as

tij ¼ ð1�tÞ�Dij=p ði,j¼ 1, . . . ,n; 0otij; 0oto1Þ, ð4Þ

where t is the transport parameter and

Dij ¼
2p
n

minð9i�j9,n�9i�j9ÞZ0 ði,j¼ 1, . . . ,nÞ ð5Þ

represents the shortest distance between cities i and j along the arc; minð�,�Þ denotes the smaller value of the variables in
parentheses. t¼ 0 corresponds to the state of no transport cost, and t¼ 1 corresponds to the state of infinite transport cost.

Some normalizations are introduced. For example, we choose units such that the marginal labor requirement satisfies

cM ¼
s�1

s ¼ r:

After some normalizations, the ratio of the manufacturing labor to the agricultural labor is set as m : 1�m.
The market equilibrium conditions consist of the M-sector goods market clearing condition and the zero-profit

condition due to the free entry and exit of firms. These conditions determine the income of each city, the price index of
manufactures in that city, the wage rate of workers in that city, and the real wage rate in that city. After some
normalizations the nominal wage rate wi for the manufacturing labor force of the ith city is given as

wi ¼
Xn

j ¼ 1

Yjt
1�s
ij Gs�1

j

24 351=s

ði¼ 1, . . . ,nÞ; ð6Þ

and the manufacturers’ price index for the ith city is given as

Gi ¼
Xn

j ¼ 1

ljðwjtijÞ
1�s

24 351=ð1�sÞ

ði¼ 1, . . . ,nÞ: ð7Þ

Here Yi signifies the total income for the ith city, and li ð0rlir1; i¼ 1, . . . ,nÞ stands for the ratio of the manufacturing
labor force for the ith city to the whole manufacturing force, which is designated as the population of the ith city for short.

The total income for the ith city is expressed as

Yi ¼ mliwiþð1�mÞ=n ði¼ 1, . . . ,nÞ, ð8Þ

assuming that the agricultural wage has unity as numéraire, where the first term mliwi on the right-hand-side of (8) is the
income of the manufacturing labor force, and the second term ð1�mÞ=n is that of the agricultural force. The real wage oi of
workers is defined as

oi ¼wiG
�m
i ði¼ 1, . . . ,nÞ: ð9Þ

Among many variables and parameters of these equations, we regard k¼ ðl1, . . . ,lnÞ
> as an independent variable vector

and t as a bifurcation parameter.11 Since the Krugman model is not analytically solvable, the real wages are to be obtained
implicitly as oi ¼oiðk,tÞ ði¼ 1, . . . ,nÞ from the set of (6)–(9). At the course of this, we assume a regularity condition on this
set of such that oi ¼oiðk,tÞ ði¼ 1, . . . ,nÞ turn out to be sufficiently smooth functions.

2.2. Spatial equilibrium

Following the market equilibrium, we introduce the spatial equilibrium, for which high skilled workers are
allowed to migrate among cities. A customary way to define such an equilibrium is to consider the following
11 m and s are regarded as auxiliary parameters that are pre-specified for each problem.
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problem: find ðkn,ôÞ satisfying

ðoi�ôÞl
n

i ¼ 0, ln

i Z0, oi�ôr0 ði¼ 1, . . . ,nÞ,Xn

i ¼ 1

ln

i ¼ 1:

8>><>>: ð10Þ

For the solution of this problem, ô serves as the highest real wage. When the system is in a spatial equilibrium or a
sustainable equilibrium, no individual can improve his/her real wage by changing his/her location unilaterally.

2.3. Stability

We march on to consider the stability of the spatial equilibrium satisfying (10), which can be considered as a
population game. Among many alternatives to define the stability of the spatial equilibrium, we use the replicator
dynamics,12 which is most popular in the population game. This dynamics reads

dk

dt
¼ Fðk,tÞ, ð11Þ

where

o ¼
Xn

i ¼ 1

lioi ð12Þ

is the average real wage, Fðk,tÞ ¼ ðFiðk,tÞ9i¼ 1, . . . ,nÞ, and

Fiðk,tÞ ¼ ðoiðk,tÞ�oðk,tÞÞli ði¼ 1, . . . ,nÞ: ð13Þ

In this paper, we would like to replace a problem to obtain a set of stable spatial equilibria by another problem to find a
set of stable stationary points of the replicator dynamics. Stationary points (rest points) kn

ðtÞ of the replicator dynamics
(11) are defined as those satisfying the static governing equation

Fðkn,tÞ ¼ 0: ð14Þ

The relation
Pn

i ¼ 1 l
n

i ¼ 1 in (1) is always satisfied. These stationary points involve unsustainable points with ln

i o0 and/or
oi�o40 when they are unstable. Nonetheless stable stationary points are guaranteed to be sustainable by Proposition 1
below (Hofbauer and Sigmund, 1988).

Proposition 1. A stable stationary point kn
ðtÞ of the dynamical system (11) with non-negative populations liZ0 ði¼ 1, . . . ,nÞ

is not only stable but also sustainable and, therefore, is a stable spatial equilibrium.

Proof. See Appendix C.

To define stability of the stationary points,13 we consider the Jacobian matrix

Jðkn,tÞ ¼ @F

@k
ðkn,tÞ ð15Þ

of the governing equation.14 If an equilibrium is linearly stable it is asymptotically stable, and if it is linearly unstable it is
asymptotically unstable. We classify stability using the eigenvalues of this matrix:

linearly stable : every eigenvalue has negative real part,

critical : at least one eigenvalue is on the imaginary axis,

linearly unstable : at least one eigenvalue has positive real part:

8><>:

3. Group-theoretic bifurcation theory

We have presented a set of static governing equations for the core–periphery model in Section 2. In this section, group-
theoretic bifurcation theory is presented as a mathematical tool for describing bifurcation of the racetrack economy of this
model. Symmetry of the racetrack economy is studied in Section 3.1. The symmetry of the governing equations is
introduced to Section 3.2. The break bifurcation is investigated in Section 3.3.
12 Migration rules leading to the replicator dynamics are explained in Sandholm (2011) and its application in the context of economic geography is

given in Oyama (2009b).
13 For simplicity, the superscript ð Þn is suppressed in the following sections.
14 The spatial equilibrium kn in (10) is defined on ðn�1Þ-dimensional simplex. The extendibility of the Jacobian matrix for this simplex to the full n-

dimension is presented in Sandholm (2011, Chapter 3).
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3.1. Group expressing symmetry of racetrack economy

We consider the racetrack economy with n cities that are equally spread around the circumference of a circle as shown
in Fig. 2, and describe the symmetry of these cities and of the governing equation by group.15 Although the discussion in
this section is applicable in principle to a general group G, we specifically examine a particular group: the dihedral group
expressing the symmetry of a regular polygon.

Assumption 1 (Parity). We set n to be even. (The number of cities treated in the numerical analysis in Section 5 is n¼4, 6,
8, and 16.)

The symmetry of these cities can be described by the dihedral group G¼Dn of degree n expressing regular n-gonal
symmetry. This group is defined as

Dn ¼ fri,sri9i¼ 0;1, . . . ,n�1g,

where f�g denotes a group consisting of the geometrical transformations in the parentheses, ri denotes a counterclockwise
rotation about the center of the circle at an angle of 2pi=n ði¼ 0;1, . . . ,n�1Þ. In addition, sri is the combined action of the
rotation ri followed by the upside-down reflection s (see Fig. 3 for n¼4).

In our study of a system of n cities on the racetrack economy, each element g of Dn acts as a permutation among city
numbers ð1, . . . ,nÞ. Consequently, each representation matrix T(g), which expresses the geometrical transformation by g, is
a permutation matrix. With the use of the representation matrices for r and s:

TðrÞ ¼

1

1

&

1

0BBB@
1CCCA, TðsÞ ¼

1

1

c

1

0BBB@
1CCCA,

the representation matrices T(g) ðg 2 DnÞ can be generated as

TðriÞ ¼ fTðrÞgi, TðsriÞ ¼ TðsÞfTðrÞgi ði¼ 0;1, . . . ,n�1Þ:
15 A group that consists of a set of geometrical transformations is used in the description of symmetry in various fields of science.



Fig. 4. Symmetries of equilibria for the four cities (n¼4; dashed line, axis of reflection symmetry; the area of � signifies the population size).
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Bifurcated equilibria from the Dn-symmetric racetrack economy have reduced symmetries that are labeled by
subgroups16 of Dn that denote partial symmetries of Dn. These subgroups are dihedral and cyclic groups that are given
respectively as

Dk,n
m ¼ fr

in=m,srk�1þ in=m9i¼ 0;1, . . . ,m�1g,

Cm ¼ frin=m9i¼ 0;1, . . . ,m�1g:

Therein, the subscript m ð ¼ 1, . . . ,n=2Þ is an integer that divides n. Superscript k ð ¼ 1, . . . ,n=mÞ expresses the directions of
the reflection axes. Furthermore, Cm denotes cyclic symmetry at an angle of 2p=m, and Dk,n

m denotes reflection symmetry
with respect to m-axes together with this cyclic symmetry.

In general, spatial distribution of populations with a higher symmetry with a larger m represents a more uniform state,
while that with a lower symmetry with a smaller m represents a more concentrated state.

Example 1. The symmetries of equilibria, for example, for the four cities (n¼4) are classified by these groups in Fig. 4. The
patterns associated with the groups D2;4

1 and D4;4
1 have the same economic meaning. Such is also the case for the groups D1

and D3;4
1 . &

Remark 1. In the interpretation of agglomeration patterns, we consider the spatial period along the unit circle of the
racetrack economy. We define the spatial period for the Dn-invariant cities as Tn ¼ 2p=n. When the cities are invariant
under the transformation rin=m, i.e., Dm- or Dk,n

m -invariant, we define the spatial period as Tm ¼ 2p=m. In general, a higher
spatial period with a larger m represents a more distributed spatial distribution of populations, a lower spatial period with
a smaller m represents a more concentrated distribution.

3.2. Symmetry of governing equation

The nonlinear governing equation Fðk,tÞ in (14) of the racetrack economy is endowed with equivariance17 with respect
to G¼Dn (see Appendix C for proof):

TðgÞFðk,tÞ ¼ FðTðgÞk,tÞ, g 2 G¼Dn ð16Þ

in terms of an n�n orthogonal matrix representation T(g) of G¼Dn that expresses the geometrical transformation for an
element g of G¼Dn. The equivariance (16) means that if ðk,tÞ is a solution to Fðk,tÞ ¼ 0, then so is ðTðgÞk,tÞ.

In the description of the bifurcation of the racetrack economy, the equivariance of this economy is important as it paves
the way for application of theory of break bifurcation in Section 3.3 for a particular case of G¼Dn. The rule of hierarchical
bifurcations in (22) for G¼Dn varies according to the value of the integer n (Appendix D.1).

Example 2. For the two-city model (n¼2) with D2-symmetry, we have

TðrÞ ¼
0 1

1 0

� �
, TðsÞ ¼

1 0

0 1

� �
: ð17Þ
16 D2,n
n=2-,Cn-, and Cn=2-symmetric modes are absent for this specific racetrack problem.

17 The equivariance (16) is not an artificial condition for mathematical convenience, but is a natural consequence of the objectivity of the equation:

the observer-independence of the mathematical description.
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Then the equivariance condition (16) reduces to

0 1

1 0

� �
F1

F2

 !
ðk,tÞ ¼ F

0 1

1 0

� � l1

l2

 !
,t

 !
:

The substitution of the explicit form ðFi ¼ ðoiðk,tÞ�oðk,tÞÞli j i¼ 1;2Þ in (13) into this equation restricts expanded forms of
oiði¼ 1;2Þ as

o1 ¼
X
a ¼ 0

X
b ¼ 0

Aabl
a
1l

b
2, o2 ¼

X
a ¼ 0

X
b ¼ 0

Aabl
b
1l

a
2

for some constants Aab. At the equilibria l1 ¼ l2 ¼ 1=2 with the uniform population, we have symmetry conditions:

ðo1Þ
0
¼ ðo2Þ

0,
@o1

@l1

� �0

¼
@o2

@l2

� �0

,
@o1

@l2

� �0

¼
@o2

@l1

� �0

, ð18Þ

where ð�Þ0 denotes that the associated term is evaluated at l1 ¼ l2 ¼ 1=2. These conditions are of great assistance in the
investigation of possible bifurcation (see Example 5 in Section 4.2). &

As a consequence of (16), the Jacobian matrix in (15) is endowed with the symmetry condition

TðgÞJðk,tÞ ¼ Jðk,tÞTðgÞ, g 2 G¼Dn ð19Þ

if k is symmetric with respect to G¼Dn in the sense that TðgÞk¼ k ðg 2 G¼DnÞ. By virtue of (19), it is possible to construct
a transformation matrix H such that the Jacobian matrix J is transformed into a block-diagonal form18:

~J ¼H>JH¼

~J0 O
~J1

O &

0B@
1CA ð20Þ

with diagonal block matrices ~Jk ðk¼ 0;1, . . .Þ. Eigenvectors of the diagonal block ~J0 are invariant to G¼Dn. Eigenvectors of
other blocks ~Jk ðk¼ 1;2, . . .Þ have reduced symmetries labeled with subgroups Gk ðk¼ 1;2, . . .Þ of G¼Dn. This is a
mechanism to break symmetry via bifurcation. This block-diagonal form is suitable for an analytical eigenanalysis of
the Jacobian matrix (Section 4.2).

Example 3. We consider the two-city model (n¼2) with D2-symmetry. According to the symmetry conditions (19) with
(17), the Jacobian matrix J0, evaluated at the equilibria of uniform population (l1 ¼ l2 ¼ 1=2), takes the form

J0
¼
@F

@k

����
l1 ¼ l2 ¼ 1=2

¼
a b

b a

� �
with ((13) and (18))

a¼ ð@o1=@l1�2o1�@o2=@l1Þ
0=4, b¼ ð@o2=@l1�2o1�@o1=@l1Þ

0=4:

The transformation matrix H for block-diagonalization and the transformed Jacobian matrix ~J
0

are, respectively,

H¼
1ffiffiffi
2
p

1 1

1 �1

� �
, ~J

0
¼
�ðo1Þ

0 0

0 ð@o1=@l1�@o2=@l1Þ
0=2

 !
: & ð21Þ

3.3. Break bifurcation

The break bifurcation (Appendix B.4) is explained in light of group-theoretic bifurcation theory. This theory, a standard
means to describe the bifurcation of symmetric systems, has been developed to obtain the rules of pattern
formation—emergence of equilibria with reduced symmetries via so-called symmetry-breaking bifurcations (Golubitsky
et al., 1988). This theory will be employed to investigate possible bifurcations of the racetrack economy in Section 4.

The bifurcation of a symmetric system with equivariance (16) has been studied in group-theoretic bifurcation theory for a
general group G, including the dihedral group Dn, and has several properties described below (Ikeda and Murota, 2002).
�
 Property 1: The symmetry of the equilibrium points is preserved until branching into a bifurcated path.

�
 Property 2: The symmetry of equilibria on a bifurcated path is labeled by a subgroup, say G1, of the group G.

�
 Property 3: In association with repeated bifurcations, one can find a hierarchy of subgroups

G�!G1�!G2�!� � � ð22Þ

that characterizes the hierarchical change of symmetries. Here �! denotes the occurrence of break bifurcation.

�
 Property 4: A bifurcated path sometimes regains symmetry on a bifurcation point on another equilibrium path with a

higher symmetry.
18 Theoretical details of the construction of the transformation matrix H are presented in Murota and Ikeda (1991) and Ikeda and Murota (2002).



K. Ikeda et al. / Journal of Economic Dynamics & Control 36 (2012) 754–778762
Remark 2. In this section, the bifurcation rule is described in such a sequence that the symmetry is reduced successively
via bifurcations. However, when we observe some economic system by decreasing the transport cost t from 1 to 0, a

bifurcated path sometimes regains symmetry at a bifurcation point, as explained in Property 4 presented above.

4. Bifurcation behavior for a racetrack economy

The tomahawk bifurcation of Krugman’s core–periphery model with two cities is well known to produce spontaneous
concentration to a single city. In contrast, it will be demonstrated in Section 5 that the racetrack economy of a system of
cities displays more complex bifurcation.

The objective of this section is to present investigation of such bifurcation using the group-theoretic bifurcation theory
presented in Section 3. We present several theoretical developments that will be used in the analysis of the racetrack
economy in Section 5:
�

par
Trivial equilibria19 of the racetrack economy are determined in view of the symmetry in Section 4.1.

�
 Possible bifurcated equilibria and possible courses of bifurcations from the equilibrium of uniform population are

investigated in Section 4.2.

�
 Among many possible equilibria predicted theoretically, a spatial period-doubling cascade is advanced as the most

likely course en route to concentration in one city in Section 4.3.

�
 A systematic procedure to obtain equilibrium paths of the core–periphery model is presented in Section 4.4.

4.1. Trivial equilibria and sustain bifurcation

Trivial equilibria and sustain bifurcation on these equilibria are studied.

4.1.1. Trivial equilibria

The symmetry of the racetrack economy engenders trivial equilibria (Appendix B.2), which satisfy, for any values
of t, the nonlinear governing equation Fðk,tÞ ¼ 0 in (14). It is readily apparent that the racetrack economy has the uniform-

population trivial equilibrium

k¼ ð1=n, . . . ,1=nÞ> ð23Þ

with Dn-symmetry and with the spatial period of Tn ¼ 2p=n.
In addition to the equilibrium of uniform population in (23), several trivial equilibria exist as expounded in Proposition 2.

The variety of trivial equilibria becomes diverse as the number n of cities increases.

Proposition 2 (Period multiplying trivial equilibria). There are n/m trivial equilibria with

li ¼
1=m ði¼ k,kþn=m, . . . ,kþðm�1Þn=mÞ,

0 otherwise

�
ð24Þ

(m divides n; k¼ 1, . . . ,n=mÞ, which, for example, for k¼1 is Dm-symmetric. The spatial period Tm ¼ 2p=m

of these equilibria along the circle becomes (n/m)-times as long as the period Tn ¼ 2p=n of the equilibrium of uniform

population in (23).

Proof. See Appendix C.

Among the trivial equilibria in Proposition 2, we are particularly interested in the following trivial equilibria:
�
 Period-doubling trivial equilibria

k¼ ð2=n,0, . . . ,2=n,0Þ> and ð0;2=n, . . . ,0;2=nÞ> ð25Þ

express Dn=2-symmetric equilibria, for which a concentrating city and an extinguishing city alternate along the circle.
The spatial period is Tn=2 ¼ p=n and is doubled in comparison with the period Tn ¼ 2p=n of the uniform population in
(23). The two equilibria in (25) have the same economic meaning.

�
 Concentrated trivial equilibria

k¼ ð0, . . . ,0;1,0, . . . ,0Þ>
i

ði¼ 1, . . . ,nÞ

express the concentration of the population to a single city. The equilibrium for i¼1, for example, is D1-symmetric.
19 Trivial equilibria are those equilibria for which the population k of the cities remains constant with respect to the change of the transport

ameter t (Appendix B.2).



Table 1
Examples of trivial and non-trivial equilibria for n¼4 (dashed line, axis of reflection symmetry).
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Example 4. Four cities (n¼4) have trivial equilibria (see Table 1):
�
 the equilibrium of uniform population k¼ ð1=4;1=4;1=4;1=4Þ> (D4-symmetry),

�
 the period-doubling trivial equilibrium k¼ ð1=2;0,1=2;0Þ> (D2-symmetry),

�
 the concentrated trivial equilibrium k¼ ð1;0,0;0Þ> (D1-symmetry),

�
 D2;4

1 -symmetric trivial equilibrium k¼ ð0;1=2;1=2;0Þ>, and so on. &
4.1.2. Sustain bifurcation

For a trivial (corner) equilibrium with li ¼ 0 for some i, the associated eigenvalue of the Jacobian matrix J is given as
ei ¼oi�o. The stability and criticality are classified accordingly20 as (see (C.5)–(C.7) in Appendix C)

oi�o40 unstable ðunsustainableÞ,

oi�o ¼ 0 critical ðsustain bifurcationÞ:

(

For oi�oo0, whether the associated equilibria is stable or unstable depends on the signs of other eigenvalues of J.

4.2. Bifurcation from the uniform population

Bifurcation from the Dn-symmetric equilibrium of uniform population in (23) is investigated. Recall that n is assumed
to be even.

According to the symmetry conditions (19), the Jacobian matrix J is a symmetric circulant matrix with entries

Jij ¼ kl ðl¼minf9i�j9,n�9i�j9gÞ

for some kl ðl¼ 1;2, . . .Þ.
The transformation matrix H for block-diagonalization in (20) is given by (see Footnote 18)

H¼
ðgðþ Þ,gð�ÞÞ for n¼ 2,

ðgðþ Þ,gð�Þ,gð1Þ,1,gð1Þ,2, . . . ,gðn=2�1Þ,1,gðn=2�1Þ,2Þ for nZ4:

(
ð26Þ

The column vectors of this matrix H, which will turn out to be the eigenvectors of J, are expressed as

gðþ Þ ¼
1ffiffiffi
n
p

1

^

1

0B@
1CA, gð�Þ ¼

1ffiffiffi
n
p

cos p � 0
^

cosðpðn�1ÞÞ

0B@
1CA¼ 1ffiffiffi

n
p

1

�1

^

1

�1

0BBBBBB@

1CCCCCCA, ð27Þ

gðjÞ,1 ¼

ffiffiffi
2

n

r cosð2pj � 0=nÞ

^

cosð2pjðn�1Þ=nÞ

0B@
1CA, gðjÞ,2 ¼

ffiffiffi
2

n

r sinð2pj � 0=nÞ

^

sinð2pjðn�1Þ=nÞ

0B@
1CA ðj¼ 1, . . . ,n=2�1Þ: ð28Þ
20 This classification is fundamentally identical to that explained in Fujita et al. (1999) for the two-city case.
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These eigenvectors gðþ Þ, gð�Þ, gðjÞ,1, and gðjÞ,2 are Dn-, Dn=2-,D1,n

n=bn -, and D1þbn=2,n

n=bn -symmetric, respectively, and have respective

spatial periods of Tn ¼ 2p=n, Tn=2 ¼ p=n, T
n=bn ¼ bnp=n, and T

n=bn ¼ bnp=n. Here

bn ¼ n=gcdðj,nÞZ3, ð29Þ

and gcdðj,nÞ is the greatest common divisor of j and n.
The block-diagonal form in (20) reduces to a diagonal matrix as

~J ¼H>JH¼ diagðeðþ Þ,eð�Þ,eð1Þ,eð1Þ, . . . ,eðn=2�1Þ,eðn=2�1ÞÞ,

where diag ð�Þ denotes a diagonal matrix with the diagonal entries therein. The diagonal entries, which correspond to the
eigenvalues of J, are

eðþ Þ ¼ k0þkn=2þ2
Xn=2�1

l ¼ 1

kl, ð30Þ

eð�Þ ¼ k0þð�1Þn=2kn=2þ2
Xn=2�1

l ¼ 1

ð�1Þlkl, ð31Þ

eðjÞ ¼ k0þcosðpjÞkn=2þ2
Xn=2�1

l ¼ 1

cosð2pjl=nÞkl ðj¼ 1, . . . ,n=2�1Þ: ð32Þ

It is noteworthy that eðþ Þ and eð�Þ are simple eigenvalues, and that eðjÞ ðj¼ 1, . . . ,n=2�1Þ are double eigenvalues that are
repeated twice.

Critical points on the equilibrium of uniform population are classified as

eðþ Þ ¼ 0 : limit point of t ðM¼ 1Þ,

eð�Þ ¼ 0 : simple bifurcation point ðM¼ 1Þ,

eðjÞ ¼ 0 : double bifurcation point ðM¼ 2Þ,

8><>:
where M is the multiplicity of a critical point that is defined as the number of zero eigenvalues of J. These simple and
double bifurcation points are break bifurcation points.

The simple bifurcation point with eð�Þ ¼ 0 corresponds to the spatial period-doubling bifurcation, which engenders an
alternating equilibrium (see Proposition 3).

Proposition 3 (Simple bifurcation). At the simple bifurcation point, which is either a pitchfork or tomahawk (supercritical or

subcritical), we encounter a symmetry-breaking bifurcation Dn�!Dn=2. Its critical eigenvector is given uniquely as a

Dn=2-symmetric vector gð�Þ of (27) with components of alternating signs expressing the bifurcation mode of spatial period

doubling from T ¼ 2p=n to p=n.

Proof. See Chapter 8 of Ikeda and Murota (2002). &

The double bifurcation point eðjÞ ¼ 0 for some j corresponds to the spatial period bn-times bifurcation (see (29) for the
definition of bn), which engenders a more rapid concentration than the period-doubling bifurcation of the simple
bifurcation point (see Proposition 4). Double bifurcation points with eðjÞ ¼ 0 are absent for the two cities with n¼2 (see
(26)). It is noteworthy that the bifurcation of the two cities represents a special case, although four or more cities generally
have double bifurcation points and have more diverse bifurcation properties.

Proposition 4 (Double bifurcation). At the double bifurcation point with eðjÞ ¼ 0 for some j, we encounter a symmetry-breaking

bifurcation Dn�!D
n=bn , at which the spatial period becomes bn-times (bnZ3 by (29)).

Proof. See Appendix C.

Example 5. Recall Example 3 for the two-city model (n¼2) with D2-symmetry. The transformation matrix H for block-
diagonalization (see Footnote 18) and the transformed Jacobian matrix ~J

0
, evaluated at the equilibria of uniform

population (l1 ¼ l2 ¼ 1=2), are given by (21) as

H¼
1ffiffiffi
2
p

1 1

1 �1

� �
, ~J

0
¼
�ðo1Þ

0 0

0 ð@o1=@l1�@o2=@l1Þ
0=2

 !
:

The first diagonal entry �ðo1Þ
0 of ~J

0
remains negative. The second entry ð@o1=@l1�@o2=@l1Þ

0=2 can possibly become zero

at a break bifurcation point with the critical eigenvector gð�Þ ¼ ð1=
ffiffiffi
2
p

,�1=
ffiffiffi
2
p
Þ
>.
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Fig. 5. Direct bifurcations from the four uniform cities (n¼4; the arrow denotes the occurrence of a bifurcation). (a) Simple bifurcation. (b) Double

bifurcation.
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The stability and criticality for the equilibria of uniform population with l1 ¼ l2 ¼ 1=2 are classified21 accordingly as

ð@o1=@l1Þ
04ð@o2=@l1Þ

0 unstable ðordinary pointÞ,

ð@o1=@l1Þ
0
¼ ð@o2=@l1Þ

0 critical ðbreak bifurcation pointÞ,

ð@o1=@l1Þ
0oð@o2=@l1Þ

0 stable ðordinary pointÞ:

8>><>>:
If ð@o1=@l1Þ

04 ð@o2=@l1Þ
0, when l1 increases, the rate of increase of the wage rate o1 for the city 1 is greater than that of

o2 for city 2. Therefore, such an increase is accelerated and the equilibrium of uniform population with l1 ¼ l2 ¼ 1=2
becomes unstable. If ð@o1=@l1Þ

0
¼ ð@o2=@l1Þ

0, then an increase of l1 has identical influence on city 1 and city 2. This is the
condition for break bifurcation. If ð@o1=@l1Þ

0o ð@o2=@l1Þ
0, then an increase of l1 is more beneficial for city 2. Therefore,

such an increase is damped and the equilibrium of uniform population with l1 ¼ l2 ¼ 1=2 remains stable. &

Example 6. The change of symmetry at bifurcation points is illustrated in Fig. 5 for the four cities (n¼4). At the simple
bifurcation point in Fig. 5(a), the bifurcation doubles the spatial period and triggers concentration of the population to two
cities located at opposite sides of the circle, whereas the populations of the other two cities decline. At the double
bifurcation point in Fig. 5(b) associated with eðjÞ ¼ 0 (n¼4, j¼1, bn ¼ 4), the spatial period becomes four times. &

4.3. Spatial period-doubling cascade

As well as break bifurcations from the uniform-population trivial equilibrium with Dn-symmetry (Section 4.2), further
break bifurcations may be encountered on (a) bifurcated paths of this Dn-symmetric equilibrium and (b) Dm-symmetric
trivial equilibria (m divides n) presented in Section 4.1.

All these break bifurcations can be described using group-theoretic bifurcation theory (Ikeda and Murota, 2002). The
rule of bifurcation depends on the integer number n: to be precise, the divisors of the number n. The bifurcation becomes
increasingly hierarchical and complex for n with more divisors (Appendix D).

For Dn-symmetric cities with n¼ 2k (k is some positive integer), among a plethora of possible courses of hierarchical
bifurcations, we devote special attention to the spatial period-doubling bifurcation cascade (Proposition 5)22:

D2k�!D2k�1�!D2k�2�!� � ��!D1, ð33Þ

in which the spatial period is doubled successively by repeated simple bifurcations. Fig. 6 depicts this bifurcation for
n¼ 8¼ 23 cities.

Proposition 5 (Spatial period-doubling cascade). The spatial period-doubling bifurcation cascade in (33) is potentially existent

for Dn-symmetric cities with n¼ 2k for some integer k. (An actual existence of this cascade depends on individual cases with

particular value of n and particular parameter values.)

Proof. Proposition 3 gives Dn�!Dn=2 for n even. Repeated use of this proposition for n¼ 2k,2k�1, . . . ,2 proves (33). &

Remark 3. Proposition 5 serves as a generalization of the study of Tabuchi and Thisse (2006, 2011) who conducted a local
analysis (linearized eigenproblem) for the flat distribution of the racetrack economy to predict the occurrence of the
period-doubling cascade.
21 This classification is fundamentally identical to that presented by Fujita et al. (1999).
22 A repeated doubling of the time period by bifurcations takes place in many physical systems (Feigenbaum, 1978) and is called period-doubling

cascade.
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Fig. 6. Spatial period-doubling cascade for the eight cities (n¼8; the arrow denotes the occurrence of a bifurcation).
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4.4. Systematic procedure to obtain equilibrium paths

We present a systematic procedure to obtain equilibrium paths of the core–periphery model. First, we conduct an
exhaustive search by obtaining all the equilibrium paths using the following steps:
Step 1:
 Obtain all trivial equilibria using the method presented in Section 4.1.

Step 2:
 Carry out the eigenanalysis of the Jacobian matrix J on these trivial equilibria to obtain the bifurcation points

and to classify stable and unstable equilibria. For the equilibrium of uniform population, the formulas
(30)–(32), which give the eigenvalues analytically, are to be used. The numerical eigenanalysis is to be
conducted for other trivial equilibria.
Step 3:
 Obtain bifurcated paths branching from all these trivial equilibria using the computational bifurcation theory
in Appendix E. The numerical eigenanalysis is to be conducted to find critical points and to investigate the
stability of these equilibria.
Step 4:
 Repeat Steps 3 and 4 to exhaust all equilibrium paths.
Next, among all these equilibrium paths we select stable ones that are to be encountered when the transport cost t is
decreased from 1 to 0. The existence and multiplicity of possible stable ones for a particular value of t must be investigated
individually because they depend on the number n of cities, the values of the parameters s and m, and so on.

5. Numerical analysis of racetrack economy

Agglomerations of the racetrack economy of the core–periphery model are investigated for n¼4, 6, 8, and 16 cities by
comparative static analysis of equilibria with respect to transport costs using the systematic procedure to obtain
equilibrium paths (Section 4.4). The agglomeration progresses via successive breaking of symmetries associated with
successive elongation of the spatial period in agreement with the theoretical rule of bifurcation (Section 4). Successive and
gradual progress of agglomerations by the spatial period-doubling cascade in Proposition 5 in Section 4.3 is highlighted as
a key phenomenon for n¼4, 8, and 16 cities in Section 5.1. The period-doubling and period-tripling are observed for n¼6
cities in Section 5.2.

We set the elasticity of substitution as s¼ 10:0 and the ratio of the manufacturing labor force as m¼ 0:4. These
parameter values satisfy the so-called no-black-hole condition: ðs�1Þ=s¼ 0:94m¼ 0:4 (Fujita et al., 1999).

5.1. Period-doubling cascade

We demonstrate the occurrence of a period-doubling cascade for n¼4, 8, and 16 cities (see Proposition 5 in Section 4.3).

5.1.1. Four cities

For the four cities (n¼4), equilibrium paths were obtained using the systematic procedure to obtain equilibrium paths
in Section 4.4. Fig. 7(a) shows t versus l1 curves for these paths, which are apparently complex. Stable equilibria (shown as
solid curves) and unstable ones (as dotted curves) are classified. Trivial equilibrium paths with Dm-symmetries (m¼1,2,4)
exist at the horizontal lines at l1 ¼ 0, 1/4, 1/2, and 1, and several bifurcated paths connect these trivial paths.

To support the economic interpretation, among such complex paths, we have chosen stable trivial paths and associated
paths shown in Fig. 7(b) as those most likely to occur; distributions of populations are portrayed at several equilibrium
points. Stable parts (shown as solid lines) of the trivial equilibria are
�
 OA: equilibrium of uniform population k¼ ð1=4;1=4;1=4;1=4Þ> (D4-symmetry),

�
 BC: period-doubling equilibrium k¼ ð1=2;0,1=2;0Þ> (D2-symmetry),

�
 EF: concentrated equilibrium k¼ ð1;0,0;0Þ> (D1-symmetry), and

�
 E0F0: another concentrated equilibrium k¼ ð0;0,1;0Þ> (D1-symmetry).
Note that EF and E0F0 are symmetric counterparts with the same economic meaning.
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Bifurcation points on these trivial equilibria are classifiable as break and sustain points (Appendix B.4). Symmetries of
the system are reduced at period-doubling breaking bifurcation points A and C denoted as J (Appendix D.1):
�

to t
At A, we encounter a symmetry breaking D4�!D2 associated with

k¼ ð1=4;1=4;1=4;1=4Þ>-ð1=4þa,1=4�a,1=4þa,1=4�aÞ> ð9a9o1=4Þ:
�
 At C, we encounter a symmetry breaking D2�!D1 associated with

k¼ ð1=2;0,1=2;0Þ>-ð1=2þa,0;1=2�a,0Þ> ð9a9o1=2Þ:
Symmetries are preserved at the sustain points denoted as �, at which a trivial equilibrium and a non-trivial one
intersect (Appendix D.2). Sustain point B has D2-symmetry; E and E0, D1-symmetry. Consequently, the rule of break
bifurcations in Fig. D1(a) in Appendix D.1 is of assistance in the tracing of bifurcated paths.

Among the bifurcated paths, we found the path CD and its symmetric counterpart CD0 to be stable. The stable path CD
became unstable at the limit (maximum) point t at D denoted by W (see the left of Fig. B1(a) in Appendix B.3).

In view of the whole set of stable paths obtained herein, in association with the decrease of t, we predict a possible
course of the accumulation of population that follows four stable stages: OA, BC, CD, and EF, as presented in Fig. 7(c).
Dynamical shifts23 are assumed between OA and BC and between CD and EF. Starting from the uniform state
k¼ ð1=4;1=4;1=4;1=4Þ>, via bifurcations and dynamical shifts, we arrive at the complete concentration k¼ ð1;0,0;0Þ>,
in agreement with the rule of bifurcations in Fig. D1(a) in Appendix D.1. A spatial period-doubling cascade

D4�!D2�!D1,

en route to the concentration to a single city occurs, in agreement with Proposition 5 in Section 4.3.
23 When a stable equilibrium path becomes unstable at a critical point where a stable bifurcated path is non-existent, ‘‘dynamical shift’’ is assumed

ake place to shift into another stable path.
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Recall that the stable equilibria of the simple tomahawk bifurcation24 of the two cities consisted only of two trivial
equilibria: the equilibrium of uniform population and the completely concentrated equilibrium. Different from the two
cities, the four cities have simple pitchfork bifurcation point C and a stable non-trivial equilibrium25 CD, for which
migration from one city to another occurs stably without undergoing bifurcation. Moreover, the progress of agglomeration
of the four cities is much more complex than that of the spontaneous concentration of the two cities triggered by the
simple tomahawk bifurcation. An important point of caution is that the experience of the two cities is not to be regarded as
universal. It motivates us to conduct bifurcation analysis for many cities in the remainder of this section.

Remark 4. For a simple bifurcation point, whether it is (subcritical) tomahawk or (supercritical) pitchfork is determined
according to the sign of the stability coefficient. The determination of this coefficient, which in general involves many
nonlinear terms (Thompson and Hunt, 1973), is beyond the scope of this paper.

5.1.2. Eight cities

For the eight cities bifurcated paths branching from several trivial equilibria are obtained in an exhaustive manner as
shown in t versus l1 relation of Fig. 8(a). The horizontal lines at l1 ¼ 0, 1/8, 1/4, 1/2, and 1 are trivial equilibria with Dm-
symmetries (m¼1,2,4,8); these bifurcated paths that connect these trivial equilibria have grown more complex than those
for the four cities in Fig. 7(a).

Among all the equilibrium paths for the eight cities shown in Fig. 8(a), stable equilibrium paths that are expected to be
followed in association with the decrease of t are depicted in Fig. 8(b). The spatial period-doubling cascade

D8�!D4�!D2�!D1 ð34Þ

engenders concentration into four cities and then into two cities, en route to concentration to a single city.
Complex bifurcated paths connecting these trivial equilibria were found in Fig. 8(a). Such complexity notwithstanding,

all these paths have been traced successfully by the systematic procedure to obtain equilibrium paths in Section 4.4. That
fact demonstrates the usefulness of this procedure. One might feel pessimistic when observing the complexity of the
bifurcation of the racetrack economy that will grow rapidly with the increase of the number n of cities. Nonetheless, we
can alleviate that pessimism by addressing only the stable equilibria, as in the spatial period-doubling cascade in (34).
5.1.3. Sixteen cities

Similar to the four and eight cities, the 16 cities displayed the spatial period-doubling cascade, as shown in Fig. 9,

D16�!D8�!D4�!D2�!D1:
24 The tomahawk bifurcation was observed, e.g., in Krugman (1991) and Fujita et al. (1999) for the present model, and in Forslid and Ottaviano

(2003) for an analytically solvable model.
25 A stable non-trivial equilibrium branching from a supercritical pitchfork was observed also by Pflüger (2004) for a simple, analytically solvable

model for the two cities.



Fig. 9. Stable trivial paths and associated paths for the 16 cities that are expected to be followed in association with a decrease of t (n¼16; solid curve,

stable; dashed curve, unstable).
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5.1.4. Discussion

The presence of the spatial period-doubling cascade, which is predicted by group-theoretic bifurcation theory in
Proposition 5 and also in Tabuchi and Thisse (2006, 2011), has thus been ensured. This mechanism engenders
concentration out of uniformity, especially for n¼ 2k cities. It is to be remarked again that, unlike the two-city case,
stable non-trivial equilibria exist.
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For the 4, 8, and 16 cities, direct bifurcation is always a tomahawk (subcritical) and secondary bifurcation is always a
pitchfork (supercritical). Such commonality is an interesting feature of the present model.
5.2. Period doubling and tripling: six cities

From the equilibrium paths of the six cities shown in Fig. 10(a), we chose stable paths and some associated paths
shown in Fig. 10(b).

Trivial equilibria with Dm-symmetries (m¼1,2,3,6) (Section 4.1) exist at the horizontal lines at l1 ¼ 0, 1/6, 1/3, 1/4, 1/2, and 1:
�
 l1 ¼ 1=6: D6-symmetric equilibrium of uniform population,

�
 l1 ¼ 0, 1/3: D3-symmetric period-doubling trivial equilibria,

�
 l1 ¼ 0, 1/4, 1/2: D2-symmetric trivial equilibria, and

�
 l1 ¼ 0, 1: D1-symmetric concentrated trivial equilibria.
We observed
�
 period-doubling simple break bifurcations: D6�!D3 and D2�!D1;

�
 period-tripling double break bifurcations: D6�!D2 and D3�!Dk,6

1 .
This result arises from the fact that n¼6 has two divisors: 2 and 3. Consequently, the period doubling is not as dominant as
it is with the four cities (see Fig. 7(b)), but the period tripling via double break bifurcations plays an important role for
n¼6. The period tripling, which is theoretically predicted in Proposition 4 with bn ¼ 3, does not take place for n¼ 2k cities,
including the two cities.

A predicted shift of stable equilibria occurring in association with the decrease of t is presented in Fig. 10(c). This shift is
not unique:
�
 The D6-symmetric state might dynamically shift into either the D2- or D3-symmetric state.

�
 The D3-symmetric state might dynamically shift into the D2- or D5;6

1 -symmetric state.
By virtue of the mixed occurrence of the period doubling and tripling, the predicted shift for the six cities with n¼ 6¼ 2�
3 is more complex than that of the four cities portrayed in Fig. 7(b).
6. Conclusions

To verify the adequacy of the two-city case as a platform for spatial agglomeration, we investigated the progress of
agglomeration of racetrack economy of the core–periphery model with 4, 6, 8, and 16 cities. These cities exhibited several
features including the following:
�
 stable non-trivial equilibria,

�
 period-doubling cascade,

�
 a plethora of bifurcated paths, and

�
 period tripling via double break bifurcations.
These features were not observed and were overlooked in Krugman’s two-city case, in which the tomahawk bifurcation
engenders spontaneous concentration to a single city. It demands caution that the experience of the two-city case with a
simple tomahawk bifurcation not be regarded as universal. It is preferable to employ a system of cities as a platform for the
investigation of spatial agglomerations.

Symmetry-breaking bifurcation predicted by group-theoretic bifurcation theory proposed a broader view of the bifurcation
of the racetrack economy. In fact, the bifurcation phenomena become progressively complex concomitantly with the increase
of the number of cities. Such complexity might instill pessimism about the usefulness of the bifurcation analysis of the
racetrack economy. Yet, when we specifically examine the economically stable equilibria that are expected to occur in
association with the decrease of the transport cost, the spatial period-doubling cascade can be highlighted as the most likely
mechanism to engender concentration out of uniformly distributed population. This suffices to resolve the pessimism.

Such complex phenomena can be traced in an exhaustive and systematic manner because of the insight of group-
theoretic bifurcation theory. The proposed procedure is applicable to any new economic geography model other than
Krugman’s core–periphery model (see Footnote 3), and also to city distributions other than the racetrack economy.
Accordingly, it will be an important topic of future studies to carry out bifurcation analysis of other updated new economic
geography models with a system of cities scattered on a two-dimensional domain.
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Appendix A. Derivation of incremental equation

To derive the incremental equation for (14), we set

Pðk,w,tÞ ¼
ðo1�oÞl1

^

ðon�oÞln

0B@
1CA¼ 0, ðA:1Þ

here w¼ ðw1, . . . ,wnÞ
>, oi ¼oiðk,tÞ ði¼ 1, . . . ,nÞ, and o ¼oðk,w,tÞ ¼

Pn
i ¼ 1 lioi by (12). Eq. (6) is expressed as

Mðk,w,tÞ ¼

Xn

s ¼ 1

Ysðk,wÞt1�s
1s ðtÞG

s�1
s ðk,w,tÞ�ws

1

^Xn

s ¼ 1

Ysðk,wÞt1�s
ns ðtÞG

s�1
s ðk,w,tÞ�ws

n

0BBBBBBB@

1CCCCCCCA¼ 0: ðA:2Þ

We rewrite (A.1) and (A.2) into incremental forms as

@P

@k
dkþ

@P

@w
dwþ

@P

@t
dtþh:o:t:¼ 0, ðA:3Þ

@M

@k
dkþ

@M

@w
dwþ

@M

@t
dtþh:o:t:¼ 0 ðA:4Þ

(Ikeda and Murota, 2002, Chapter 7), where h.o.t. denotes higher-order terms. Under Assumption 2 below, we can
eliminate independent variables dw from (A.3) and (A.4) to obtain

dw¼
@M

@w

� ��1 @M

@k
J�1 @F

@t
�
@M

@t

� �
dt,

and in turn to arrive at an incremental equilibrium equation

~F ðdk,dtÞ ¼ Jdkþ
@F

@t
dtþh:o:t:¼ 0, ðA:5Þ

where

J¼
@P

@k
�
@P

@w

@M

@w

� ��1 @M

@k
,

@F

@t
¼
@P

@t
�
@P

@w

@M

@w

� ��1 @M

@t
:

Assumption 2 (Regularity conditions). The matrices J and @M=@w are nonsingular.

Appendix B. Classifications and definitions of equilibria

In the study of the agglomeration of the core–periphery model, it is useful to resort to various kinds of classifications of
equilibria.
B.1. Interior and corner equilibria

Equilibria of the present model are classifiable into two types:
�
 an interior equilibrium for which all cities have positive population li40ði¼ 1, . . . ,nÞ and

�
 a corner equilibrium for which some cities have zero population.
The existence of the corner equilibrium is a special feature of the core–periphery model that demands reorganization in
the application of bifurcation theory (Appendix D).
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B.2. Trivial and non-trivial equilibria

The core–periphery model has characteristic equilibria, for which the population k of the cities remains unchanged in
association with the change of the transport parameter t. We accordingly have the following classification:

Trivial equilibrium : k is constant with respect to t:
Non-trivial equilibrium : k is not constant with respect to t:

(

B.3. Ordinary, limit, and bifurcation points

With reference to the eigenvalues ei ði¼ 1, . . . ,nÞ of the Jacobian matrix J, equilibrium points are classified as

eia0 for all i ordinary point,

ei ¼ 0 for some i critical ðsingularÞ point:

(

Critical points are classified as

limit point of tðM¼ 1Þ,

bifurcation point

simple ðM¼ 1Þ,

double ðM¼ 2Þ,

^

8><>:

8>>>><>>>>:
Therein M is the multiplicity of a critical point that is defined as the number of zero eigenvalues of J.

At a limit point of t, as portrayed in Fig. B1(a), the value of t is maximized or minimized. A stable path is shown by the
solid curve, and an unstable one by the dashed curve. Two half branches are connected at the limit point: a part of the path
beyond the limit point is called a half branch and so is another part. Regarding stability, there are two cases:
�
 A half branch is stable, but another half branch is not.

�
 Both half branches are unstable.
At a bifurcation point, two or more equilibrium paths intersect: Fig. B1(b) presents a simple bifurcation point at which
two paths (four half branches) intersect. Regarding stability, there are four cases: three, two, one, or zero half branches are
stable; the remaining half branches are unstable. If we particularly examine only the stable half branches, they appear as a
two-pronged weapon, a curve with a kink, a branch, and so on.
Fig. B1. Critical points (solid curve, stable; dashed curve, unstable). (a) Limit point of t. (b) Bifurcation point.



Fig. B2. Sustain points (solid curve, stable; dashed curve, unstable). (a) Crossing point of two non-trivial equilibria. (b) Crossing point of trivial and non-

trivial equilibria.
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B.4. Break and sustain points

Recall the block-diagonal form (20) in Section 3.3:

~J ¼H>JH¼

~J0 O
~J1

O &

0B@
1CA:

At a bifurcation point, a block ~Jk for some k becomes singular. Dependent on the type of block that becomes singular,
bifurcation points are classified into two types as described below.
�

Fig.
A break bifurcation point, or a break point, is symmetry-breaking one, at which ~Jk becomes singular for some kðZ1Þ.
The symmetry of the system is reduced on a bifurcated path (Section 4).

�
 A sustain bifurcation point, or a sustain point is a symmetry-preserving one, at which ~J0 becomes singular. The symmetry

of the system is preserved on a bifurcated path.

The sustain bifurcation point is an inherent feature of the present core–periphery model that permits the extinction
of the population of manufacturing labor of a city. This point is necessarily a bifurcation point because the factorized
form ðoi�oÞli of (14) produces two independent equilibria. The point, as shown in Fig. B2, is classified into two types26:
(a) the crossing point of two non-trivial equilibria and (b) the crossing point of a trivial equilibrium and a non-trivial
equilibrium.

Since li and oi�o vanish simultaneously at this point, the sign of oi�o along a (trivial) equilibrium path changes, as
does the sign of li along another path. At the point, a sustainable equilibrium (oi�oo0, li ¼ 0) changes into an
unsustainable one (oi�o40, li ¼ 0) along a path, whereas a stable equilibrium with positive population (li40,
oi�o ¼ 0) changes into an unstable one with negative population (lio0, oi�o ¼ 0).

Remark 5. Fujita et al. (1999) considered only sustainable equilibria, and regarded the sustain point as a kink that
connects two half branches. Yet this point is regarded as a bifurcation point in this paper for consistency with the
computational bifurcation theory in Appendix E.

Appendix C. Proofs
Proof of Proposition 1. The Jacobian matrix of the governing equation (14) reads

J¼
@F

@k
¼

o1�o 0 � � � 0

0 o2�o & ^

^ & & 0

0 � � � 0 on�o

0BBB@
1CCCAþ

O11l1 O12l1 � � � O1nl1

O21l2 O22l2 & ^

^ & & ^

On1ln � � � � � � Onnln

0BBBB@
1CCCCA

¼ diagðo1�o, . . . ,on�oÞþdiagðl1, . . . ,lnÞO, ðC:1Þ

where diagð� � �Þ denotes a diagonal matrix with diagonal entries therein and

Oij ¼
@ðoi�oÞ
@lj

ði,j¼ 1, . . . ,nÞ, ðC:2Þ
26 The sustain point for the two cities in Fujita et al. (1999) corresponds to the crossing point of a trivial equilibrium and a non-trivial equilibrium in

B2(b).
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O¼ ðOij j i,j¼ 1, . . . ,nÞ: ðC:3Þ

For an interior equilibrium with oi�o ¼ 0 and li40 ði¼ 1, . . . ,nÞ (Appendix B.1), the Jacobian matrix in (C.1) reduces to

J¼ diagðl1, . . . ,lnÞO: ðC:4Þ

An interior equilibrium is stable if all the eigenvalues of the matrix O in (C.3) have negative real parts because the matrix
diag ðl1, . . . ,lnÞ in (C.4) is positive definite.

A corner equilibrium (Appendix B.1) can be expressed without loss of generality27 as

li40, oi�o ¼ 0 ði¼ 1, . . . ,mÞ, ðC:5Þ

li ¼ 0 ði¼mþ1, . . . ,nÞ: ðC:6Þ

With the use of (C.5), the Jacobian matrix in (C.1) becomes

ðC:7Þ

where Fi ¼ diagðl1, . . . ,lmÞOi ði¼ 1;2Þ and

O1 ¼

O11 � � � O1m

^ & ^

Om1 � � � Omm

0B@
1CA, O2 ¼

O1ð1þmÞ � � � O1n

^ & ^

Omð1þmÞ � � � Omn

0B@
1CA:

By (C.7), ei ¼oi�o (i¼mþ1, . . . ,n) are eigenvalues of J, whereas the other m eigenvalues ei (i¼1,y,m) are given as
eigenvalues of F1.

For a stable corner equilibrium, we have ei ¼oi�oo0 (i¼mþ1, . . . ,n), whereas oi�o ¼ 0 ði¼ 1, . . . ,mÞ by (C.6).
Therefore, the sustainability conditions oi�or0 and liZ0 ði¼ 1, . . . ,nÞ in (10) are satisfied for the stable equilibrium.
Consequently, the check of the sustainability is to be replaced with the investigation of stability. &

Proof of the equivariance (16) for Dn. In our study of a system of n cities on the racetrack economy, each element g of Dn

acts as a permutation among city numbers ð1, . . . ,nÞ (Section 3.1). By expressing the action of g 2 Dn as g : i/in for city
numbers i and in, for any g 2 Dn, we have oðTðgÞk,tÞ ¼oðk,tÞ by (12); we also have oiðTðgÞk,tÞ ¼oin ðk,tÞ because of the
homogeneity of the transport cost ((4) with (5)). Therefore, we have

FiðTðgÞk,tÞ ¼ ðoin ðk,tÞ�oðk,tÞÞlin ¼ Fin ðk,tÞ

by (13). This proves the equivariance (16). &

Proof of Proposition 2. We consider Dm-symmetric state, for which the equivariance (16) with G¼Dm for the explicit
form of F in (14) entails

o1 ¼o1þn=m ¼ � � � ¼o1þðm�1Þn=m,

o2 ¼o2þn=m ¼ � � � ¼o2þðm�1Þn=m,

^

on=m ¼o2n=m ¼ � � � ¼on:

ðC:8Þ

As a candidate for a trivial equilibrium, we consider a Dm-symmetric population distribution

li ¼ 1=m, oi�o ¼ 0 ði¼ 1;1þn=m, . . . ,1þðm�1Þn=mÞ,

li ¼ 0 otherwise,

(
ðC:9Þ

which is obtained by setting k¼1 in (24).
The substitution of (C.9) into (14) yields

F ¼

fo1�ogl1

^

fon�ogln

0B@
1CA¼

0� l1

ðo2�o1Þ � 0

^

ðon=m�o1Þ � 0

^

0BBBBBB@

1CCCCCCA¼ 0:

This proves that (C.9) is a trivial equilibrium, while other trivial equilibria are treated similarly. &
27 Because all corner equilibria can be reduced to the form by appropriately rearranging the order of independent variables k, the consideration of

this form does not lose generality.
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Proof of Proposition 4. The critical eigenvector is given by the superposition of the two vectors gðjÞ,1 and gðjÞ,2 in (28) as

gðyÞ ¼ cos y � gðjÞ,1þsin y � gðjÞ,2

for general angle y (0ryo2p). The bifurcated paths do not branch in the general direction associated with arbitrary y, but
branch in finite directions as expounded in Lemma 1 below. This novel aspect presented in this paper has not been
reported to date for the core–periphery model. &

Lemma 1. As made clear by group-theoretic analysis (Ikeda et al., 1991; Ikeda and Murota, 2002), bifurcated paths branching

at the double bifurcation point satisfy the following properties:
(i)
 There exist bn bifurcated paths (2bn half branches) in the directions of

dk¼ CgðakÞ, Cgða
kþbn Þ ðk¼ 1, . . . ,bnÞ,

where C is a scaling constant and

ai ¼�pði�1Þ=bn ði¼ 1, . . . ,2bnÞ:

(ii)
 The equilibria dk¼ CgðakÞ and Cgða

kþbn Þ are Dk,n

n=bn -symmetric ðk¼ 1, . . . ,bnÞ. Therefore, the spatial period becomesbn-times ðbnZ3Þ in comparison with that of the Dn-symmetric equilibrium of uniform population.

(iii)
 The 2bn half branches are classifiable into two independent ones: dk¼ Cgða2l�1Þ, Cgða2lÞ ðl¼ 1, . . . ,bnÞ. It suffices in numerical

analysis to find the two branches in two directions: dk¼ Cgða1Þ, Cgða2Þ. &
Remark 6. Proposition 1 is extendible to double bifurcation points on bifurcated paths with Dm-symmetry (m
1,m 1þbm=2,m
divides n; mZ3) by choosing gðjÞ,1 and gðjÞ,2 to be D
m=bm - and D

m=bm -symmetric, respectively. Here bm ¼m=gcdðj,mÞ
and 1r jom=2.

Appendix D. Hierarchical bifurcations

We explain the mechanism of hierarchical bifurcations of the racetrack economy that consist of symmetry-breaking at
break points and the extinction of city population of manufacturing labor at sustain points, en route to the concentration of
population in a city. As mentioned in B.4, these points are characterized by

break point : symmetry breaking,

sustain point : symmetry preserving:

(

D.1. Break bifurcations

In addition to break bifurcations from the uniform-population trivial equilibrium with Dn-symmetry (Section 4.2), several
possible sources of symmetry-breaking exist. Namely, further break bifurcations might be encountered on (a) bifurcated paths
of this Dn-symmetric equilibrium and (b) Dm-symmetric trivial equilibria (m divides n) presented in Section 4.1.

All these break bifurcations can be described using group-theoretic bifurcation theory (Ikeda and Murota, 2002).
The rule of bifurcation depends on the integer number n. To be precise, it depends on the divisors of the number n.
The bifurcation becomes increasingly hierarchical and complex for n with more divisors.

A few examples are explained below.
�
 If n is a prime number, then it can undergo only one course of hierarchical bifurcations: Dn�!D1�!C1.

�
 For n¼ 4¼ 22, a hierarchy of subgroups expressing the rule of hierarchical break bifurcations is presented in Fig. D1(a).

As might be readily apparent, in addition to the direct bifurcations in Fig. 5, several secondary and tertiary bifurcations
exist: D2-symmetric equilibrium branches into Dk,4

1 -symmetric ones ðk¼ 1, . . . ,4Þ and Dk,4
1 -symmetric one branches into

C1-symmetric one.

�
 The hierarchy of subgroups for n¼ 6¼ 2� 3 shown in Fig. D1(b) portrays a more complex hierarchy than that of

n¼ 4¼ 22 in Fig. D1(a).

These rules are sufficient in the description for break bifurcations of the model, although the model in general
undergoes more complex bifurcation attributable to the presence of sustain bifurcation points (Appendix D.2).

D.2. Sustain bifurcations

The sustain bifurcation point is a special feature of the core–periphery model that engenders the extinction of city
population of manufacturing labor (Appendix B.4). If we follow only stable equilibria, we must switch to another stable
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path. A sustain point might appear in any equilibrium other than the equilibrium of uniform population. The presence of
sustain bifurcation points must be meshed into the rule of break bifurcations (Appendix D.1).

A possible course of hierarchical bifurcations is presented in Fig. D2, for example, for the four cities (n¼4). From the
trivial equilibrium with uniform population (k¼ ð1=4;1=4;1=4;1=4Þ>) shown at the left, population distribution patterns of
various kinds are engendered via hierarchical bifurcations. This figure shows sustain bifurcation points indicated by the
dashed arrows, in addition to the double bifurcation indicated by the thick solid arrow and the simple bifurcations
indicated by the thin solid arrows. Cases other than n¼4 can be treated similarly.

Appendix E. Computational bifurcation theory

As presented in Section 5, the equilibria of the governing equation of the racetrack economy involve several
bifurcated paths that are quite complex. These paths can be traced in a systematic and exhaustive manner
using computational bifurcation theory (Crisfield, 1977). Concretely speaking, we employ the following three numerical
steps:
�
 Path tracing: In the path tracing of non-trivial equilibria, we refer to the incremental form (A.5) of the governing
equation (14), i.e.,

~F ðdk,dtÞ ¼ Jðk,tÞdkþ @F

@t
ðk,tÞdtþh:o:t:¼ 0: ðE:1Þ
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At each equilibrium point ðk,tÞ, another equilibrium point ðkþdk,tþdtÞ can be found by solving28 (E.1) for ðdk,dtÞ using
a predictor–corrector (Newton–Raphson) type method.
For the trivial equilibria, we need not carry out path tracing because they are obtainable simply by symmetry
consideration (Section 4.1), although singularity detection and branch switching must be conducted.

�
 Singularity detection: We carry out eigenanalysis of the Jacobian matrix Jðk,tÞ at the equilibria ðk,tÞ to find the location of

a critical point, as a point at which one or more eigenvalues ei of Jðk,tÞ become zero.
For the equilibrium of uniform populations, the eigenanalysis can be conducted using the explicit formulas presented in
(27)–(32). For the other equilibria, the numerical eigenanalysis of J, which is in general a non-symmetric matrix, must
be conducted.

�
 Branch switching: To obtain bifurcated paths branching from a bifurcation point, we use the so-called line search

method.
At a simple bifurcation point with a single zero eigenvalue, say e1¼0 (M¼1), a bifurcated path is to be sought in the
direction of the critical eigenvector g1 associated with this zero eigenvalue. We employ dk¼ Cg1 as the initial value for
the iteration to find an equilibrium on a bifurcated path, where the scaling constant C is to be specified pertinently in
view of the convergence of the iteration.
At a double bifurcation point with two zero eigenvalues, say e1 ¼ e2 ¼ 0 (M¼2), two (independent) bifurcated paths are
to be sought in the directions dk¼ Cgða1Þ and Cgða2Þ in Proposition 1(iii).

We carry out an exhaustive search of a whole set of equilibrium paths of the racetrack economy by repeating the three
steps described above for secondary, tertiary, . . ., bifurcated paths, until all possible bifurcated paths are exhausted.

For the racetrack economy, it is possible to trace trivial equilibria independently, other than the equilibrium of uniform
population, and to find bifurcated paths from these trivial equilibria (Section 4.4).
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