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Abstract 
Dynamic equilibrium traffic assignment with elastic demand is analyzed on an over saturated network 
for a many-to-one origin-destination pattern.  The model aims to obtain time-dependent cumulative 
arrival curves or equivalently arrival flow rates at each of the nodes explicitly taking into account the 
effects of queues.  We assume that the OD demand is elastic; that is, the departure times of users 
should be determined through the assignment given time constraints at the single destination such as 
work starting times.  We first show that the problem can be decomposed with respect to the arrival 
time at the destination.  Alternative formulations for the problem are then shown as the Variational 
Inequality, Nonlinear Complementarity and Fixed Point problems using two kinds of unknowns: link 
flows and arrival times at nodes.  Unlike the path-based formulation in the previous studies, the 
mapping used in the formulation is simple and, therefore, easy to analyze the mathematical properties 
of the assignment.  Thus, the existence of the solution is established and the uniqueness conditions are 
examined based upon the formulations. Finally, solution algorithms using merit functions that enforce 
the global convergence are suggested. 
 
 
1. Introduction 

 This research deals with the dynamic equilibrium traffic assignment on an over-saturated network 
with a many-to-one OD pattern taking simultaneously route and departure time choices into account, 
given time constraints at the single destination such as work starting times.  The research purpose is to 
examine properties of the problem based on several alternative formulations for obtaining cumulative 
arrival curves at every node over a discrete network so as to simultaneously establish the equilibrium of 
route as well as departure time choices.  
 On the departure time choice for the morning/evening commute trips, Vickrey(1969), 
Hendrickson et al.(1981), Hurdle(1981), DePalma et al.(1983), Smith(1984) and Daganzo(1985) 
studied the single bottleneck problem; that is, they assumed that commuters with common travel cost 
function pass a single bottleneck, and their departure times are determined given their work schedules 
so as to establish an equilibrium.  Kuwahara and Newell(1987) then extended the analysis so as to 
incorporate route choice as well with a many-to-one OD pattern, provided that everyone is assumed to 
pass through a bottleneck only once.  Although they considered queuing delay (waiting time in a 
queue) explicitly, these studies have been restricted so far to a network with a limited number of 
bottlenecks.  In particular, every commuter was assumed to pass a bottleneck only once in most 



 

 2

studies in this category.   
 On the other hands, Kuwahara and Akamatsu (1993), Akamatsu and Kuwahara (1994) analyzed 
the dynamic user equilibrium (DUE) assignment with queues for a one-to-many / many-to-one OD 
pattern given the time-dependent OD volume, which means departure time from an origin or arrival 
time at a destination for everyone is assumed to be known.  One of the most important result of the 
research is the decomposition scheme of the assignment based on First In First Out (FIFO) principle, 
which enables us to develop a convergent and tractable algorithm. 
 Based upon the above two types of studies, this research extends our previous analyses to include 
user’s (commuter’s) departure time choice in addition to route choice, given time constraints at the 
single destination.  In other words, compared to the morning commute analyses, this research intends 
to generalize the theory to a situation in which users may pass through bottlenecks not only once but 
several times. 
 Recently, several researches on this type of dynamic equilibrium assignment models are proposed 
(for example, Bernstein et al.(1993), Wie et al.(1993), Ran and Boyce(1996)).  Although these studies 
deal with a model with many-to-many OD pattern, basic properties of the model, such as existence and 
uniqueness of the equilibrium solution, have not been clarified at all.  To achieve the full exploration 
of the basic properties of the model, we employ two strategies: first, we focus on the model with 
many-to-one OD pattern; secondly, we formulate the model by the link-node variables not path 
variables in the previous studies. This approach enables us to examine the model, and the results will be 
an important building block for the analyses of general models with many-to-many OD pattern. 
 Another reason for restricting our attention to the basic case of many-to-one OD pattern is due to 
the consideration for developing mathematically valid solution methods. As is well known, 
Gauss-Seidel decomposition (cyclic decomposition) is one of the valid approach to the static user 
equilibrium assignment problem ( with many-to-many OD pattern).  In this approach, a single OD 
equilibrium problem is solved for each OD-pair, by keeping the flows for other OD-pairs fixed.  
Employing this type of algorithm for solving the dynamic assignment model is a natural and promising 
strategy.  When this strategy is applied for the dynamic assignment with many-to-many OD pattern, it 
is crucial to develop efficient solution methods for the sub-problem with many-to-one OD pattern.  
Thus, the analyses on the many-to-one OD pattern is indispensable step to develop the general models 
and algorithms for many-to-many OD pattern. 
 

2. Some Definitions on a Dynamic Network 

2.1. Network and OD Demand 

 Our model is defined on a transportation network G[N,L] which has the set N of nodes with N 
elements, the set L of directed links with L elements and given set   of origin-destination(OD) node 

pairs with M elements. Sequential numbers from 1 to N are allocated to N nodes. A link from node i to j 
is denoted as link (i,j).  For each of links, the cumulative arrival and departure curves are defined as 
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follows: 

 Aij(t)  =  the cumulative arrivals at link (i,j) by time t, 
 Dij(t)  =  the cumulative departures from link (i,j) by time t. 

And the derivatives of those with respect to time t are denoted as 

 λij(t)  =  the arrival rate at link (i,j) at time t  = dAij(t)/dt, 
 μij(t)  =  the departure rate from link (i,j) at time t  = dDij(t)/dt.  

The arrival rate at link (i,j) at time t, λij(t), is the unknown variable which must be determined so as to 
establish the dynamic equilibrium condition defined later.  The difference between Aij(t) and Dij(t) 

clearly shows the number of vehicles on link (i,j) at time t, which is denoted as 

   Xij(t) = the number of vehicles on link (i,j) at time t  =  Aij(t) - Dij(t).    (2.1) 

In addition, a time-dependent many-to-one OD demand is denoted as  
   Qod(t)= cumulative OD demand from origin o to destination d generated at the origin by time t. 

2.2. Flow Constraints 

 There are two kinds of flow constraints to be physically satisfied: 1) the flow conservation at 
nodes and 2) the First-In-First-Out queue discipline, which can be defined using variables introduced 
above. 

(1) Flow Conservation at Nodes 
 The flow conservation at node k is written as follows: 

   
i

∑ Dik(t) - 
j

∑ Akj(t) + Qkd(t) = 0 , ∀ ∈ ≠k N k d,      (2.2a) 

where d is a destination node.  The first and third terms give the cumulative number of vehicles 
flowing into node i by time t, while the remaining terms describe the number of vehicles leaving node i 
by time t.  The flow conservation is also written using the time derivatives: 

  
i

∑ μik(t) - 
j

∑ λkj(t) + dQkd(t)/dt = 0 , ∀ ∈ ≠k N k d,      (2.2b) 

 (2) First In First Out Discipline 
 Second, under the FIFO queue discipline, a vehicle must leave link (i,j) in the same order as its 
order of arrival at the link.  Thus, the Aij(t) and Dij(t) must be related to each other through link travel 

time cij(t) as shown in Fig.1: 

    Aij(t) = Dij(t + cij(t)),        (2.3a) 

where cij(t) = travel time on link (i,j) for a vehicle entering the link at time t.  This FIFO discipline is 

also described using arrival and departure rates by taking derivative of (2.3a): 

     λij(t) =μij(t + cij(t)) (1 + dcij(t)/dt).      (2.3b)  
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2.3. Link Travel Time 

 As in Fig.1, the FIFO discipline clearly defines link travel time cij(t) such as the horizontal time 
difference between arrival and departure curves at arrival time t.   From (2.3a), cij(t) is thus written as 
a function of Aij(t) and Dij(t): 

    cij(t) = Dij
-1 (Aij(t)) - t.        (2.4) 

 Travelers are assumed to perceive cij(t) as a penalty of travel, although it is possible to introduce 
perceived costs of travel rather than actual travel time cij(t) as the conventional traffic assignment.  

Since the analysis is essentially the same, the link travel time is here considered as the perceived cost to 
eliminate further complications.    
 Here, the point queue concept in which a vehicle has no physical length is employed. Let µ ij

* be 

the maximum departure rate of link (i,j) which is given, and mij be the link travel time at free flow speed. 
Then, departure rateμij(t) is evaluated as follows independently of traffic condition downstream: 

  µ
µ λ µ
λij ij

ij ij ij ij ij

ij
t c t

c t m t
t( ( ))

( ) ( )
( )

* *

+ =
> >⎧

⎨
⎩

        if    or  
    otherwise     (2.5) 

If a vehicle is not delayed, it is assumed to travel on link (i,j) for free flow travel time mij which is 
shown as a broken line in Fig.1.  However, once link travel time cij(t) gets larger than mij at time t or 
arrival rateλij(t) is larger than maximum departure rate µ ij

* , departure rate μij(t + cij(t)) is restricted 

to µ ij
*  due to a queue on the link. 

 The (2.5) implies that if arrival curve Aij(t) is known by time t which meansλij(t) is known by 
time t as well, μij(t) is determined by time t + cij(t) and so is Dij(t).  Therefore, from (2.4), cij(t) 
basically becomes a function of only arrival curve Aij(t’) only for t’ ≤  t but independent of Aij(t’) for t’ 

> t.  In the deterministic queuing analysis, this result seems apparent under the point queue concept; 
that is, if arrival curve Aij(t) were known, departure curve Dij(t) could be drawn as the lower tangent line 
based on the given maximum rate µ ij

*  and travel time cij(t) could be evaluated. 

 
 
 
 
  
 
 
 

 

Fig. 1 Cumulative Arrival and Departure Curves on Link (i,j) 

2.4. Definition of Route-Choice Equilibrium 
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time 
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 The user equilibrium is defined as a condition where no vehicle can find a faster route than the 
one presently assigned to.  Let π id t( )  be the shortest travel time from node i to destination d at time 

t.  Then, similar to the static assignment, the equilibrium condition is written such that: 

 
π π

π π

id jd ij ij

id jd ij ij

t t c t c t

t t c t c t

d
i t i j

( ) ( ( )) ( )

( ) ( ( )) ( )

− + =

− + ≤

⎧
⎨
⎪

⎩⎪

   

   

if a vehicle with destination  leaving
                                                       node  at time  uses link ( , ),

otherwise.
   (2.6) 

The important difference in the above definition from the static equilibrium assignment is found in 
π jd ijt c t( ( ))+ ; that is, the shortest travel time from node j to d must be evaluated at time t+cij(t) when 

a vehicle arrives at node j.  Although we are considering a many-to-one OD pattern, this equilibrium 
definition is applicable even to a many-to-many OD pattern. 
 Since here we have only one destination d, the above definition is slightly modified by 
introducing τ i u( )  which is the latest arrival time at node i for a vehicle arriving destination d at time 
u.  If a vehicle arrives at node i at time τ i u( )  and arrives at destination d at time u, clearly π id t( )  
is equal to u ui− τ ( ) .  Hence, the above equilibrium condition is written usingτ i u( ) ’s: 

 
τ τ τ

τ τ τ

j i ij i

j i ij i

u u c u

u u c u

d
u i j

( ) ( ) ( ( ))

( ) ( ) ( ( ))

− =

− ≤

⎧
⎨
⎪

⎩⎪

        if a vehicle arriving destination  
                                                    at time  uses link ( , ),

        otherwise.
    (2.7) 

 
3. Basic Formulations of Dynamic Network Equilibrium Assignment 

3.1. Decomposition by Arrival Time at the Single Destination 

 Let us first consider the order of arrivals at a node.  Under the equilibrium state, a vehicle 
arriving at the destination earlier must arrive at any node earlier than the others arriving the same 
destination later than the vehicle.  Thus, when the OD pattern is many-to-one, under the equilibrium 
state, the order of arrival at any node must be the same as the order of arrivals at the single destination d.  
And when a vehicle arrives at destination d at time u, the arrival time at node i must be equal to 
τ i u( ) (for the detailed discussion, see Kuwahara and Akamatsu(1993)). 
 As defined in the previous section, link travel time c uij i( ( ))τ depends only on the cumulative 

arrival curve before time τ i u( ) .  Therefore, together with the above discussion on the order of 
arrivals at a node, it is concluded that c uij i( ( ))τ  depends only on route choices of those arriving the 

single destination before time u.  Consequently, we can consider the assignment sequentially in the 
order of arrivals at single destination d.   That is, the assignment can be decomposed with respect to 
arrival time u at destination d provided that the OD pattern is many-to-one. 

3.2. Decomposed Representation of Flow Conservation and Link Cost Functions 

 In the previous section, we have concluded that the assignment problem can be decomposed 
regarding the arrival time at the single destination.  Let us therefore consider only vehicles arriving at 
the destination during an interval [u-du, u] assuming that the equilibrium flow pattern of vehicles 
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arriving at the destination before time u-du has been obtained (thick lines in Fig.2).  First, according to 
the definition of the equilibrium, (2.7), if link (i,j) is used by vehicles arriving at destination at time u, 
τ j u( )  must be equal toτ τi ij iu c u( ) ( ( ))+ .  Thus, the FIFO discipline (2.4) becomes 

     Aij(τ i u( ) )= Dij(τ j u( ) ).        (3.1) 

Applying this relationship to (2.2a), we obtain the flow conservation at node k in the following way 
eliminating Dij: 

    
i

∑ Aik(τi(u)) - 
j

∑ Akj(τk(u)) + Qkd(τk(u)) = 0, ∀ ∈ ≠k N k d, .    (3.2a) 

This flow conservation is also described using the arrival flow rate by taking derivatives with respect to 
arrival time u: 

  
i

∑  yik(u) - 
j

∑  ykj(u) + qkd(u) = 0, ∀ ∈ ≠k N k d,      (3.2b) 

where  yik(u) ≡  Aik(τi(u))/du ,  qkd(u) ≡  Qkd(τk(u))/du.   

 And considering time interval [u-du, u], travel time of link (i,j) for a user entering into the link at 
timeτi(u) is now described as a function of yij(u) andτi(u) as below: 

 c u c u du X u X u du mij i ij i ij i ij i ij ij( ) .[ ( ) { ( ) ( )} , ]*τ τ τ τ µ( ) ( ) ( ) ( )Max  = − + − −  

               = Max.[  ( )c u du y u du u u du mij i ij ij i i ij( ) ( ) { ( ) ( )}, ]*τ µ τ τ− + ⋅ − − − .    (3.3) 

Since unknowns are only yij(u) and τi(u) in the above equation but cij(τi(u -du)) andτi(u-du) have 

been evaluated from thick lines in Fig.2, the travel time can be simply written as 

  c u y u u mij i ij ij ij i ij( ) [ ( ) , ]τ α β τ( ) Max. ( )  = + −        (3.4a) 

where  α µij ijdu≡ * , β τ τij ij i ic u du u du= − + −( ( )) ( ) .       (3.4b) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Travel Time on Link (i,j) for a vehicle arriving at destination at time u 
 

3.3 Decomposed Representation of Route-Choice Equilibrium 

Cumulative Vehicles 

time 

cij(τi(u))

 yij(u) du 

 yij(u) du/µ
*
i j 

τi(u-du) τj(u-du) τj(u)τi(u)

Aij(τi(u-du))

cij(τi(u-du))
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 The equilibrium condition (2.7) is equivalently written as the following complementarity 
condition: 

  
y u c u u u

c u u u y u
ij ij i i j

ij i i j ij

( ) ( ( ) ( ) ( ))
( ) ( ) ( ) , ( )

( )

( )

⋅ + − =

+ − ≥ ≥

⎧
⎨
⎩⎪

τ τ τ

τ τ τ

0
0 0     

 ∀ ∈( , )i j L    (3.5) 

  y u y u q uik
i

kj
j

kd( ) ( ) ( )∑ ∑− + =0 .    ∀ ∈ ≠k N k d ,   (3.2b) 

  c u y u u mij i ij ij ij i ij( ) [ ( ) ( ) , ]( )τ α β τ= + −Max.          (3.4a) 

In this formulation, unknowns are yij(u)'s of all L links, andτ i u( ) 's at all nodes except destination d (or 
OD demand qod(u)'s).  Note that the link travel time cij(τ i u( ) ) depends on not only yij(u) but alsoτi(u)  

while the link cost in the static assignment is a function of only link flows which correspond to yij(u)'s 

here. 

3.4 Decomposed Representation of OD Demand 

 In this paper we explore the properties of the dynamic assignment for two kind of OD demand 
models: first model is the simplest one based on the assumption of deterministic and homogeneous user 
behavior; second model is the LOGIT type stochastic one that is a generalization of the first model. 

(1) Deterministic Demand Model 
 Let us now define the first OD demand model.  We begin with the following assumption on the 
users’ behavior: 
 1) The users choose their departure time so as to minimize their experienced disutility. 
 2) The users are homogeneous  in the sense that they have the same disutility function. 
 3) The disutility function consists of their experienced travel time and “schedule cost”: 

   V u v u u v uod o od( , ) ( ( )) ( ) = − + −τ ψ ,       (3.6) 

where Vod (u, v) denotes the disutility of a traveler with work starting time v who departs from origin o 
and arrives at destination d at time u, ψ od v u( )−  stands for the convex and non-negative schedule cost 

function, v - u is the schedule delay for a traveler with work starting time of v.  
 Under these assumption, the equilibrium OD demand is given by the solution of the following 
complementarity conditions and the flow conservations: 
 

  
q u V u v

V u v q u
od od od

od od od

( ) { ( , ) }
( , ) , ( )

⋅ − =
− ≥ ≥

⎧
⎨
⎩

ρ
ρ

0
0 0      ∀ ∈ ∈od u 0 T, [ , ]    (3.7) 

  q u du Q Tod od
T

( ) ( )=∫ 

 

0
  ∀ ∈od        (3.8) 

Condition (3.7) means that the disutility for the arrival time u ,Vod (u, v), is minimized to a certain 
equilibrium level , ρod , if the OD demand for the arrival time u, qod(u), is positive; the disutility for  u 
is greater than ρod  (i.e.V u vod od( , )> ρ ) if the OD demand is zero. 

(2) Stochastic Demand Model 
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 The second OD demand model is based upon the random utility theory. The users are assumed to 
choose their arrival time so as to minimize their perceived disutility of the OD pair:  

   ~ ( , ) ( , ) ~U u v V u vod od= +ε          (3.9) 

where ~ ( , )U u vod  denotes the perceived (random) disutility of a traveler with work starting time tw who 

departs from origin o and arrives at destination d at time u, Vod (u, v) is defined in (3.6) and ~ε  is a error 

term.  When the random error term follows the i.i.d. Gumbell distribution, the probability density that 
a traveler with work starting time v who departs from origin o arrives at destination d at time u is given 
by 

   p u vod
od

odu

u
V u v

V u v du
( , ) exp[ ( , )]

exp[ ( ', )] '
=

−

−∫
θ

θ

  

   
 

        (3.10) 

whereθis a distribution parameter of error term.  In addition, we assume that the work start time , v, 
are distributed among users, and the distribution for each OD pair is given as the function wod(･).  

Then, the OD demand for the destination arrival time d is  

   q u Q w v p u v dvod od od odw

w
( ) ( ) ( , )= ∫  

 
,       (3.11) 

where Qod denote the given total OD demand from origin o to destination d. 

 Since substantial amount of work on departure time choice for morning commute has been 
reported, it is advantageous to compare the definition of the demand model above with those previous 
studies.  The previous analyses mostly employ the deterministic departure time choice as in (1) and 
hence they correspond to our second demand model with θ → ∞ .  Also, they are based upon the 
special property of the First In First Work (FIFW) discipline, which means that, in the equilibrium, the 
order of arrivals at any node is the same as the order of work starting times at offices (or equivalently 
same as the desired departure times from bottlenecks).  For the single bottleneck analyses, 
Smith(1984) and Daganzo(1985) proved the FIFW discipline provided that the schedule cost function 
ψ od v u( )−  is convex in schedule delay v-u.  Kuwahara and Newell(1987) then showed that the FIFW 

discipline is valid when commuters pass through bottlenecks only once even for a many-to-one OD 
pattern, and decomposed their problem including route choice with respect to work starting times v’s.  
Even in our demand model with θ → ∞ , once the FIFW discipline is guaranteed, the problem can be 
decomposed with respect to v’s.  However, the FIFW discipline cannot be always established for a 
general network with a many-to-one OD pattern where travelers may get through two or more 
bottlenecks taking various routes to the single destination. 
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4. Alternative Formulations - VIP, NCP and FPP 

 In this section, we convert the DUE assignment described in the previous section into various 
formulations that are more convenient for the mathematical analyses: Variational Inequality Problems 
(VIP), Non-linear Complementarity Problems (NCP) and Fixed Point Problems (FPP).  In each 
formulation, we classify the models into two categories based on the demand function shown in section 
3.4 and the corresponding formulations are derived in parallel. 
 Recently,  Smith(1993) and Friesz et al.(1993) also formulated the DUE assignment as a VIP, 
which we refer to it as VIP-DUE-path since the formulation is based on path variables.  Unlike the 
VIP-DUE-path, our formulation shown below is based on node / link variables decomposed with 
respect to arrival times at a destination.  This strategy gives us several advantages over VIP-DUE-path.  
First, it is easy to analyze the mathematical properties of the problem since the mapping appearing in 
our formulation is very simple comparing with that in VIP-DUE-path.  Second, this formulation 
enables us to define a easily computable merit function, which is a useful tool for developing efficient 
and convergent algorithms. The precise demonstrations of these advantages of our formulations will be 
presented in the following sections. 

4.1 Variational Inequality Formulations 

 As we have seen in 3.1, we can decompose the DUE assignment model by the arrival time at a 
destination, u, when the OD demand is fixed. The OD demand qod(u), however, cannot be determined 
by considering only time interval of [u-du, u] but we have to consider the whole study period [ , ]u u  

because of the integration in the denominator of (3.10). Thus, we must consider the equilibrium 
conditions for a whole time period simultaneously.  
 For the convenience of the analysis in the later sections, we formulate the DUE model by 
discretizing the arrival time at a destination: we divide an underlying time period into a finite number, 
K, of intervals and the set of the intervals is denoted as .  We also use a superscript u for the arrival 
time at a destination in the set , and the following vector notation is used: 

cu=(.., cij(u) ,..)T ∈R L  , c =(c0...,cu,...cK)T ∈ ⋅R L K ,  yu=(.., yij(u) ,..)T ∈R L ,  y =(y0,...,yu,...,yK)T ∈ ⋅R L K , 

τu=(..,τ o u( ) ,..)T ∈R N , τ =(τ0,...,τu,...,τK)T ∈ ⋅R N K , qu = (.., qod u( ) ,..)T ∈R M , q = (q0,..., qu,...,qK)T ∈ ⋅R M K  

Ψu =(..,ψ od u( ) ,..)T ∈R M , Ψ =(Ψ0,...,Ψu,...,ΨK)T ∈ ⋅R M K , ρ = (.., ρod ,..)T ∈R M ,  Q = (.., Qod ,..)T ∈R M . 

 

1) Deterministic Demand Function Case 
 In the discrete time system, the path choice DUE conditions (3.5) can be represented as 

  yu・(cu − AT τu)＝0,  cu −AT τu≧0,  yu≧0 ∀ ∈u     (4.1a) 

 or y・(c −AK
T τ)＝0,  c −AT τ≧0,  y≧0       (4.1b) 

where A and AK denote a node-link incidence matrix, and the block diagonal matrix with K diagonal 
blocks all equal to A, respectively. The flow conservation (3.2b) is represented as 
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     qu − A yu＝0 ∀ ∈u       (4.2a) 

 or    q − AK y＝0        (4.2b) 

 Similarly, the deterministic OD demand conditions (3.7) can be written as 

  q・(u − τ + Ψ − DT ρ )＝0,  u − τ + Ψ − DT ρ≧0,  q≧0   (4.3) 

where D is the M×(M･K) block diagonal matrix with K diagonal blocks all equal to [1,...1] = the 

“arrival time-OD pair” incidence matrix. The flow conservation (3.8) is also represented as 

     D q − Q = 0.        (4.4) 

 Now, define X∈K1 = R R R R+ +
L K N K M K M× × ×× × ×  and mapping F: K1→K1 as follows:  

  X

y

q=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

τ

ρ

,  F X

y

q

c y
0

u( )

,

=
−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0
0

0

A
A 0 I
0 I D

D

K

K

T

T

0 0 0

τ

ρ

τ

−ψ
−

( )

Q

    (4.5) 

Then, we can state the VIP formulation of the DUE assignment with deterministic OD demand.  

Theorem 4.1. The vector X* ∈K1  is a solution of simultaneous DUE assignment with deterministic 
OD demand if and only if it satisfies the following VIP, VI K( , )1 F : 

  Find  X* ∈K1  such that  F(X)・(X − X*)≧0  ∀X∈K1 .  (4.6) 

Proof:  In expanded form,  the VI (4.1) is represented as 

   (c(y*,τ*) + AK
T τ*)・(y − y*) + (q* − AK y*)・(τ − τ*)  

 + (τ*+ u−Ψ − DT ρ* )・(q − q*) + (D q* − Q)・(ρ − ρ*)≧0 ∀(y, τ, q, ρ)∈K1 (4.7) 

Assume that X* satisfies the simultaneous DUE conditions (4.1)-(4.3).  We will show that X* must 
satisfies VI (4.4).  It follows that (4.1) implies 

 { ( , ) }( )* * * * *( ) ( ) ( ) ( ) ( ) ( )c y y yij ij i i j ij iju u u u u uτ τ τ+ − − ≥0  ∀ ∈ +y Rij u( ) , ∀ ∈( , )i j L , ∀ ∈u , (4.8a) 

Similarly, (4.2), (4.3) and (4.4) imply 

 { ( )}( )* * * *( ) ( ) ( ) ( ) ( )y y qik
i

kj
j

kd k k ku u u u u∑ ∑− + − =τ τ τ 0  ∀ ∈τ k u R( ) ,∀ ∈k N , ∀ ∈u , (4.8b) 

 { ( , ) }( )* *( ) ( )V u t q qod w od od odu u− − ≥ρ 0   ∀ ∈ +q Rod u( ) ,∀ ∈( , )o d , ∀ ∈u ,   (4.8c) 

 { }( )* *( )q Qod
u

od od odu∑ − − =ρ ρ 0   ∀ ∈ρod R,  ∀ ∈od ,      (4.8d) 

respectively. Summing (4.8a),(4.8b),(4.8c) and (4.8d) over {(i,j) ∈L , u ∈ }, {k ∈N , u ∈ }, 
{(o,d) ∈  , u ∈ } and {(o,d) ∈  }, respectively, we obtains VI (4.6). 

 Next, let us consider the converse. Assume that X* satisfies (4.6). We will show that X* also 
satisfies DUE conditions (4.1)-(4.4).  Set τ = τ * , q=q* , ρ=ρ* and y ykl klu u( ) ( )*=  for all 

{ ( , ) ( , )k l i j≠ , u v≠ } where ( , )i j and v are an arbitrary fixed link in L, and an arbitrary arrival time 
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in , respectively.  Then, (4.6) reduces to (4.8a), which implies that (4.1) must hold.  Similarly, set 
y y= * , q=q* , ρ=ρ*  and τ τl lu u( ) ( )*= for all { l k≠ , u v≠ } where k and v are an arbitrary fixed 

node in N, and an arbitrary arrival time in .  Then, (4.6) reduces to (4.8b), which implies that (4.2) 

must hold.  In the almost same manner, we can obtain (4.8c) and (4.8d) from (4.6), which imply that 
(4.3) and (4.4) hold.  This completes the proof.□ 

 To compare our model with the previous studies, we will show the equivalent path-based 
formulation below, where the following notation are used: 

od : a set of routes between origin-destination pair od with Hod elements, ≡ ∩ 
od

od , H H≡∑ od
od

,

F ur
od ( ) : Number of vehicles on rth path for OD pair od that arrives at destination by time u, 

f ur
od ( )  = d F ur

od ( ) / du,  f u = (.., f ur
od ( ) ,..)T ∈R H  ∀ ∈u ,  f  = (.., f u,..)T ∈ ⋅R K H , 

γ od u( ) : equilibrium OD travel time for a user with OD pair od who arrives at destination at time u, 
γu = (..,γ od u( ) ,..)T ∈R M  ∀ ∈u ,   γ  = (.., γu,..)T ∈ ⋅R K M , 
C ur

od ( )  : travel time for a user who uses rth path for OD pair od and arrives at destination at time u, 
Cu = (.., C ur

od ( ) ,..)T ∈R H  ∀ ∈u ,  C  = (.., Cu,..)T ∈ ⋅R K H . 

 The shortest path conditions corresponding to (4.1) are given by 

  f u・( C u - BT γ u )＝0, C u - BT γ u ≧ 0, f u ≧ 0  ∀ ∈u   (4.9a) 

 or f・( C - BK
T γ )＝0, C - BK

T γ ≧ 0, f ≧ 0     (4.9b) 

where B is a “route - OD pair” incidence matrix (M×Hod matrix), BK is the (M･K)×(H･K) block 

diagonal matrix with K diagonal blocks all equal to B.  Using these matrices, the flow conservation 
corresponding to (4.2) are represented as 

     B f u - q u = 0   ∀ ∈u     (4.10a) 

 or    BK f - q = 0         (4.10b) 

The OD demand condition can be represented by almost same manner as in (4.3) and (4.4).  Thus, the 
equivalent VI problem corresponding to (4.6) is given as follows: 

 Find  X* ∈K1P  such that  F(X)・(X − X*)≧0  ∀X∈K1P .     (4.11a) 

where X∈K1P = R R R R+ +
H K M K M K M× × ×× × ×  and mapping F:K1P→K1P

  are defined as 

  X

f

q=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

γ

ρ

,  F X
q

C f

( ) =

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0
0

0

B
B 0 I
0 I D

D

K

K

T

T

0 0 0

f
0

Q

γ

ρ
Ψ

( )

    (4.11b) 

 The VI problem above is somewhat redundant.  In fact, the shortest path condition (4.9) and the 
minimum disutility condition (4.3) can be combined as follows: 

  f・(C + BK
T Ψ − BK

T DT ρ )＝0,  C + BK
T Ψ − BK

T DT ρ≧ 0,  f≧ 0  (4.12) 
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The “simultaneous minimization” of disutility in (4.12) is equivalent to the “double stage minimization” 
in (4.11), since the following holds: 

   
min.{ ( )} min{min.{ ( )}}

min{ ( ) ( )} min{ ( )}
,r u r

od

u r r
od

u od od u od

V u V u

u u V u

=

= + =                      γ Ψ .
 

In this formulation, the required flow conservation also reduces to 

    D BK f - Q = 0 .         (4.13) 

Thus, we have the following “reduced” VI problem that is equivalent with (4.11): 

 Find  X*∈K1P-1=RH×K×RM×K such that  F(X)・(X − X*)≧0  ∀X∈K1P-1.  (4.14a) 

where  X∈K1P
  and mapping F:K1P-1→K1P-1

  are defined as 

  X
f

=
⎡

⎣
⎢

⎤

⎦
⎥ρ

,  F X
f C f

Q
( ) = −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 B D
D B 0

BK

K

K
T T T

ρ
Ψ( )+

.
    (4.14b) 

Furthermore, it is easily seen that the cost variable ρ* in the “Primal-Dual” VIP (4.14) can be eliminated 
by “dropping” the term in F(X) corresponding to (4.13) into constraint set.  That is, VIP (4.14) yields 
the following “Primal” type VIP: 

 Find  f*∈K1P-2 such that {C(f*) + BK Ψ}・(f − f*)≧0 ∀f∈K1P-2    (4.15) 

 where  K1P-2 ={f｜Q =D BK f,  f≧0} 

This is the problem proposed by Friesz et al.(1993) and Bernstein et al.(1993).  Although the problem 
(4.15) is seemingly simple, it is difficult to analyze the basic properties.  The reason is that C(f) in this 
formulation is very complex mapping of various path flows, which can not be represented analytically.  
On the other hand, the VIP (4.6) derived from link-node formulation is easy to analyze, since the 
mapping F(X)consists of relatively simple link cost c(u) that is expressed as an analytical function. 
 

2) Stochastic Demand Function Case 

 In addition to the (destination) arrival time u in the set  we divide the work start time into a 
finite number, J, of intervals and the set of the intervals is denoted as .  We also use a superscript v 
for the work start time in the set  For the set  ,  the work start time distribution satisfys 

     w v Qod od
v

( ) =
∈
∑    ∀ ∈od    

 or    E w = Q ,         (4.16) 

where E is the “work start time-od pair” incidence matrix (which is the M×(M･J) block 

diagonal matrix with J diagonal blocks all equal to [1...1]) . 
Given the work start time distribution w for the discrete time system, the Logit type OD demand 

(3.10) is represented as 
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     q w p w V
Vod

u v
od
v

od
u v

od
v od

u v

od
u v

u

, ,
,

',

'

exp[ ]
exp[ ]

= ⋅ = −
−

∈
∑

θ
θ
 

 
,    (4.17) 

where qod
u v,  is the OD demand with work starting time v that departs from origin o arrives at 

destination d at time u.  This can be alternatively represented as the following complementarity 
conditions: 

  

q q V

q V q

od
u v

od
u v

od
u v

od
v

od
u v

od
u v

od
v

od
u v

, , ,

, , ,

{ ln }

ln ,

⋅ + − =

+ − ≥ ≥

⎧

⎨
⎪⎪

⎩
⎪
⎪

1 0

1 0 0

θ
ρ

θ
ρ

  

  

 

      
  ∀ ∈u  , ∀ ∈v    (4.18a) 

  and  q wod
u v

od
v

u

, =
∈
∑ .     ∀ ∈v     (4.18b) 

Although the variable ρod
u v,  in (4.17) is not represented as an explicit function of Vod

u v', , combining 

(4.18a) and (4.18b) yields 

    ρ
θ

θod
u v

od
u v

u
od
vV w, ',

'

{ln exp[ ] ln }=− − +
∈
∑1  , 

and the equivalence between (4.17) and (4.18) can be easily verified. 
 Expressing (4.18a) and (4.18b) in a vector-matrix form, we have 

  q ln q Vv v v T v
• + − =( )1 0

θ
  D ρ , 1

θ
  Dln q V 0v v T v+ − ≥ρ , q 0v ≥  ∀ ∈v   (4.19a) 

  D q w 0v v− =  ∀ ∈v  .         (4.19b) 

or equivalently, 

  q ln q u• + − + − =( ( ) )1 0
θ

 K JE DT Tτ ψ ρ , 1
θ

ln q u 0 K JE D  + − + − ≥T T( )τ ψ ρ , q 0≥  (4.20a) 

  DJq w 0− =             (4.20b) 

where  DJ is the (M･J)×(M･K･J) block diagonal matrix with J diagonal blocks all equal to D, 
  EK is the (M･K)×(M･K･J) block diagonal matrix with K diagonal blocks all equal to E, 

  ln z denotes the vector with components ln zi,, i=1,2,..n, for any vector z ∈R n .  
 
 Now, define X∈K2 = R R R R+ +

L K N K M J K M J× × × × ×× × ×  and mapping F: K2→K2 as follows:  

  X
q

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

y
τ

ρ

,  F X

y

q

c y
0

u lnq
w

( )

,

( )
= −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
+

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0
0

1

A
A E
0 0 D
0 0 D 0

K

K K

J

J

T

T T T
0

E EK K   

τ

ρ

τ

−Ψ

( )

θ
 (4.21) 

Then, we can state the VIP formulation of the DUE assignment with stochastic OD demand.  
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Theorem 4.2A.  The vector X* ∈K2  is a solution of simultaneous DUE assignment with LOGIT 

type stochastic OD demand for a time period   if and only if it satisfies the following VIP, 
VI K( , )2 F : 

  Find a vector X* ∈K2  such that F X X X 0( ) ( )* *⋅ − ≥  ∀ X∈K2    (4.22) 

 The formulation above is restricted to the LOGIT type OD demand function.  For the general 
demand function q( )τ , the VI representation is stated as follows: 

Theorem 4.2B.  The vector x* ∈K B2 = ×+
× ×R RL K N K  is a solution of simultaneous DUE assignment  

with general OD demand for a time period  if and only if it satisfies the following VIP, VI K B( , )2 F : 

  Find a vector x* ∈K B2  such that F x x x 0( ) ( )* *⋅ − ≥  ∀ ∈x K B2    (4.23) 

where a vector x∈K B2  and a mapping F x( ): K KB B2 2→  are defined by 

  x
y

≡
⎡

⎣⎢
⎤

⎦⎥τ
,  F x

c y
q

y
( )

( , )
( )

≡
⎡

⎣
⎢

⎤

⎦
⎥+

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

τ
τ τ

0 A
A 0

K

K

T

.
      (4.24) 

A few remarks are in order for the VIP above. The structure of the formulation (4.23) is very similar to 
the (multi-commodity) spatial price equilibrium model (see, for example, Pang(1984), Friesz et 
al.(1983) etc.) or (naturally) a link/node formulation of the static Wardrop equilibrium assignment. 
There is, however, a clear difference between the VIPs for the static network equilibrium problems and 
that for the DUE assignment.  In the static network equilibrium problems, provided both the cost 
function c  and the demand function q  are invertible (i.e. the functions y c c= −1( ) and τ = −q q1( )  

exist), we can obtain the following three types of formulations: 

(Primal VIP) 

 Find ( , )* *y q ∈ KP  such that c y y y q q q q 0 y q( ) ( ) ( ) ( ) ( , )* * * *⋅ − + ⋅ − ≥ ∀ ∈−1    KP  (4.25a) 

 where KP = ≥ ≥{( , ) , , }y q q y y 0 q 0  = A      

(Dual VIP) 

 Find ( , )* *c τ ∈ KD  such that c c c c q 0 c− ⋅ − + ⋅ − ≥ ∀ ∈1( ) ( ) ( ) ( ) ( , )* * * *τ τ τ τ   KD  (4.25b) 

 where KD
T= ≥ ≥{( , ) , , }minc c c c 0τ τ τ  = A     

(Primal-Dual VIP) 

 Find ( , )* *y τ ∈ KPD  such that 

 ( ( ) ) ( ) ( ( ) ) ( ) ( , )* * * * * *c y y y q y 0 y+ ⋅ − + − ⋅ − ≥ ∀ ∈A A    T
PDKτ τ τ τ τ    (4.25c) 

 where KPD = ≥ ≥{( , ) , }y y 0 0τ τ     

On the other hands, the DUE assignment based on link-node variables can be converted into only 
“Primal-Dual” type  even if c  and q  are invertible; neither “Primal” nor “Dual” type are possible. 
The reason is that the link cost function in the DUE assignment depends not only the flow vector y  

but also the node-arrival time τ , which destroys a certain “bisymmetry” structure of the problem.  
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4.2 Nonlinear Complementarity and Fixed Point Formulations 
 For the convenience of the standard NCP formulation presented below, we introduce a new 
variable, $ $ ( ) ( )τ τ τi

u
i iu u u≡ ≡ − , which means the equilibrium travel time from node i to a destination 

for each destination arrival time u.  Then, the link cost can be represented as a function of $τ i
u : 

  c y Max y u m c yij
u

ij
u

i
u

ij ij
u

ij
u

i
u

ij ij
u

ij
u

i
u( , ) [ ( $ ), ] $ ( , $ )τ α β τ τ= + − − ≡ .    (4.26) 

We also let $ ( $ )qod
u

oτ denote the OD demand as a function of $τ i
u .  

1) Deterministic Demand Function Case 
 Using the new variables defined above, the complementarity conditions for the DUE assignment 
presented in the section 3, (3.5) and (3.7), are transformed into: 

  
y c

c y
ij
u

ij
u

i
u

j
u

ij
u

i
u

j
u

ij
u

  

     

⋅ − + =

− + ≥ ≥

⎧
⎨
⎪

⎩⎪

( $ $ $ )

$ $ $ ,

τ τ

τ τ

0

0 0
   ∀ ∈( , )i j L , ∀ ∈u    (3.5’) 

  
q

q
od
u

o
u

od
u

od

o
u

od
u

od od
u

⋅ + − =

+ − ≥ ≥

⎧
⎨
⎪

⎩⎪

{ $ }
$ ,

τ ψ ρ

τ ψ ρ

0

0 0    
  ∀ ∈( , )o d , ∀ ∈u    (3.7’) 

Next, consider the following complementarity conditions instead of the flow conservation equations 
(3.2b) and (3.8) : 

  

$ ( )

, $

τ

τ

k
u

kj
u

j
ik
u

i
kd
u

kj
u

j
ik
u

i
kd
u

k
u

y y q

y y q

  

     
  

⋅ − − =

− − ≥ ≥

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑ ∑

∑ ∑

0

0 0
 ∀ ∈k N , ∀ ∈u    (3.2’) 

  
ρ

ρ

od od
u

u
od

od
u

u
od od

q Q

q Q

⋅ − =

− ≥ ≥

⎧

⎨
⎪

⎩
⎪

∈

∈

∑

∑

( )

,

 

     0

0

0
  ∀ ∈( , )o d , ∀ ∈u    (3.8’) 

This leads us to the subsequent theorem.  

Theorem 4.3.  Suppose that qod ≥0 ,ψ od
u > 0 ∀ ∈( , )o d , ∀ ∈u  and $ ( , )c i j Lij > ∀ ∈0   . Then, the 

vector X* ∈ +K1 = R R R R+ + + +
L K N K M K M× × ×× × ×  is a solution of simultaneous DUE assignment with 

deterministic OD demand if and only if it satisfies the following standard NCP: 

  Find a vector X* ∈ +K1  such that  X F X 0 X 0 F X 0* * * *( ) , , ( )⋅ = ≥ ≥  ,   (4.27a) 

where X∈ +K1  and F X( ):K K1 1+ +→  are defined by 

  X

y

q
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

$τ

ρ

,  F X

y

q

c y
0

( )
$

$ , $

=

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0
0

0

A
A 0 I
0 I D

D

K

K

T

T

0 0 0

τ

ρ

τ

ψ
−

( )

Q

    (4.27b) 

Proof:  Since it is self-evident that any solution of the DUE assignment satisfies the NCP above, we 
will show that any solution to the NCP is a solution to the DUE assignment. 
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 First, suppose that there is an ( , $)y τ  satisfying (4.27a), but that  
   >   y y qkj

u

j
ik
u

i
kd
u∑ ∑− − $ 0 for some { k N k d∈ ≠, , u∈ }.    (4.28) 

Then $ ( $ )τ k
u

kj
u

j
ik
u

i
kd
uy y q⋅ − − =∑ ∑ 0  implies that $τ k

u = 0 .  The (4.28) also implies that ykj
u >0  for some 

{(k,j), u}  since qkd
u ≥ 0 , yik

u

i

≥∑ 0  and ykj
u ≥0 .  On the other hands, for this {(k,j), u} the equation 

y ckj
u

kj
u

k
u

j
u⋅ − + =( $ $ $ )τ τ 0  implies that $ $ $ckj

u
k
u

j
u− + =τ τ 0 . But since $τ k

u = 0 , $ $ckj
u

j
u= − ≤τ 0 ,  which 

contradicts the assumption $ .ckj
u >0   

 Next, suppose that there is an ( , )q ρ  satisfying (4.27a), but that  
   q Qod

u

u
od

∈
∑ − >0  for some { ( , )o d ∈ , u∈ }.      (4.29) 

Then ρod od
u

u
odq Q⋅ − =

∈
∑( ) 0  implies that ρod = 0 .  The (4.29) also implies that qod

u >0  for some 

{(o,d), u} since qkd
u ≥ 0  and Qod >0 .  On the other hands, for this {(o,d), u} the equation 

qod
u

o
u

od
u

od⋅ + − ={ $ }τ ψ ρ 0 implies that $τ ψ ρo
u

od
u

od+ − = 0 . But since ρod = 0 , ψ τod
u

o
u= − ≤$ 0 ,  which 

contradicts the assumption ψ od
u > 0 .  This completes the proof.□ 

 Interestingly, the NCP (4.27) further reduces to the Linear Complementarity Problem (LCP). 
Note here that the link cost function (4.26) is equivalent to the following complementarity condtions: 

  
 (

    

c m c y

c y c m
ij
u

ij ij
u

ij ij
u

ij
u

i
u

ij
u

ij ij
u

ij
u

i
u

ij
u

ij

− ⋅ − + + =

− + + ≥ ≥

⎧
⎨
⎪

⎩⎪

) { ( $ )}

( $ ) ,

α β τ

α β τ

0

0
  ∀ ∈( , )i j L , ∀ ∈u  (4.30) 

where the cij
u ’s are regarded as unknown variables in the system of equations and inequalities. 

Introducing new variables e c mij
u

ij
u

ij≡ − ∀ ∈( , )i j L , ∀ ∈u ,  the (4.30) can be transformed into 

  
 

       

e e y e du

e y e du e
ij
u

ij
u

ij ij
u

i
u

ij
u

i
u

ij
u

ij ij
u

i
u

ij
u

i
u

ij
u

⋅ − + + − − =

− + + − − ≥ ≥

⎧
⎨
⎪

⎩⎪

− −

− −

{ ( $ $ )}

( $ $ ,

α τ τ

α τ τ

1 1

1 1

0

0 0
 ∀ ∈( , )i j L , ∀ ∈u  (4.31a) 

This can be represented as the following vector-matrix form: 

  
 

    

  

  

e M e e y M A 0

M e e y M A 0 e 0

u u u u T u u

u u u T u u u

•
−

+
−

−
+

−

− − − − − =

− − − − − ≥ ≥

⎧
⎨
⎪

⎩⎪

{ ( ) ( $ $ ) }

( ) ( $ $ ) ,

1 1

1 1

τ τ µ

τ τ µ
  ∀ ∈u   (4.31b) 

or equivalently, 

    
  

      
K K  K

K K  K

e M e y M A 0

M e y M A 0 e 0

• +

+

− − =

− − ≥ ≥

⎧
⎨
⎪

⎩⎪

( $ )
$ ,

T

T

τ −µ

τ −µ
K

K

      (4.31c) 

where the following notation is used: eu=(.., eij
u ,..)T ∈R L ; e =(e0...,eu,...eK)T ∈ ⋅R L K ; µ =(.., µij

* ,..)T 

∈R L ; µ K
 =( µ ..., µ ,... µ )T ∈ ⋅R L K ; M= L × L diagonal matrix with entries µij du* / ; MK = a block 

diagonal matrix with K diagonal blocks all equal to [-M, M]; A+ = a matrix that consists of -1 entries of 
link-node incidence matrix A;  AK+= a block diagonal matrix with K diagonal blocks all equal to A+. 
 Thus, we have the following LCP representation for the DUE assignment: 
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Theorem 4.4.  Suppose that q o dod ≥ ∀ ∈0   ( , ) . Then, the vector X* ∈ +K1L  = R R R+ + +
L K L K N K× × ×× ×  

× ××R R+ +
M K M  is a solution of simultaneous DUE assignment with deterministic OD demand if and 

only if it satisfies the following standard LCP: 

  Find a vector X* ∈ +K1L  such that  X F X 0 X 0 F X 0* * * *( ) , , ( )• = ≥ ≥ L L  ,  (4.31a) 

where X∈ +K1L  and F XL ( ):K K1L 1L+ +→  are defined by 

 X

e
y

q
=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

$τ

ρ

,  F X

e
y

q

m
0L

K K K+

K

K

M I M A
I  A
0 A I 0
0 0 I 0 D
0 D 0

( ) $=

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

T

T

T

0 0
0 0 0

0

0 0

τ

ρ

−µ

ψ
−Q

   (4.31b) 

2) Stochastic Demand Function Case 
 For the LOGIT type stochastic demand model, we can not derive a standard NCP representation 
as in the previous (deterministic) case.  The reason is that the ρod

u v,  can be negative and the flow 

conservation equation (4.20b) can not be replaced with the complementarity condition as in (3.8’).  As 
for the general demand model presented in Theorem 4.2B, however, we can constitute a standard NCP.  

Theorem 4.5.  Suppose that $qod
u ≥0 ∀ ∈( , )o d , ∀ ∈u  and $cij

u >0 ∀ ∈( , )i j L , ∀ ∈u . Then, the 

vector x* ∈ +K B2 = ×+
×

+
×R RL K N K  is a solution of simultaneous DUE assignment with general OD 

demand  for a time period   if and only if it satisfies the following standard NCP: 

  Find a vector x* ∈ +K B2  such that x F x 0 x 0 F x 0* * * *( ) , , ( )⋅ = ≥ ≥    .  (4.32) 

where x∈ +K B2  and F x( ): K KB B2 2+ +→  are defined as 

   x y
≡ ⎡

⎣⎢
⎤
⎦⎥$τ

,  F x
c y

q
y

( )
$( , $)
$ ( $) $

≡
−

⎡

⎣
⎢

⎤

⎦
⎥+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

τ

τ τ
0 A

A 0
K

K

T

.
     (4.33) 

 As is well known in the mathematical programming theory, the NCP formulation above implies 
that the DUE assignment can also be represented as a simple fixed point problem.  To show this, 
define a mapping H x( ): K KB B2 2+ +→  as 

    H x x F x( ) (..., ,...) [ ( )]= = − +Hi G-1 ,     (4.34) 

where for any vector z ∈Rn , [ ]z +  denotes the vector with components max[ , ]0 zi ,i=1,2,...n，G  is 
an ( ) ( )KL + KN KL + KN× diagonal matrix with positive entries.  Then the following theorem holds. 

Theorem 4.6. Suppose that $qod
u ≥0 ∀ ∈( , )o d , ∀ ∈u  and $cij

u >0 ∀ ∈( , )i j L , ∀ ∈u .  Then, the 

vector x* ∈ +K B2  is a solution of simultaneous DUE assignment with general OD demand for a time 

period  if and only if it satisfies the following fixed point problem: 

  Find a vector x* ∈ +K B2  such that x H x* *( )=       (4.35) 

The proof is elementary and it is omitted here. 
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5. Existence and Uniqueness Analyses 

 In this section we analyze the existence and uniqueness properties of DUE assignment based on 
the variational inequality formulation obtained in the previous section. 

5.1 Existence 

 In the previous studies, we proved the existence of the DUE assignment when OD demands are 
fixed (Kuwahara and Akamatsu(1993), Akamatsu and Kuwahara(1994)). The proof was based on the 
Brouwer’s / Kakutani’s existence theorem for a fixed point problem.  Note that the Brouwer’s / 
Kakutani’s theorem requires the compactness of the feasible set, which was satisfied in the fixed 
demand case.  This is not, however, satisfied when the OD flows are functions of τ o , since the 

feasible set is not necessarily bounded.  Therefore, it is difficult to extend our previous approach to the 
current elastic demand case in a straight-forward manner. 
 Thus, we show the existence by the VIP formulation, where the following lemma is useful: 

Lemma 5.1. (Kinderlehrer and Stampacchia(1980))  Let K Rn⊂  be closed and convex and 
F: K K→  be continuous.  We set K K Br r= ∩ ( )0 where Br ( )0 is the closed ball of radius r and 
center 0 ∈ Rn .  There exist a solution to VI K( , )F  if and only if  there exists an r > 0  such that 

a solution xr rK* ∈ of VI Kr( , )F  satisfies xr r* <  .  

 Defining the set B y r i j L u r r k Nr ij y k= ≤ ≤ ∀ ∈ − ≤ ≤ ∀ ∈{( , ) ( , ) , }y τ        0 τ ττ  and 

K K BS r S r ≡ ∩ ,  the above lemma immediately yields the following result:   

Lemma 5.2.  There exist a solution to the DUE assignment with separable demand functions if and 
only if  there exist ry > 0 and rτ > 0  such that a solution xr S rK* ∈  of VI KS r( , ) F  satisfies 
0 ≤ ≤ ∀ ∈ − ≤ ≤ ∀ ∈y r ij L u r u k Nij y k      , τ τ . 

 The lemma enables us to establish the more convenient existence theorem: 

Theorem 5.1.  Suppose that there exist positive constants r1 and r2 , such that 

   c y r i j L y Kij ij i ij i S( , ) ( , ) ,τ τ≥ ∀ ∈ ∀ ∈1       ( , ) ,     (5.1) 

  and q r od rod o( )τ τ< ∀ ∀ ≥2 2      ,  o .       (5.2) 

Then, the DUE assignment with separable demand functions has at least one solution. 

Since the proof almost parallels that of the static equilibrium assignment represented as a VIP (see, for 
example, Theorem 4.3 in Nagurney(1993)) and somewhat lengthy, we omit here. 

 For the non-separable demands case, the similar argument holds. 

Theorem 5.2.  Suppose that there exist positive constants r1 and r2 , such that 

   c y r i j L u U y Kij
u

ij
u

i
u

ij
u

i
u

S( , ) ( , ) , ,τ τ≥ ∀ ∈ ∀ ∈ ∀ ∈1       ( , ) ,   (5.3) 

  and q r od u U rod
u

o
u

o
u(.. , , ..) ,τ τ< ∀ ∀ ∈ ∀ ≥2 2      ,    .     (5.4) 

Then, the DUE assignment with non- separable demand functions has at least one solution. 
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5.2 Uniqueness 

 We shall examine the uniqueness property of the DUE assignment relying on the following 
lemmas that are basic in the variational inequality theory: 

Lemma 5.3.  Suppose that F x( )  is continuously differentiable on K and the Jacobian matrix is 
positive definite.  Then F x( )  is strictly monotone. 

Lemma 5.4.  Suppose that F x( )  is strictly monotone on K. Then the solution of  VI K( , )F  is 

unique, if one exists. 

1) Deterministic Demand Function Case 

 From the equivalency between VIP and NCP,  the lemma above can also be applied to the 
NCP/LCP representation of the DUE assignment.  Therefore, we analyze the uniqueness by using the 
mapping F XL ( )  in LCP formulation presented in section 4.2.  The Jacobian of the mapping F XL ( )  

defined in (4.31b) yields 

  ∇F XL ( ) =

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

0 I
I  A
0 A I 0
0 0 I 0 D
0 D 0

M M A
0  0
0 0 0
0 0 0 0
0 0 0

K

K

K K K+0 0 0
0 0 0

0

0 0

0 0 0
0 0 0

0 0
0

0 0

T

T

T

  (5.5) 

The first matrix of r.h.s. in (5.5) is a bisymmetric matrix, whose components mutually cancel out in a 
quadratic form of the matrix. Therefore, for a vector x C Y T Q P=[ , , , , ]T ∈ = × × ×K R2L K+N K+M K+M , 

  

x F X xT
ij
u

ij ij
u

ij
u

ij
i
u

i
u

u

ij ij
u

ij ij
u

i
u

i
u

ij
u

uijuij

C du C C T T

du C du C T T C

∇ = ⋅ ⋅ − − −

= + ⋅ − −

− −

− −

∑∑

∑∑∑∑

L  ( ) ( ) {( ) ( )}

( ) ( ) ( ) ( )

*

* *

µ

µ µ

1 1

2 1 1
.  (5.6) 

Although the first term of r.h.s. in (5.6) is positive for any vector x C Y T Q P=[ , , , , ]T ∈K  (Q µij
* > 0  

∀ ∈( , )i j L ), x F X xT ∇ L  ( )  can be either positive or negative due to the existence of the second term.  
That is, we can not be assure the positive definiteness of the Jacobian ∇F XL ( ) . 

2) Stochastic Demand Function Case 
 When we replace the link cost function in the VIP (4.22) (i.e. LOGIT type demand function case) 
with the linear complementarity conditions (4.31) , the mapping F(X) in (4.21) reduces to 

X

e
y

q
=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

$τ

ρ

,  F X

e
y

q

m
0

u ln q
w

( ) $

( )
=

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

M I M A
I  A
0 A E 0
0 0 E 0 D
0 D 0

E

K K K+

K

K K

K K  

T

T

T

T T T

0 0
0 0 0

0

0 0
1

τ

ρ

−µ

− ψ
−

θ

.

 (5.7) 

Similar to the deterministic demand case, for a vector x C Y T Q P=[ , , , , ]T ∈ = × × × × ×K R 2L K+N K+M K J+M J , it 
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follows that  

 x F X xT ij
ij
u od

u v

od
u v

odvu

ij
ij
u

i
u

i
u

ij
u

uijuij du
C Q

q du
C T T C∇ = + + ⋅ − −∑∑∑ ∑∑∑∑ − −( ) ( ) ( ) ( )

* ,

,

*

 
 

µ

θ

µ2
2

1 1 .  (5.8) 

Although  the first and second terms of r.h.s. in (5.8) is positive for any vector x C Y T Q P=[ , , , , ]T ∈K , 
x F X xT ∇ ( )  can be either positive or negative due to the existence of the third term.  That is, we can 
not be assure the positive definiteness of the Jacobian ∇F X( ) . 

 We next analyze the DUE assignment with general demand model presented in Theorem 4.2B.  
Similar to the case above, we slightly modify the original mapping F x( ) (in Theorem 4.2B):  

  X
e
y=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥$τ

,  F X
e
y m

q
( )

$ ( $)
=

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M I M A
I A

A

K K K+

K

K

T

T0
0 0 τ

−µ

τ
    (5.9) 

For a vector x C Y T=[ , , ]T ∈ = × ×K R 2L K+N K ,  

 x F X xT ij
ij
u

i
u od

u

o
u

uou

ij
ij
u

i
u

i
u

ij
u

uijuij du
C T q

du
C T T C∇ = + − ⋅ − −∑∑∑ ∑∑∑∑ − −( ) ( ) ( )

$
( )

*

'
'

*

  
 

µ ∂
∂ τ

µ2 2 1 1  (5.10) 

Similar to the LOGIT type demand, x F X xT ∇ ( )  in (5.10) can be either positive or negative due to the 

existence of the third term. Thus, we can conclude that the uniqueness of the DUE assignment is not 
guaranteed in general. 

 
6. Algorithms 

 This section discusses the algorithms for solving the DUE assignment. Before describing the 
algorithm, we briefly explain the merit function (gap function) for VIP / NCP, which is a useful tool to 
develop globally convergent / efficient algorithms.  

6.1 Equivalent Differential Optimization Problem 

 A merit function for a variational inequality problemVI K( , )F  is a non-negative function f ( )x  
such that x*  is a solution of the VI K( , )F  if and only if f ( )*x = 0  and x* ∈ K , i.e. the global 
solution of the problem MP K f( , ) : min. ( )f Kx x  subject to   ∈ , is a solution of VI K( , )F .  A 

merit function for a standard NCP also can be defined in the similar manner. 
 Here we introduce two kinds of merit functions: one is the regularized gap function defined for 
variational inequalities, which is proposed by Fukushima.  The other is a Fisher’s merit function for 
nonlinear complementarities. 

1) Fukushima’s Merit Function for VIP and NCP  

 Let K  be a closed and convex subset of Rn  and let F  be a mapping from Rn  into itself. 
Fukushima (1992) showed that VI K( , ( ))F x  is equivalent to the following optimization problem with 

a differentiable objective function: 
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  min. ( ) ( ) ( )f K0
1
2

x F x z x z x z x x≡ − ⋅ − − − ⋅ − ∈( ) G( )   subject to ,  (6.1) 

where G is an n n× symmetric positive definite matrix and z  is a solution of the following problem: 

  min. ( ) ( )F x z x z x z x z⋅ − + − ⋅ − ∈
1
2

( ) G( )   subject to K .    (6.2) 

The optimization problem (6.2) means that z  is a projection of the point x F x− G-1 ( )  onto K  with 

respect to the norm   ⋅ G ,where   Gx x xG
2 ≡ ⋅ . We denote it as z x F x= −Proj G-1

K G, ( ( )) . 

 In the special case where K Rn= + , nonnegative orthant in Rn , VI K( , ( ))F x  can be rewritten as 

the standard NCP and the projection (6.2) simply reduces to         

    z x F x x F x= − = − +Proj G G  -1 -1
K G, ( ( )) [ ( )] ,    (6.3) 

where for any vector z ∈Rn , [ ]z +  denotes the vector with components max[ , ]0 zi ,i=1,2,...n. 
 The merit function f0  has the following nice properties: 1) if F x( )  is continuously 
differentiable then f 0 ( )x  is also continuously differentiable, 2) if F x( )  is strictly monotone then 
every stationary point of MP K f( , )  is a global minimum point of MP K f( , ) .  

 Applying this merit function to the DUE assignment formulated as a NCP, we have the result that 
a vector ( $*y , τ∗ )  solves the DUE assignment if and only if ( $*y , τ∗ )  is a global minimizer of the 

following optimization problem:   

  min. ( , $)f1 y τ ( )= − −
∈∈
∑∑   1 02 2

γ
γ

ij
u ij

u
ij
u

ij ij
u

ij Lu U

g g y$ (max[ , $ ])  

           ( )+ − −
∈∈
∑∑   1 02 2

γ
γ τ

k
u k

u
k
u

k k
u

k Nu U

h h$ (max[ , $ $ ])     (6.4) 

  subject to ,   y 0 0≥ ≥$τ , 

     where $ ( , $) ( , $ ) $ $g c yij
u

ij
u

ij
u

i
u

i
u

j
uy τ ≡ − +τ τ τ ,       (6.5) 

    $ ( , $) $ ( $)h y y qk
u

kj
u

j
ik
u

i
kd
uy τ τ≡ − −∑ ∑ ,      (6.6) 

γ ij
u  and γ k

u  are given positive parameters, and f1 0( , $ )*y τ∗ = . Furthermore, if F g h≡ ( $ , )  is a 

strictly monotone function then every stationary point of the above optimization problem is a solution 
of the DUE assignment. 
 Note that the result above corresponds to the standard NCP formulation. When we consider the 
problem equivalent to the VIP formulation, the non-negativity constraints $τ ≥ 0  drops and the 

objective in (6.4) is replaced with 

  f V1− ( , )y τ ( )= − − +
∈∈ ∈∈
∑∑ ∑∑  1 0 12 2 2

γ
γ

γij
u ij

u
ij
u

ij
u

ij
u

ij Lu U k
u k

u

k Nu U

g g y h(max[ , ]) .  (6.7) 

  where g c yij
u

ij
u

ij
u

i
u

i
u

j
u( , ) ( , )y τ ≡ + −τ τ τ ,       (6.5’) 

    h y y qk
u

ik
u

i
kj
u

j
kd
u( , ) ( )y τ τ≡ − +∑ ∑ .      (6.6’)  
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2) Fisher’s Merit Function for NCP  
 Consider a standard NCP(F):  

  Find a vector x* ∈ Rn  such that x F x 0 x 0 F x 0* * * *( ) , , ( )⋅ = ≥ ≥  .  (6.8) 

For solving NCP(F), a function φ: R R2 →  satisfying 

    φ( , ) , ,x y xy x y= ⇔ = ≥ ≥0 0 0 0          (6.9) 

is useful, since we can form the following system of equations equivalent to NCP(F): 

   Φ( ) ( ( , ), ( , ), ... , ( , ))x 0≡ =φ φ φx F x F x Fn n
T

1 1 2 2 .    (6.10) 

  Fisher (1992) introduced the following function satisfying the property (6-9): 

    φ( , ) ( )x y x y x y= + − +2 2 ,       (6.11) 

and defined a merit function as follows: 

    Ψ Φ( ) ( ) ( , ( ))x x x≡ =
=
∑2 2

1

φ x Fi i
i

n

.      (6.12) 

The merit function Ψ  has the following nice properties: 1) Ψ( )x  is continuously differentiable 
everywhere, 2) if F x( )  is a P0 -function (see Appendix) then every stationary point of MP K f( , )  is 
a global minimum point of MP K f( , ) .  

 The application of the merit function Ψ( )x  to the DUE assignment immediately lead to the 
results that a vector ( $*y , τ∗ )  solves the DUE assignment if and only if ( $*y , τ∗ )  is a global minimizer 

of the following differentiable optimization problem:   

  min. ( , $)f 2 y τ ( ) ( )= + − + + + − +⎧⎨
⎩

⎫⎬
⎭∈∈

∑∑   y g y g h hij
u

ij
u

ij
u

ij
u

k
u

k
u

k
u

k
u

ij Lu U

2 2 2 2
$ $ $ $ $ $τ τ   (6.13) 

  subject to ,   y 0 0≥ ≥$τ , 

where $gij
u  and $hk

u  are defined by (6.5) and (6.6), respectively, and f2 0( , $ )*y τ∗ = .  Furthermore,  

if F g h≡ ( $ , $ ) is a P0 -function then every stationary point of the above optimization problem is a 

solution of the DUE assignment. 
 
6.2 Algorithms  

 We suggest two algorithms for solving the DUE assignment.  First algorithm is a direct 
application of Fukushima’s method.  The method is a variant of the projection method incorporating a 
line search step based on the merit function (6.4).  Although this algorithm is very simple and easy to 
implement for the DUE assignment, the strict monotonicity of the mapping F x( )  is required to 
guarantee the theoretical convergence to the solution. Since the strict monotonicity of F x( )  is not 

necessarily guaranteed for the DUE assignment, there is a possibility that the method fails to obtain the 
DUE solution.  Second algorithm is an application of the method proposed by Facchinei and 
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Soares(1995) that is a variants of Newton’s method utilizing Fisher’s merit function. The convergence 
condition of the algorithm is rather mild. 

1) Projection method using Fukushima’s Merit Function 

 First method uses the vector 

    d = z x x F x x− = − −+[ ( )]G  -1       (6.14) 

as a search direction at x .  If F x( ) is a strictly monotone mapping, the vector d  is a descent 
direction of the objective f1( , $)y τ (for the proof, see Fukushima(1992)).  The algorithm generates a 
sequence { }x k  by the iteration 

    x x d x zk k
k

k
k

k
k

kt t t k+ = + = − + =1 1 0 1 2: ( ) , , , ,..     (6.15) 

where tk ∈[ , ]0 1  are determined from a line search problem using the merit function f1( )x : 

    min. ( ) . .
tk

f t s t tk
k

k
k1 0 1x d+ ≤ ≤     .     (6.16) 

Fukushima proved that this algorithm globally converges to the unique solution when F x( ) is strictly 
monotone.  Furthermore, he proved that if F x( ) is strongly monotone, some inexact line search 

methods such as Armijo-type step length rule also guarantee the convergence.    
 There are some special cases that F x( )  in our DUE problem is a strictly monotone mapping as 

seen in section 5.  Thus, we can assure that the algorithm with the exact line search converges in that 
cases.  It is, however, unlikely that the F x( )  is strongly monotone. Therefore, it seems that we had 

better employ the exact line search rule (6.16) in solving the DUE assignment. 

2) Newton method using Fisher’s Merit Function 

 Suppose that x*  is a nondegenerate solution of NCP and that we know the setsα and β  of 

variables which are 0 or positive at x* , i.e. α = ={ }*   i xi 0 , β = >{ }*   i xi 0 . We denote the 

corresponding partitions of x  and F  as x x x x 0= =( , ) ( , )β α β   and F F F 0 F= =( , ) ( , )β α α  , 

respectively. Then, we obtain the solution by solving the system of equations Fi ( , )x 0β = 0 , i ∈β . 

This system can be solved by applying Newton’s method if [ ( )]*∇β βF x  is not singular, where ∇β  
denotes the differential operator with respect to xβ . More precisely, we generate the sequence by 

x x dβ β β
k k k+ = +1:  , where dβ

k  is the solution of the following system of linear equations:  

     [ ( )] ( )∇ = −β β β βF x d F xk k k .      (6.17) 

 Although we do not know the setsα and β  before obtaining the solution in general, it is 

expected that if we use the well approximated set in each iteration it successfully converges to the 
solution.  Facchinei and Soares (1995) proposed to approximate the sets α and β   by 

    α ε= ≤{ ( )}    i x F xi
k

i i
k , β ε= >{ ( )}    i x F xi

k
i i

k ,   (6.18) 

where ε  is a fixed positive constants.  Then, the dα
k is determined by d xα α

k k= − , while dβ
k  is 

determined by the system of linear equations (6.17) where the right hand side is replaced with 
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    − + ∇F x F x xβ α β α( ) [ ( )]k k k . 

 To enforce global convergence of the algorithm,  they developed the method combining the 
“local” direction search step above and a line search step based on the Fisher’s merit function.  The 
whole algorithm can be summarized as follows: 

Step 0: (Initialization) 
      Set k := 0  and set the value of the parameters ( ε ρ κ σ, , , ,p ) satisfying  
      ε ρ κ σ> > > ∈ ∈0 0 2 0 1 2 0 1, , , ( , ), ( , )    p . 

Step 1: (Stopping Test) 
      If the stopping criterion is satisfied, stop. 

Step 2: (Direction Finding) 
      Calculate dβ

k  by solving (6-17), and d xα α
k k:= − . 

      If  system (6-17) is not solvable  or  dk  does not satisfy ∇ ⋅ ≤ −f k k k p

2 ( )x d dρ , 

      set d xk kf: ( )= −∇ 2 . 

Step 3: (Move with the step size of 1) 
      If  dk  satisfies f fk k k

2 2( ) ( )x d x+ ≤ σ ,       (6.19) 

      set  x x dk k k+ = +1: , k k:= + 1  and go to Step 1. 

Step 4: (Line Search and Move) 
      Find the smallest i = 0 2, , , ... 1   such that 
          f f fk i k k i k k

2 2 22 2( ) ( ) ( )x d x x d+ ≤ + ∇ ⋅− −κ .      (6.20) 

      set  x x dk k i k+ −= +1 2: , k k:= + 1  and go to Step 1. 

 They also proved the following results:  1) each accumulation point of the sequence{ }xk  

generated by the algorithm is a stationary point of Ψ ;  2) if one of the limit points of the 
sequence{ }xk is a b-regular solution of the NCP, then { }x xk → ;  3) every limit point x  is a 
solution of the NCP  if Ψ( )x = 0 ;  4) every limit point x  is a solution of the NCP if F x( )  is 
a P0 -function.  Although we can not be sure theoretically that this algorithm also converges to a 
solution of the NCPs that are not P0 , their report on various numerical experiments exhibited the 
robustness of the algorithm; the problems that are not P0  and the problems that are not R-regular or 

b-regular(for the definition, see Appendix) at the solution were successfully solved.  Therefore, it is 
expected that the DUE assignment also can be successfully solved by this algorithm.  
 The efficiency of this algorithm largely depends on what degree the system of linear equations 
(6.17) can be solved efficiently, since the computational time expensed for the remaining steps in this 
algorithm is relatively small.  Fortunately, the linear system (6.17) for our DUE assignment can be 
easily solved exploiting the network structure of the problem.  For the brevity of the explanation, we 
show only the case that the OD demand is fixed where the assignment can be decomposed into arrival 
time and the link cost function is given by 

      c y i j Lij ij ij ij i= + − ∀ ∈ ∩α β τ β     ( , ) . 

In addition, we suppress the subscript β  though all the link / node variables used below are restricted to 
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the only variables included in the set β  defined in (6.18).  The (6.17) for the DUE assignment can be 

represented as 

    
D A
A 

∆ ∆

∆

y g
y h

+ −⎧
⎨
⎪

⎩⎪
-
T τ =

= −
        (6.22)  

where d yk ≡ ( , )∆ ∆τ , g g y≡ ( , )k kτ , h h y≡ ( , )k kτ ,  A = a node-link incidence matrix,  
A- = a end-node-link incidence matrix that consists of -1 entries of A, 
D = a Jacobian of c y( , )τ  with respect to y , which is a diagonal matrix with entry α ij ,  

 The (6.22) reduces to the linear equations with respect to only ∆τ :   

    (AD A D-1 -1
-
T )∆τ = g h− ,        (6.23) 

and then, ∆y can be obtained by the following simple calculations:  

    ∆ ∆y g= −D (A-1
-
T τ )         (6.24) 

 or   ∆ ∆y g i j Lij j ij ij= − ∀ ∈ ∩( ) ( , )τ α β       

Considering the particular property of the node-link incidence matrix A, it can be shown that the matrix 
AD A-1

-
T  is a very sparse matrix where the (i,j) entries are given by 

   

                               if  there exists a link i j

       if  i = j  (diagonal entry),

                                        otherwise.   

− →

−

⎧

⎨
⎪⎪

⎩
⎪
⎪

∑∑
1

1 1

0

α

α α
ij

ki ik
kk

,

( ) ( )    (6.25)  

This means that the coefficient matrix in (6.23) can be obtained with a very small computational task 
and it does not require large storages.  Furthermore, (6.25) yields an upper triangular matrix when we 
have the set β  consisting of only one-way links.  Therefore, the system of linear equations (6.17) can 

be efficiently solved.  Thus, we know that the algorithm for the DUE assignment is efficient and it can 
by applied to large scale networks. 
 

7. Summary and Conclusions 

 We have considered the dynamic user equilibrium (DUE) assignment with elastic demand on an 
over saturated network for a many-to-one Origin-Destination pattern.  First, we defined the DUE 
conditions for user’s simultaneous choice of route and departure time, and then the basic formulation 
and the decomposition with respect to arrival time at a destination were shown.  Next, various 
alternative formulations were presented: variational inequality (VI), nonlinear complementarity (NC) 
and fixed point (FP) formulations. Unlike the previous path-flow formulations, our formulations make 
use of only node / link variables, where the mapping is simple and, therefore, it is easy to examine the 
mathematical properties.  The VI formulation enabled us to establish the existence of the equilibrium 
solution.  Furthermore, the properties of the mapping showed that the uniqueness of the DUE 
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assignment can not necessarily guaranteed, excluding a certain special case. Finally, some algorithms 
based on the VI / NC formulation of the DUE assignment were suggested. The algorithms utilize the 
merit functions, which is a useful tools for enforcing the global convergence or accelerating the 
convergence. 
 The following topics are left for the future researches.  First, we should further investigate the 
conditions that are required for holding such properties as the First-In-First-Work principle peculiar to 
the departure time equilibrium in general networks. The results would give us the insights into the 
simultaneous equilibrium and would be useful for the development of the extended models / the 
efficient algorithms. Second, developing the robust algorithms that converge to the DUE solution under 
milder condition is also important. Finally, extending our framework to the many to many OD pattern is 
most important and challenging topic. 
 
References 

 H.Aashtian and T.L.Magnanti, “Equilibria on a Congested Transportaion Networks”, SIAM Journal on 
Algebraic and Discrete Methods 2, pp.213-226, 1981. 

 T.Akamatsu and M.Kuwahara, "Dynamic User Equilibrium Assignment on Oversaturated Road 
Networks for a One-to-Many/Many-to-One OD Pattern", Proc. of JSCE, No.4-23, pp.21-30, 1994. 

 C.F.Daganzo, "The Uniqueness of a Time-Dependent Equilibrium Distribution of Arrivals at a Single 
Bottleneck", Transportation Science 19, pp.29-37, 1985. 

 A.DePalma, M.Ben-Akiva, C.Lefevre, and N.Litinas, “Stochastic Equilibrium Model of Peak Period 
Traffic Congestion”, Transportation Science 17, pp.430-453, 1983. 

 F.Facchinei and J.Soares, “Testing a New Class of Algorithms for Nonlinear Complementarity 
Problems”, in Variational Inequalities and Network Equilibrium Problems (Eds. F.Giannessi and 
A.Maugeri), Plunum Press, 1995. 

 A.Fisher, “A Special Newton-type Optimization Method”, Optimization 24, pp.269-284, 1992. 
 C.S.Fisk and D.E.Boyce, “Alternative Variational Inequality Formulation of the Network 

Equilibrium-Travel Choice Problem”, Transportation Science 17, pp.454-463, 1983. 

 C.S.Fisk, "Spatial Price Equilibrium on Congested Networks", Transportation Research 21B, 
pp.175-182, 1987. 

 T.L.Friesz, D.Bernstein, T.Smith, R.L.Tobin, and B.W.Wie, "A Variational Inequality Formulation of 
the Dynamic Network User Equilibrium Problem", Operations Research 41, pp.179-191, 1993. 

 T.L.Friesz, R.L.Tobin, T.Smith and P.T.Harker, "A Nonlinear Complementarity Formulation and 
Solution Procedure for the General Derived Demand Network Equilibrium Problem", Journal of 
Regional Science 23, pp.337-359, 1983. 

 M.Fukushima, "Equivalent Differentiable Optimization Problems and Descent Methods for 
Asymmetric Variational Inequality Problems", Mathematical Programming 53, pp.99-110, 1992. 

 P.T.Harker and J.-S. Pang, “Finite-dimentional Variational Inequality and Nonlinear 
Comple-mentarity Problems: A Survey of Theory, Algorithms and Applications”, Mathematical 



 

 27

Programming 48, pp.161-220, 1990. 
 C.Hendrikson and G.Kocur, "Schedule Delay and Departure Time Decisions in a Deterministic 

Model", Transportation Science 15, pp.62-77, 1981. 
 V.F.Hurdle, “Equilibrium Flows on Urban Freeways”, Transportation Science 5, pp.255-293, 1981. 

 Karamardian, “Generalized Complementarity Problem”, Journal of Optimization Theory and 
Applications 4, pp.161-168, 1971.  

 D.Kinderlehrer and G.Stampacchia, An Introduction to Variational Inequalities and Their 
Applications, Academic Press, New York, 1980. 

 M.Kuwahara and T.Akamatsu, "Dynamic Equilibrium Assignment with Queues for a One-to-Many 
OD Pattern", Proc. of the 12th International Symposium on Transportation and Traffic Theory, 
pp.185-204, 1993.  

 M.Kuwahara and G.F.Newell, "Queue Evolution on Freeways Leading to a Single Core City during 
the Morning Peak", Proc. of the 10th International Symposium on Transportation and Traffic 
Theory, pp.21-40, 1987. 

 T.Larsson and M.Patricksson, "A Class of Gap Functions for Variational Inequailites", Mathematical 
Programming 64, pp.53-79, 1994. 

 A.Nagurney, Network Economics, Kluwer Academic Press, Massachusetts, 1993. 
 G.F.Newell, "The Morning Commute for Nonidentical Travelers", Transportation Science 21, 

pp.74-88,1987. 
 G.F.Newell, "Traffic Flow for the Morning Commute", Transportation Science 22, pp.47-58, 1988. 
 J-S. Pang, "Solution of the General Multi-commodity Spatial Equilibrium Problem by Variational and 

Complementarity Methods", Journal of Regional Science 24, pp.403-414, 1984.  
 J.-S.Pang and S.A.Gabriel, “NE/SQP: A Robust Algorithms for Solving Nonsmooth Equations”, 

Mathematical Programming 60, pp.295-337, 1993. 
 S.M.Robinson,“Strongly Regular Generalized Equations”, Mathematics of Operations Research 5, 

pp.43-62,1980. 
 M.J.Smith, "The Existence of a Time-dependent Equilibrium Distribution of Arrivals at a Single 

Bottleneck",  Transportation Science 18, pp.385-394, 1984. 
 M.J.Smith and M.O.Ghali, “The Dynamics of Traffic Assignment and Traffic Control: a Theoretical 

Study”, Transportation Research 24B, pp.409-422, 1990. 
 M.J.Smith, "A New Dynamic Traffic Model and the Existence and Calculation of Dynamic User 

Equilibria on Congested Capacity-constrained Road Netwoks", Transportation Research 27B, 
pp.49-63, 1993. 

 W.S.Vickrey, “Congestion Theory and Transportation Investment”, American Economic Review 59, 
1969. 

 J.H.Wu, M.Florian and P.Morcotte "A General Descent Framework for the Monotone Variational 
Inequaility Problems", Mathematical Programming 61, pp.281-300, 1993. 



 

 28

Appendix 
We summarize some definitions concerning the properties of a vector-valued function and NCP. 

Definition 1 
a) F: R Rn n→  is monotone on a set S Rn⊆  if  
 ( ) ( ( ) ( )) ,x y F x F y x y− ⋅ − ≥ ∀ ∈0     S .  

b) F: R Rn n→  is strictly monotone on a set S Rn⊆  if 
 ( ) ( ( ) ( )) , ,x y F x F y x y x y− ⋅ − > ∀ ∈ ≠0      S .  

c) F: R Rn n→  is strongly monotone on a set S Rn⊆  if  

 ( ) ( ( ) ( )) ,x y F x F y x y x y− ⋅ − ≥ − ∀ ∈µ µ2       for some > 0  S .  

Definition 2 
a) an n n×  matrix M is a semi-positive definite matrix on a set S Rn⊆  if 

 x x x⋅ ≥ ∀ ∈M     0 S  
b) an n n×  matrix M is a positive definite matrix on a set S Rn⊆  f 
  x x x x 0⋅ > ∀ ∈ ≠M      0 S,  

c) an n n×  matrix M is a strongly positive definite matrix on a set S Rn⊆  if 

  x x x x x 0⋅ ≥ ∀ ∈ ≠M     for some > 0   µ µ2 S,  

Definition 3 
a) F: R Rn n→  is a P0 -function on a set S Rn⊆  if there exists an index i such that 
 ( ) ( ( ) ( )) ,x y F F Si i i i− ⋅ − ≥ ∀ ∈x y x y0     .  

b) F: R Rn n→  is a P -function on a set S Rn⊆  if there exists an index i such that 
 ( ) ( ( ) ( )) , ,x y F F Si i i i− ⋅ − > ∀ ∈ ≠x y x y x y0      .  

c) F: R Rn n→  is a uniform P -function on a set S Rn⊆  if there exists an index i such that 

 ( ) ( ( ) ( )) ,x y F F Si i i i− ⋅ − ≥ − ∀ ∈x y x y x yµ µ2      for some > 0  .  

Definition 4 
a) an n n×  matrix M is a P0 -matrix if every principal minor of M is non-negative. 

b) an n n×  matrix M is a P -matrix if every principal minor of M is positive. 

Definition 5  For a solution x*  of NCP(F), we introduce the following three index sets: 

α = > ={ , ( ) }* *    i x Fi i0 0x , β = = ={ ( ) }* *   i x Fi i x 0 , γ = = >{ , ( ) }* *    i x Fi i0 0x  

For a vector x ∈ Rn , xα  represents the vector with elements x ii , ∈α . Similarly, Fα  represents the vector 

function with component functions F ii , ∈α . In addition, we denote ∇α  the differential operator with respect 

to xα . 

Definition 6  Let x* be a solution of NCP(F).  
a) A solution x*  is said to be nondegenerate if β = ∅ . 

b) x*  is said to be b-regular if , for an index set δ  such that α δ α β⊆ ⊆ ∪ , ∇δ δF x( )* is nonsingular. 

(see J.-S.Pang and S.A.Gabriel(1993)) 
c) x*  is said to be R-regular if ∇α αF x( )*  is nonsingular and its Schur complement in 

 
∇ ∇
∇ ∇

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α α α β

β α β β

F x F x
F x F x

( ) ( )
( ) ( )

* *

* *  is a P -matrix. (see Robinson(1980)) 


