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1. Preliminaries – Daganzo’s Cell Transmission Model 
 
 Suppose that the relationship between traffic flow, q, and density, k, in a 
homogeneous road section is of the following form: 

   )}( ,  ,min{  max  kkwqkvq jam −=     (1.1) 

where v, qmax, w and kjam are constants denoting the free-floe speed, the maximum flow (or 
capacity), the backward wave speed (with which disturbances propagate backward when 
traffic is congested), and the maximum (“jam”) density, respectively (see Figure 1). 
 We assume that the road is divided into homogeneous sections (“cells”) whose 
lengths equal the distance traveled by free-flowing traffic in one clock interval. The cells are 
numbered consecutively starting with the upstream end of the road from i = 0 to I. (see Figure 
2) Each cell has the following two parameters: (1) the maximum number of vehicles that can 
be present in cell i at time t, Ni(t), which is defined as the product of the cell’s length and its 
jam density (kjam), (2) the maximum number of vehicles that can be flow into cell i from time 
t to t+1 is denotes as Qi(t), which is the product of the clock interval and the cell’s capacity 
(qmax). 
 
 Under the assumptions above, Daganzo(1994a,b) showed that the Lighthill-Whitham 
-Richard (LWR) kinematic wave equations for a single highway link can be approximated by 
a set of finite difference equations (“cell-transmission model”). In the model, the state of the 
system in the cell at time t is given by the number of vehicles contained in each cell, ni(t). The 
typical recursive relationship for the state variables,{ni(t)}, is expressed as 

   )()()()1( 1 tytytntn iiii +−+=+     (1.2a) 

Here, )(tyi  is the inflow to cell i in the time interval (t, t+1), which is given by 

   )]}()([  ),(  ),(min{)(  1 tntNtQtnty iiiii −= − δ ,  (1.2b) 

where δ is defined as 1=δ , if )()(1 tQtn ii ≤−  and vw /=δ , if )()(1 tQtn ii >− . In a nutshell, 

the cell-transmission model is the following system of difference equations with state 
variables {ni(t)}: 
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2. Transforming the Model to “Linear Equations” in Min-Plus Algebra 
 
 The cell-transmission model defined in (1.2) is a seemingly complex system of 
non-linear equations. A simple transformation technique, however, allows us to obtain a more 
concise expression for the model; specifically, we shall show that the transformed model can 
be regarded as a system of simple “linear equations” from the standpoint of Min-Plus (Max 
-Plus) algebra. 
 
(1) A Simple Variable Transformation 

 In order to see the essence of the idea, we first consider a simple case that 1=δ , 
NtNi =)( , and ∞→)(tQi  in the original cell transmission model (1.2b): 

   )}(  ),(min{)( 1 tnNtnty iii −= −     (2.1) 

Noticing that the cell transmission model in this setting is equivalent to the system of 
equations consisting of (1.2a) and 

   )}(  ,)(min{)( 1 tncctnty iii −−= − ,    (2.2) 

we introduce the following variable transformation: 

   )()()( 1 tAtActn iii +−+= ,     (2.3) 

where 2/Nc ≡ . Applying this transformation to (2.2) yields, 
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Substituting this relationship and the transformation (2.3) into the conservation equation 
(1.2a), we see that the following equations hold: 

 )1()1( 1 +−+ + tAtA ii )}(  ),(min{ 11 tAtA ii +−= )}( ),(min{ 2 tAtA ii +− , 

 )1()1(1 +−+− tAtA ii )}(  ),(min{ 2 tAtA ii−= )}( ),(min{ 11 tAtA ii +−−  

   … 

 )1()1( 21 +−+ tAtA )}( ),(min{ 20 tAtA= )}(  ),(min{ 31 tAtA− .   (2.5) 

Summing equations (2.5) over subscript i, we obtain 

 )}(  ),(min{)}(  ),(min{)1()1( 20211 tAtAtAtAtAtA iii +−=+−+− ++ .   (2.6) 

In order for (2.6) to hold for all i > 1, the following equation should hold: 

   )}(  ),(min{)1( 11 tAtAtA iii +−=+ .     (2.7) 

Thus, we found that non-linear equations (1.2a) and (2.1) (or (2.2)) reduce to a very concise 
expression, (2.7), in terms of the new state variables {Ai(t)}. 



(2) An Interpretation from the Viewpoint of Min-Plus Algebra  

 We shall interpret the transformation process above from a view point of “Min-Plus 
algebra”, which is defined as a set S equipped with two binary operations, ⊕  and ⊗ : 

  ) ,min( yxyx ≡⊕ , and yxyx +≡⊗  for all Syx ∈,  

The cell transmission model, (1.2a) and (2.2), or equivalently, 

   )}(  ,)(min{} )(  ,)(min{)()1( 1 1 tncctntncctntntn iiiiii +− −−−−−+=+ , (2.8)  

can be represented in terms of the Min-Plus operations as 
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and the transformation (2.3) as 
    1

1 )()()( −
+⊗⊗= tAtActn iii .   (2.10) 

Having learned that (2.8) reduces to (2.7) by the transformation (2.3), we see that (2.9) can be 
transformed into 
    )()()1( 11 tAtAtA iii −+ ⊕=+ .   (2.11) 

 From the viewpoint of Min-Plus algebra, this transformation from (2.9) to (2.11) 
implies the remarkable fact that the non-linear system of equations reduces to a system of 
linear equations via (2.9). This “linearity” of the transformed equations (2.11) provides us 
useful insights for the system (although the linearity in Min-Plus algebra does not necessarily 
mean the same properties as those in linear algebra). For example, (1) if {Bi(t)} and {Ci(t)} 
satisfy (2.11), { )()( tCtB ii ⊕ } is also the solution of (2.11); (2) if {Ai(t)} satisfy (2.11) then 
{ )(tAi⊗α } is also the solution of (2.11); (3) if appropriate boundary conditions are given, we 

can obtain an explicit solution. Indeed, we may write (2.11) as 

    )()1( tt AMA ⊗=+ ,    (2.12) 

and we then obtain the solution of (2.11) for the initial condition that {Ai(1)} is given: 

    )1()1(  AMA ⊗=+ tt ,    (2.13) 

or   )}1(),1(,),1(),1(min{)1()1( 22)2( titititij
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where the matrix M and the power of matrix M is defined as 
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 The Min-Plus algebraic point of view further suggests an analogical correspondence 
to the differential equations theory; we observe a certain similarity between the 
transformation from (2.9) to (2.11) via (2.10) and the transformation of Berger’s (shock wave) 
equation to a linear (heat) diffusion equation via Cole-Hopf transformation.  
 It is well known in the differential equation theory that the Berger’s equation: 
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reduces to a linear diffusion equation: 
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by the Cole-Hopf transformation defined as 
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In order to see the correspondence to this transformation, let us first consider the following 
discrete (difference equation) approximation of the diffusion equation (2.15): 

 2
11 )/()]()(2)([/)]()([ xtAtAtAttAttA jjjjj Δ+−=Δ−Δ+ −+ , 

which can be simplified into 

   )]()([ )2/1()1( 11 tAtAtA jjj −+ +=+ ,    (2.17) 

by setting 2)/( xt ΔΔ≡α =1/2. We then define a discretized Cole-Hopf transformation: 

   )(ln)(ln)( 1 tAtAxtm iii +−≡Δ ,     

   )(/)())(exp()( 1 tAtAcxtmctn iiii +=Δ⋅≡ .   (2.18) 

Substituting (2.17) into the transformation equation (2.18), we have 
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and rearranging the RHS of (2.19) yields the following equation called a finite difference 
Berger’s equation (for more details about this, see Hirota (2000)): 
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Note here that replacing a pair of binary operations,+ and× , in (2.20) with the Min-Plus 
operations, ⊕  and ⊗ , we have exactly the cell-transmission model defined in (2.9). 
Similarly, it follows that the discretized diffusion equation (2.17) and the discretized 
Cole-Hopf transformation (2.18) correspond to (2.11) and (2.10), respectively. Thus, we see 
that the cell-transmission model can be regarded as an analogue (a finite difference version) 
of the second order linear differential equation when we employ the new state variables 
{Ai(t)} and the Min-Plus algebraic operations for describing the evolution of the system. 



3. A Cumulative Curve Representaion for the Cell-Transmission Model 
 

 We shall extend the analysis in section 2 to the original cell transmission model. For 
this purpose, it is convenient to employ the following transformation: 

    )()()( 1 tAtAtn iii +−= ,    (3.1a) 

which is a slightly modified version of (2.3). Note that Ai+1(t) in this transformation has a 
natural physical meaning: the cumulative number of vehicles arriving at the downstream-end 
of cell i (but still in cell i) by time t (see Figure 3); this is indeed a discrete approximation 
scheme of the relationship between the cumulative traffic counts, A(x,t), and the traffic density, 
k(x,t), for the continuous space-time pair (t, x): 

    xtxAtxk   /),(),( ∂−∂= .    (3.1b) 

 
(1) The Cell-Transmission Model with a Single Wave Speed (ie. the case of 1=δ ) 

 Consider first the slightly extended version of the previous model (2.1): 

   )()()()1( 1 tytytntn iiii +−+=+ ,    (3.2) 

   )}.()(  ),(min{)( 1 tntNtnty iiii −= −     (3.3) 

Applying the transformation (3.1a) to (3.3), we obtain 

   )}()(  ),(min{)()( 11 tAtNtAtAty iiiii +− ++−= .  (3.4) 

Substituting this and (3.1a) into the conservation equation (3.2) yields, 

 )1()1(1 +−++ tAtA ii )}()( ),(min{ 21 tAtNtA iii ++ += )}()(  ),(min{ 11 tAtNtA iii +− +− , 

        for all i > 1.  (3.5) 

In order for (3.5) to hold, we should have 

   )1( +tAi )}()(  ),(min{ 11 tAtNtA iii +− +=   for all i > 1.  (3.6) 

From the concise expression (3.6) for the cell transmission model, we see a few basic 
implications. First, the following relationship between {Ai(t)} and {yi(t)} can be derived from 
(3.1a), (3.3) and (3.6): 

    )()1()( tAtAty iii −+= ,    (3.7a) 

which corresponds to the relationship between the cumulative traffic count, A(x,t), and the 
traffic flow, q(x,t), for the continuous space-time pair (t, x): 

    ttxAtxq   /),(),( ∂∂= .    (3.7b) 

Note that (3.7a) is not a definitional relationship here but is the result derived from the 
definitional relationships (3.1a), (3.3) and the state equation (3.6) in which the existence of 



Ai(t) guarantees a conservation of vehicles numbers. This in turn implies that an alternative 
derivation of the state equation (3.6) is given by simply substituting (3.1a) and (3.7a) into 
(3.3) without explicit consideration of (3.2). Such derivation of (3.6) corresponds to the fact 
that we can obtain the partial differential equation for describing the evolution of A(x,t) in a 
continuous space-time system: 
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by substituting equations (3.1b) and (3.7b) (ie. the definitional relationships for q(x,t), k(x,t) 
and A(x,t)) into the following q-k relationship: 

   { })),( (   ),,(  min),( max txkkwtxkvtxq +− −= .  (3.9) 

Secondly, (3.6) can be read as a discrete version of Newell’s “lower envelop recipe” (1993): 
we can obtain a “true” solution of the kinematic equations of LWR for the cumulative curve 
by taking the lower envelop of the multiple-valued solution derived from the conditions for a 
forward wave (the first term of the bracket in the RHS of (3.5)) and a backward wave (the 
second term). This is obvious from the fact that (3.6) is a discrete analogue of (3.8). Finally, 
we should note that (3.6) is just a system of linear equations from the view point of Min-Plus 
algebra; we may indeed write (3.5) as 

   ))()((  )()1( 1  1 tAtNtAtA iiii +− ⊗⊕=+ .   (3.10) 

Note that “+” is represented as ⊗  in Min-Plus algebra (as defined in section 2 (2)). 
 

 The linearity of the cell-transmission model in Min-Plus algebra can be extended to 
the model with capacities (but assuming a single wave speed): 

   )()()()1( 1 tytytntn iiii +−+=+ ,    (3.2) 

   )}()(  ),(  ),(min{)( 1 tntNtQtnty iiiii −= − .   (3.11) 

This fact can be easily verified by applying the transformation (3.1a); substituting (3.1a) and 
(3.7a) into (3.11), we see that the model above is equivalent to 

  )}()(  ),()(  ),(min{)1( 11 tAtNtAtQtAtA iiiiii +− ++=+ .  (3.12) 

(3.12) implies that the lower envelop recipe still holds for the extended model (3.11), and that 
the model again reduces to a system of linear equations in terms of Max(Min)-Plus algebra: 

  ))()((   ))()((  )()1( 1   1 tAtNtAtQtAtA iiiiii +− ⊗⊗ ⊕⊕=+ .  (3.13) 

Furthermore, it can be easily verified (see Appendix 2) that (3.13) can be regarded as an 
analogue of the linear diffusion equation in the sense that (2.11) is the analogue of the 
diffusion equation (2.15).  



(2) The Cell-Transmission Model with Two Different Wave Speeds (ie. the case of 1<δ ) 

 Now, we are in a position to analyze the general cell transmission model (1.2): 

   )()()()1( 1 tytytntn iiii +−+=+ ,    (3.2) 

   )]}()([  ),(  ),(min{)(  1 tntNtQtnty iiiii −= − δ .  (3.21) 

where vw /=δ . In spite of the seemingly slight difference between this general model and 
the previous model (ie. 1/ <= vwδ  in (3.21) while 1=δ  in (3.11)), a straightforward 
application of the previous transformation method to the general cell transmission model does 
not preserve the Min-Plus algebraic linearity of the system. Specifically, applying the 
transformation (3.1) to (3.21) yields 
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which is expressed in terms of Min-Plus algebraic operations as 
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This equation no longer has “linearity” in Min-Plus algebra (ie. the linearity is lost due to the 
third term in RHS bracket of (3.22) containing the “multiplication” of )(tAi and )(1 tAi+  (ie. 

)()1()(  1 tAtA ii δδ −⊗+ ). 

 The linearity of the model, however, can be recovered by exploiting the cumulative 
count based state equation, (3.8), for the continuous time-space version of LWR theory rather 
than the cell-transmission model. For a finite interval of space-time pair, ) ,( tx ΔΔ , the 

equation (3.8) can be approximated as 
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The finite difference equation (3.24) represents a propagation of either a forward wave (the 
first term in the RHS bracket) or a backward wave (the second term). This implies that  

   0),(),(),( =−Δ+Δ−≡Δ − txAttxxAtxA  

holds whenever tvx Δ⋅−=Δ  and the forward wave is effective in (3.24), because 
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In other words, the following relationship holds along the forward characteristic curves: 

   ),(),( txAtttvxA =Δ+Δ⋅+     (3.25) 



Similarly, when the backward wave is effective, 
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which implies that max),( wktxA =Δ +  holds whenever twx Δ⋅−=Δ ; that is, we have 

   tkwtxAtttwxA Δ+=Δ+Δ⋅− max ),(),(    (3.26) 

along the backward characteristic curves. Note that (3.25) and (3.26) are exact and valid for 
any point (x, t), since we assumed a triangular (or trapezoidal) flow-density relationship (ie. 
the forward (backward) wave speed v (w) is constant independent of k, t and x). 

 In the cell transmission model with the cell length equal to tv Δ⋅ (ie. the distance 
traveled by forward wave speed in one clock interval), the relationship (3.25) for the forward 
wave is represented as 

  )()1(1 tAtA ii =++ ,  )()1( 1 tAtA ii −=+ , …    (3.27) 

Similarly, the relationship (3.26) for the backward wave implies that 

  )()()1( 11 tNtAtA iii −− +=+ ,  )()()1( 1 tNtAtA iii +=+ + ,…  (3.28) 

holds for the cell transmission model with the cell length equal to tw Δ⋅  (ie. the distance 
traveled by backward wave speed in one clock interval) (see Figure 4). Suppose here that the 
ration of forward wave speed to backward wave speed can be approximated by an appropriate 
natural number J, that is, Jwv =/  (J = 2, 3, 4,…). Then, the relationship (3.25) for the 
forward wave becomes 

  )()1( tAtA iJi =++ ,  )()1( tAtA Jii −=+ , …    (3.29) 

Combining these equations, (3.28) and (3.30), as well as the capacity constraint in each cell 
into a single equation, we have the following expression for the general cell transmission 
model: 

  { } )()(  ),()(  ),( min)1( 1 tAtNtAtQtAtA iiiiJii +− ++=+ ,  (3.30) 

where we assume that each cell length equals tw Δ⋅  and wv / can be approximated by a 
natural number J (see Figure 4). Note that the subscript shift J in the first term of the RHS 
bracket of (3.30) substitutes for the wave speed parameter δ (= w/v) in the original cell 
transmission model. 

 The equation (3.30) thus obtained is linear in Min-Plus algebra; it is indeed expressed 
as 

  ))()((  ))()((  )()1( 1 tAtNtAtQtAtA iiiiJii +− ⊗⊕⊗⊕=+ ,  (3.31) 



4. Applications of the Min-Plus Algebraic View 
 
 The “linear” expression (3.31) can be exploited to solve a certain class of kinematic 
wave problems with complicated boundary conditions (eg. Newell(1993)’s “three detector 
problem”) that cannot be solved by a simple forward (with respect to time) computation of the 
cell transmission (recurrence) formula. To show this fact, we regard the discretized 
space–time plane constructed in Section 3 (2) as a “network” with an adjacency (cost) matrix 
C whose (u, v) element is given by 
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This means that each grid point on the discretized space–time plane corresponds to a 
vertex/node in the network (ie. a node in the network represents a space-time pair), and a node 
pair (u,v) in the network is connected by a directed link (with “link cost” c(u,v)) if the wave 
propagation from space-time point u to v is allowed (see Figure 4). We also denote by A(u) 
the cumulative number of vehicles at a space-time point u (ie. A(u) = Ai(t) if node u denotes a 
space-time point (i,t)). 
 For this network representation, it follows that the cumulative-number-based cell 
transmission model, (3.31), is expressed as 

   bACA ⊕⊗=       (3.32) 

or    bACI =⊗− ][       (3.33) 

where A is an unknown vector whose typical element denotes a cumulative number of 
vehicles, A(u), at space-time point u, and the coefficient vector b is determined from given 
boundary conditions that determine the values of cumulative number of vehicles in a certain 
space-time domain. 
 As is well known in Min-Plus algebra, the solution of “linear equations” (3.33) can 
be found by the following matrix operations: 

   bCCIbCIA ⊗⊕⊕⊕=⊗−= − ][][ 21 L    (3.35) 

(Note here that (3.35) has a certain similarity with the solution: 

   bCCIbCIA  ][][ 21 L+++=−= −  

for the linear equations [I - C] A = b in ordinary matrix algebra). It is also well known that 
(3.32) means the optimality (DP) condition for a minimum cost (shortest) path problem in a 
network with adjacency matrix C, and that (3.35) corresponds to Warshall-Floyd algorithm 
for the shortest path problem. Thus, we see that kinematic wave problems with arbitrary 
complicated boundary conditions (that satisfy a certain solution existence conditions) can be 



solved efficiently either by a simple “linear” (in the sense of Min-Plus algebra) operations 
given in (3.35), or equivalently, by any algorithms for solving a shortest path problem. 
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Appendix 1 

 We briefly summarize the elementary properties of Min-Plus algebra. It is easily 
verified that the operations⊕ and⊗ obey the following laws: 

 xyyx ⊕=⊕ ,   and  xyyx ⊗=⊗    (ie. commutative law),  
 )()( zyxzyx ⊕⊕=⊕⊕ , and )()( zyxzyx ⊗⊗=⊗⊗  (ie. associative law). 

The operation ⊕  further satisfies xxx =⊕ (ie. idempotent law) while ⊗ not. These 
operations also satisfies the distributive law: )()()( zxyxzyx ⊗⊕⊗=⊕⊗ . 

 The Min-plus algebra S contains a zero element o such that 

  oxoox =⊗=⊗   and  xxoox =⊕=⊕  for all Sx∈ , 
and a unit element e such that 
   xxeex =⊗=⊗  for all  Sx∈  
It follows that ∞+  is the zero element and the number zero is the unit element (ie. +∞=o  
and 0=e ). An inverse x-1 of a given element x with respect to ⊗  such that 

    exxxx =⊗=⊗ −− 11  for a given x 
is given by xx −=−1 , while an inverse with respect to the operation⊕ does not exist. 

 We may also consider “matrix operations” in this algebra. Let Mn(S) be the set of all 
n by n matrices whose entry belong to S. we define two binary operations on Mn(S) as 

  )]([
1 kjik

n

k
yx ⊗⊕=⊗

=
YX   and  ][ ijij yx ⊕=⊕YX , 

for any matrices ][ ijx=X  and ][ ijy=Y  in Mn(S), where we used the following operation 

for “summing” multiple elements { Sxi ∈ ; i =1,2,…n}: ni

n

i
xxxx ⊕⊕⊕≡⊕

=
...211

 (Needless to 

say, this corresponds to ∑
=

N

i
ix

1

 in ordinary algebra). A unit element E for the matrix 

multiplication such that 
   XEXXE =⊗=⊗  for all )(SM n∈X  

is given by the n by n matrix whose diagonal entries are all e (unit element) and the other 
entries are all o (zero element). 

 It is convenient in some cases to consider “Max-Plus algebra”, in which two binary 
operations, ⊕  and ⊗  are defined as ) ,max( yxyx ≡⊕ and yxyx +≡⊗  for all Syx ∈, . 

The properties of this algebra is almost the same with those of Min-Plus algebra, except that 
the zero element is given as −∞=o . For more details of these algebras, see for example, 

Carre (1979) and Bacceli et al.(1992). 



Appendix 2 

 To see the fact that (3.13) can be regarded as an analogue of the linear diffusion 
equation, consider the following variant of the diffusion equation: 

  ),( )),(),((),(),(2),(),( 2
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∂
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∂
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=
∂

∂ , (3.14) 

which can be obtained from the basic diffusion equation of the form: 
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2
  /),(/),( xxtatxta ∂∂=∂∂     (3.15) 

by the transformation ),(),(  ),(  ),( xtAexta xxttxt βα += , and ),0(),0(  ),( xaexA xxtβ−= . The 

standard difference approximation of (3.14) is 
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Δ
−+ +−+ , (3.16) 

Setting ,1)/( 2 =ΔΔ xt xttN ii Δ+≡ )(21)(  β and 1)(2))()(()(  
2 −Δ−Δ−≡ xtttttQ iiii ββα in 

(3.16), we have 
   )()()()()()1( 1  1 tAtNtAtQtAtA iiiiii +− ++=+ ,  (3.17) 

which has exactly the same form as (3.13) when “+” and “× ” are read as the Min-Plus 
algebraic operations. 

Appendix 3 

 Although Daganzo (1994) defined δ  as 1=δ , if )()(1 tQtn ii ≤−  and vw /=δ , 
otherwise (ie. if )()(1 tQtn ii >− ), the definition is equivalent to simply setting vw /=δ . This 

can be verified as follows: when the former definition of δ  is employed,  

  
} )]()([)/(  ),()( ),( ),(min{

} )])()([)/(  ),((min  ), )()( ),(min{min(
} )]()([  ),(  ),(min{  

 1
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−
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−

− δ
 

holds because if )()(1 tQtn ii ≤− , then 1=δ  and 

  } )()(  ),(min{} )]()([  ),(  ),(min{ 1 1 tntNtntntNtntQ iiiiiii −=− −− δ , 

otherwise (ie. )()(1 tQtn ii >− ), vw /=δ  and 

  } )]()([)/(  ),(min{} )]()([  ),(  ),(min{   1 tntNvwtQtntNtntQ iiiiiii −=−− δ . 

Since the backward wave speed is assumed to be slower than the forward wave speed 
(ie. 1/ <vw ), it follows 

  
}, )]()([)/( ),( ),(min{

} )]()([)/(  ),()( ),( ),(min{  
 1

 1
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−

−  

which is equivalent to setting vw /=δ  in (3.21). 

 



 

 
Figure 1  Flow-density relationship for the cell-transmission model 

 

 

 

 
Figure 2  Locations and sections (“cells”) in a road. 

 
 
 

 
Figure 3  State variables and parameters in each cell 
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Figure 4  Characteristic curves on a space-time grid  

for the cumulative count based cell transmission model 
(the case of 2/ == wvJ ) 
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