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1 Introduction

Following the pioneering works of Brennan and Schwartz (1985) and McDonald
and Siegel (1985), an enormous number of studies have been carried out on the
theory of real option and its applications. For example, the comprehensive works
of Dixit and Pindyck (1994), Schwartz and Trigeorgis (2001), and the references
therein. However, most of these studies focused only on the “plain vanilla” option
model. In this model, the option to invest is “killed” when investment is under-
taken, and no future investment can take place. While this type of model has rightly
received considerable attention in the literature, more complex situations exist for
which this model is not appropriate.

A few studies have, however, been undertaken treating real option problems involv-
ing more complicated and realistic situations. These works can be roughly classified
into two categories —– entry-exit options and time-to-build options. In the former
category, Dixit (1989) and Dixit and Pindyck (1994, chap.7) have pioneered the
expansion of the basic concept of irreversible real options to a model with partially
reversible investment, hereafter referred to as cyclic real option problems. In or-
der to solve these problems, they adopted a conventional approach, known as the
value-matching and the smooth-pasting (or high-contact) conditions (hereafter re-
ferred to as VM-SP). This approach is particularly useful if closed-form analytical
solutions are sought, because it reduces a real option problem to a tractable sys-
tem of nonlinear equations. However, it is difficult to apply the VM-SP approach
to quantitative analysis of real option problems involving more practical situations
(e.g., a finite-horizon model in which each of the state variables follows a general-
ized Ito diffusion process).

In the latter category, Majd and Pindyck (1987) formulated and analyzed an ir-
reversible investment problem with lags. They also used the VM-SP approach to
analyze their model, which causes a serious omission of an essential optimality
condition, as pointed out by Milne and Whalley (2000). There also exist other stud-
ies of time-to-build options, for example, Bar-Ilan and Strange (1996) and Bar-Ilan
et al. (2002). These studies analyzed a hybrid model of a time-to-build option and
an entry-exit option, by reformulating it as a quasi-variational inequality problem.
Although this approach is potentially quite general, they also used the VM-SP ap-
proach to solve the problem by imposing several restrictive assumptions. To the best
of our knowledge, there have been no studies that systematically analyze various
real option problems under realistic and generalized situations.

The present paper provides a unified framework for analyzing a wide variety of
real option problems, taking into account the practical aspects of real-world in-
vestments. The main contribution of this article is to reveal that all the real option
problems belonging to the more general class considered here are described by
the same mathematical structure, and that this structure can be solved by applying
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a computational algorithm developed in the field of mathematical programming.
More precisely, all of these apparently different real option problems can be uni-
versally reformulated as a system of generalized linear complementarity problems
(GLCPs). This enables us to develop an efficient and robust algorithm for solving a
wide variety of real option problems, —– some of which cannot be solved analyti-
cally or numerically using existing approaches —– in a unified manner, exploiting
recent advances in the theory of complementarity problems.

The GLCP approach here can be regarded as a natural extension of the LCP (or,
the variational inequality) approach, which is introduced by Jaillet et at. (1990)
as an equivalent representation of “plain vanilla” American option problems. The
LCP approach is the currently most favored method for pricing vanilla options, be-
ing superior to other existing methods in terms of accuracy and efficiency. More
precisely, for other more primitive existing methods such as the binomial approx-
imation methods, the option prices and the optimal strategies obtained from a dis-
cretized model may not converge to their continuous counterpart if the underlying
state variable does not follow a geometric Brownian motion but a more generalized
diffusion process. See Appendix A for a more detailed review of the existing nu-
merical methods and their limitations. Despite its advantages, the LCP approach is
not directly applicable to the more complicated real option problems discussed in
the present paper, because these real option problems reduce to systems of GLCPs
rather than standard LCPs. We thus should develop a new numerical method to
solve these systems of GLCPs.

To demonstrate the proposed framework and solution algorithm, we consider two
applications, each of which is a generalized version of the frequently studied real
option problems described above: a) the entry-exit option model with a finite hori-
zon, in which the market price of the output follows a generalized Ito process; and
b) the time-to-build option model, in which the firm’s instantaneous profit is defined
as an arbitrary function of the market price of the output following a generalized Ito
process. Note that hitherto there has been no systematic method for solving these
problems in general. The traditional VM-SP approach can only be used to solve
simplifiedforms of these problems: the entry-exit option in an infinite time horizon
with a state variable following a geometric Brownian motion (Dixit and Pindyck,
1994); and the time-to-build option with a linear instantaneous profit function and
a state variable whose dynamics is formulated as a geometric Brownian motion
(Majd and Pindyck, 1987; Milne and Whalley, 2000). It is also worthwhile to note
that the present framework is not only applicable to a variety of existing real option
problems, but also to a generalized version of multi-options (e.g., Trigeorgis, 1991,
1993; Kulatilaka, 1995), which consist of many sub-options interlinking each other,
as discussed in Section 7.

The structure of the present paper is as follows: Sections 2 and 3 formulate an
entry-exit option problem and a time-to-build option problem, respectively. The
optimality conditions of each problem are then reformulated as a system of infinite-
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dimensional GLCPs. Section 4 shows that the system is decomposed with respect
to time under an appropriate discrete framework. This enables us to reduce the real
option problems to the problem of successively solving a sequence of subproblems,
each of which is formulated as a finite-dimensional GLCP. Section 5 provides an
efficient and robust algorithm for solving the subproblems. In Section 6 the present
method for real option problems is applied to derive numerical solutions to several
test problems. The efficiency of the proposed algorithm is clearly demonstrated.
Section 7 concludes this paper.

We first introduce some notation:RN
+ andRN

++ respectively denote the nonnegative
orthant and the positive orthant in an N-dimensional real spaceRN, where, for the
purpose of notational simplicity,R+,R++, andR are also used when N= 1.

2 Cyclic Entry-Exit Option

This section deals with an entry-exit option. The model described in the present sec-
tion is similar to that of Dixit (1989), except that we assume a finite horizon [0,T],
and further assume that the state variable follows a (generalized) Ito process. In
what follows, we first define the present entry-exit option problem, and then refor-
mulate the optimality condition of the problem as a system of infinite-dimensional
generalized linear complementarity problems (GLCPs).

2.1 The Model

Suppose that, at every time,t, in a certain operation periodt ∈ [0,T], a firm is in
one of two states: in the market and active (denoted bym(t) = 1) or outside the
market and idle (denoted bym(t) = 0). A firm that is outside the market is able to
enter the market by incurring a fixed costCE, whereas a firm that is in the market is
able to leave the market by incurring a fixed costCQ. It is assumed that this entry-
exit cycle may be repeated any number of times during the operation period. We
therefore refer to this type of option as a “cyclic” entry-exit option.

When the firm is in the market, it produces a certain unit flow of output. The amount
of the instantaneous profit per unit time at timet is defined by a known function
π1(t,P(t)), whereP(t) is the market price of output att, which evolves exogenously
over time following an Ito process:

dP(t) = α(t,P)dt + σ(t,P)dW(t), P(0) = P0, (1)

whereW(t) is a standard Brownian motion defined on the probability space (Ω,F ,P);
Ω is the state space,F is the filtration ofΩ, andP is the probability measure on
(Ω,F ). On the other hand, when the firm is outside the market, regardless of the
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market price, it neither incurs profits nor costs. The firm’s instantaneous profit is
thus denoted byπ0(t,P(t)) = 01 .

The firm is assumed to decide its entry-exit (or idle-active) strategy in order to
maximize the expected net present value of all future profit streams. For the interval
to the end of the operating period [t,T], the net present value of the profit streams
subject to an entry-exit strategy{m(s)}Tt , {m(s)|s ∈ [t,T]} is defined as

ϕA(t,T; m(·)) ,
∫ T

t
e−ρ(s−t)πm(s)(s,P(s))ds−

∑
k≥1

e−ρ(τ
k
E−t)CE −

∑
k≥1

e−ρ(τ
k
Q−t)CQ

+ e−ρ(T−t)Πm(T)(P(T)), (2)

where the discount rate,ρ, is a given constant. In Eq. (2), the four terms on the right-
hand side respectively represent the net present value of i) the instantaneous profits,
ii) the entry (investment) cost, iii) the quit (abandonment) cost, and iv) lump-sum
profit obtained at the end of the operation. In the second and third terms,τkE is the
kth entry time andτkQ is thekth exit time, respectively. In the last term,Πm(P) is a
known function ofP, which represents a lump-sum profit produced at the expiration
date of the operationt = T, when the market price isP(T) = P and the firm’s state
is m(T) = m. The problem of the firm’s entry-exit decision during the operation
period [0,T] is formulated as the following stochastic control problem,

[P-A] max.
{m(t)}T0

E
[
ϕA(0,T; m(·))

∣∣∣P(0) = P0,m(0) = 0
]
.

The present setting reduces to the traditional model of Dixit (1989) when we as-
sume: i) an infinite horizon (i.e.,T → ∞); ii) a geometric Brownian motion for the
state variable (i.e.,α(t,P) , αP andσ(t,P) , σP); and iii) a linear instantaneous
profit functionπ1(t,P) , P − w, whereα, σ, andw are given positive constants.
Although the traditional VM-SP approach may be used to solve this simplified
problem, it is no longer applicable to our problem formulated above (i.e., a finite
time horizon with a state variable following a Ito process and an arbitrary instanta-
neous profit function). It should be further stressed that no systematic method has
been developed for solving the generalized problem, and thus as yet no numerical
solutions have been obtained.

2.2 The Optimality Condition

This section derives the optimality condition of the[P-A]. In our framework, the
optimality condition is represented as a single system of generalized linear com-

1 This assumption can be relaxed without any change in the mathematical structure of the
present framework.
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plementarity problems (GLCPs), rather than a combination of the value-matching
conditions and the smooth-pasting conditions.

We first define the value function of[P-A] as

V0(t,P) , max.
{m(s)}Tt

E
[
ϕA(t,T; m(·))

∣∣∣P(t) = P,m(t) = 0
]
, (3)

V1(t,P) , max.
{m(s)}Tt

E
[
ϕA(t,T; m(·))

∣∣∣P(t) = P,m(t) = 1
]
. (4)

The former,V0, represents the value function when the market price isP(t) = P
and the firm is outside the market (i.e.,m(t) = 0) at time t, whereas the latter,
V1, is the value function when the firm is in the market (i.e.,m(t) = 1) at timet.
We can interpretV0(t,P) to be the value of the firm outside the market, whereas
V1(t,P) is the value of the firm in the market. In what follows, we first derive the
optimality condition (of the firm in the market) for leaving the market, and then the
optimality condition (of the firm outside the market) for entering the market. Since
the entry-exit cycle can be repeated infinitely, these two optimality conditions must
be combined, so, finally, we formulate the combined optimality conditions as an
infinite-dimensional GLCP.

Let us suppose that the firm is in the market when the market price isP(t) = P at
t ∈ [0,T]. By applying the dynamic programming (DP) principle, we see that the
firm takes one of two actions: either it exits the market incurring exit costCQ, or
defers exiting for at least a certain time∆. From the definition, the value function
should satisfy

V1(t,P) ≥
∫ t+∆

t
e−ρ(s−t)π1(s,P(s))ds+e−ρ∆E [V1(t,P) + ∆V1(t,P)|P(t) = P,m(t) = 1] ,

(5)
where∆V1(t,P) ,

∫ t+∆

t
dV1(s), and this relation holds with equality when the firm

chooses to postpone its exit. Taking∆→ +0 and using Ito’s lemma, it must be true
that

F1(t,P) , −LV1(t,P) − π1(t,P) ≥ 0, (6)

whereL is an infinitesimal generator (partial differential operator), defined as

L , ∂
∂t
+ α(t,P)

∂

∂P
+

1
2
{σ(t,P)}2 ∂

2

∂P2
− ρ. (7)

The value function also should satisfy

V1(t,P) ≥ V0(t,P) −CQ, (8)

or, equivalently,
G1(t,P) , V1(t,P) − V0(t,P) +CQ ≥ 0, (9)

whereV0(t,P) is the value of the firm outside the market at timet, as defined by
Eq. (3). If the firm chooses to exit the market, relation (9) holds with equality. Since
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one of the two actions must be optimal, either Eq. (6) or (9) holds as an equality.
Hence, the firm’s optimal exit strategy (or more precisely, the optimality condition
for leaving the market for a firm in the market) can be rewritten as

F1(t,P) ·G1(t,P) = 0, F1(t,P) ≥ 0, G1(t,P) ≥ 0. (10)

Similarly, let us suppose that the firm is outside the market (i.e.,m(t) = 0) when the
market price isP(t) = P at t ∈ [0,T]. By applying the DP principle, we see that the
firm takes one of two actions: either it enters the market by paying the investment
cost CE, or suspends this investment. If the firm chooses to remain outside the
market, then the following inequality, which is naturally derived from the definition
of the value function, must hold with equality,

F0(t,P) , −LV0(t,P) ≥ 0. (11)

whereL is the infinitesimal generator (partial differential operator) defined by
Eq. (7). If the firm, on the other hand, chooses to enter the market, the following
inequality must instead hold with equality,

V0(t,P) ≥ V1(t,P) −CE, (12)

or equivalently,
G0(t,P) , V0(t,P) − V1(t,P) +CE ≥ 0. (13)

Hence, the firm’s optimal entry strategy (or more precisely, the optimality condition
for entering the market for a firm outside the market) can be formulated as

F0(t,P) ·G0(t,P) = 0, F0(t,P) ≥ 0, G0(t,P) ≥ 0. (14)

It should be noted that the firm can repeat its entry-exit cycle any number of times.
This implies that the value of the firm outside the marketV0(t,P) is required for
calculating the value of the firm in the marketV1(t,P) in Eq. (10), and vice versa.
Therefore, conditions (10) and (14) should hold simultaneously, and the values
V0(t,P) andV1(t,P) should be obtained as a solution of the following system of
GLCPs:

[GLCP-A] Find {[V0(t,P),V1(t,P)]|(t,P) ∈ [0,T] × R+} such that{
F0(t,P) ·G0(t,P) = 0, F0(t,P) ≥ 0, G0(t,P) ≥ 0,
F1(t,P) ·G1(t,P) = 0, F1(t,P) ≥ 0, G1(t,P) ≥ 0

,∀(t,P) ∈ [0,T] × R+.

The terminal condition att = T is given by

Vm(T)(T,P(T)) = Πm(T)(P(T)), ∀m(T) ∈ {0,1},∀P(T) ∈ R+. (15)
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3 Time-to-Build Option

3.1 The Model

This section formulates a time-to-build option using the same framework and no-
tation as Majd and Pindyck (1987), except for a slight generalization of the state
variable process. Let us consider a building project given by the construction a
factory that cannot be completed in a single day. The amount of capital required
to complete the factory,̄K, is known. We assume that there is a maximum rate
of investment,k, and that the investment is also irreversible; therefore the rate of
investment,I (t), has the constraint

0 ≤ I (t) ≤ k. (16)

We also assume that previously installed capital does not decay. LetK(t) denote the
remaining expenditure required at timet. The dynamics ofK(t) is then given by

dK(t) = −I (t)dt, K(0) = K̄, K(τ) = 0, (17)

whereτ is the completion date of the factory, which is determined by the investment
policy and the remaining capital.

Upon completion (K(τ) = 0), the factory commences the production of a certain
amount of output whose market priceP(t) evolves stochastically. The completed
factory is assumed to possess an infinite life [τ,∞) and be capable of generating
cash flow streams{π(P(t))|t ∈ [τ,∞)}. Thus, the value of the factory at the comple-
tion date is the expected net present value of all future cash flow streams during its
infinite life span, which is defined as

Π(P) , E
[∫ ∞

τ

e−ρ(s−τ)π(P(s))ds
∣∣∣∣P(τ) = P

]
. (18)

The dynamics of the market price of output is modeled by a stationary Ito process

dP(t) , α(P)dt + σ(P)dW(t), P(0) = P0, (19)

whereα : R+ → R, σ : R+ → R+ are known functions andW(t) is a standard
Brownian motion defined on the probability space (Ω,F ,P).

Let us consider a certain construction period [t, τ] and an investment strategy{I (s)}τt ,
{I (s)|s ∈ [t, τ)}. The net present value of all future cash flow streams is then defined
as

ϕB(t, τ; I (·)) , −
∫ τ

t
e−ρ(s−t)I (s)ds+ e−ρ(τ−t)Π(P(τ)), (20)

where the discount rate,ρ, is a given constant. We assume that the manager of the
building project intends to maximize the expected net present value of all future
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cash flow streams of the project by choosing an investment strategy{I (t)|t ∈ [0, τ]}.
This objective is formulated as

[P-B] max.
{I (t)}τ0
E

[
ϕB(0, τ; I (·))

∣∣∣K(0) = K̄,P(0) = P0

]
. (21)

Note that the traditional VM-SP approach cannot be used to solve this problem,
since we assume that the state variableP(t) follows a generalized Ito process (19)
and define the payoff functionΠ(P) as an arbitrary function. The present problem
reduces to that of Majd and Pindyck (1987) if we setΠ(P) , P and the market price
process is given by a geometric Brownian motion (i.e.,α(P) , αP andσ(P) , σP
with α andσ given constants). Thissimplifiedproblem can be solved by using
either the VM-SP approach or our approach. However, a naı̈ve application of the
VM-SP may result in a serious omission of essential optimality conditions, which
can be avoided by using our approach. This will be discussed in the following
section.

3.2 The Optimality Condition

We show that the optimality condition of[P-B] can also be reformulated as a GLCP,
in a similar way to the entry-exit option in Section 2. First, we define the value
function of [P-B] by

V(K,P) , max.
{I (s)}τt

E
[
ϕB(t, τ; I (·))

∣∣∣K(t) = K,P(t) = P
]
, (22)

where the remaining expenditure isK(t) = K and the market price of the output
is P(t) = P. It should be noted that the assumption of an infinite horizon implies
that the basic characteristics and the solutions of[P-B] —– the optimal investment
policy and the value function —– do not depend on timeper se. We have therefore
omitted the time description hereafter.

By applying the DP principle to Eq. (22) and using Ito’s lemma, we obtain the
following HJB (Hamilton-Jacobi-Bellman) equation.

DV(K,P) +max.
0≤I≤k

{
−∂V(K,P)
∂K

− 1

}
I = 0, (23)

whereD is an infinitesimal generator (ordinary differential operator) defined by

D , α(P)
∂

∂P
+

1
2
σ2(P)

∂2

∂P2
− ρ. (24)

Since the HJB equation (23) is linear with respect to the control variableI (t), we
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obtain the optimal investment policy as “bang-bang”, or,
I = 0, if − ∂V(K,P)

∂K
− 1 < 0,

I = k, if − ∂V(K,P)
∂K

− 1 ≥ 0,
(25)

that is, either to invest at the maximum ratek if the marginal benefit of investing
(∂V/∂K) is higher than the marginal cost -1, or not to invest at all.

As shown below, this optimal strategy (25) reduces to a system of infinite-dimensional
GLCPs. If the investment takes place at the maximum rate, it must be true that F(K,P) , −DV(K,P) −

(
−∂V(K,P)
∂K

− 1

)
k = 0,

G(K,P) , −DV(K,P) ≥ 0,
(26)

where the inequality in the second line is obtained fromF(K,P) = 0 and−∂V(K,P)
∂K −

1 ≥ 0. On the other hand, when there is no investment, it must be true that{
G(K,P) = 0,
F(K,P) > 0,

(27)

where the inequality is derived fromG(K,P) = 0 and−∂V(K,P)
∂K − 1 < 0. The opti-

mality conditions (26) and (27) are summarized as the following GLCP:

[GLCP-B] Find {V(K,P)|(K,P) ∈ [0, K̄] × R+} such that

F(K,P) ·G(K,P) = 0, F(K,P) ≥ 0, G(K,P) ≥ 0, (K,P) ∈ [0, K̄] × R+.

The terminal condition held at the completion dateτ is given by

V(0,P(τ)) = Π(P(τ)), ∀P(τ) ∈ R+. (28)

It should be noted that the proposed GLCP approach does not involve explicit free
boundaries (or what are often referred to as the triggers, the thresholds, or the
cutoff values). In our approach, the GLCP is derived from the original optimal-
ity condition for the value function (i.e., the HJB equation), and the free-boundary
is obtained as a consequence of solving the GLCP, and the value-matching and
the smooth-pasting conditions are “automatically” satisfied. This implies that the
GLCP approach has an advantage in that it avoids the serious omission of essen-
tial optimality conditions that can occur if using a free-boundary and the value-
matching and smooth-pasting conditions a priori, as highlighted by Milne and
Whalley (2000).
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4 Decomposition into Finite Dimensional GLCPs

The previous two sections have shown that the two apparently different options
have a common mathematical structure, namely an infinite-dimensional GLCP.
This section shows that both these infinite-dimensional GLCP systems,[GLCP-A]
and [GLCP-B], can be decomposed into a series of subproblems by using the DP
principle with respect to time. Next, it is shown that each of the real option prob-
lems discussed in Sections 2 and 3 reduces to the problem of successively solving
the subproblems, each of which is formulated as a finite-dimensional GLCP, in an
appropriate discretized framework.

4.1 Entry-Exit Option

Let us suppose a sufficiently large subspace [Pmin,Pmax] in the state (the market
price) spaceR+, and a discrete grid in the time-state space [0,T]× [Pmin,Pmax] with
increments∆t and∆P . We denote each point of the grid by (ti ,Pj) , (i∆t,Pmin +

j∆P), where the indicesi = 0,1, · · · , I and j = 0,1, · · · , J, J+ 1 describe the lo-
cations of the point with respect to time and state, respectively. In this framework,
we denote an arbitrary functionXm : [0,T] × R+ → R∀m ∈ {0,1} at a grid point
(ti ,Pj) by Xi, j

m , and letXi
m , {Xi,1

m , · · · ,Xi,J
m }
⊤

denote the value ofXm(t,P) at timeti.
We also use the following 2J-dimensional vectors

V i ,

V i
0

V i
1

 , F i ,

F i
0

F i
1

 , Gi ,

Gi
0

Gi
1

 .
In the present discretized framework, the infinitesimal generatorL can be approx-
imated by using an appropriate finite-difference scheme (see, e.g., Jaillet et al.,
1990) as follows:

LVm(ti ,P) ≈ L iV i
m+ M iV i+1

m , ∀m= 0,1,∀i = 0,1, · · · , I − 1. (29)

whereL i andM i are J× J square matrices determined by the market price process
(1). Then the problem[GLCP-A] can be rewritten as a set of finite-dimensional
GLCPs:

[GLCP-A(D)] Find {V i ∈ R2J|i = 0,1, · · · , I} such that

F i(V i ,V i+1) ·G(V i) = 0, F i(V i ,V i+1) ≥ 0, G(V i) ≥ 0, ∀i = 0,1, · · · , I − 1.

where
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F i(V i ,V i+1) ,

−L iV i
0 − M iV i+1

0 − 0

−L iV i
1 − M iV i+1

1 − πi

 , G(V i) ,

V i
0 − V i

1 + 1JCE

V i
1 − V i

0 + 1JCQ

 ,
and1J is a J-dimensional column vector with all elements equal to 1. The terminal
condition (15) is also rewritten as

VI = Π, (30)

whereΠ ,
{
Π1

0, · · · ,ΠJ
0,Π

1
1, · · · ,ΠJ

1

}⊤
is a 2J-dimensional column vector with com-

ponentsΠ j
m , Πm(Pj).

Problem[GLCP-A(D)] consists of subproblems[GLCP-Ai ] (i = 0,1, · · · , I − 1),
corresponding to the time grid. Note that theith subproblem can be solved if a
solution of the one-step-ahead subproblem,V i+1, is given. Hence,[GLCP-A(D)]
reduces to the problem of successively solving the subproblems in the following
procedure:

[Algo-A]

Step 0 SetVI := Π, andi := I − 1.
Step 1 If i < 0, then STOP.
Step 2 ObtainV i as the solution of[GLCP-Ai] by regardingV i+1 as a given con-

stant.
Step 3 Seti := i − 1 and return toStep 1.

The algorithm for solving each subproblem[GLCP-Ai] will be discussed in Section
5.

A few remarks are in order: First, in the case of an infinite horizon, the system
of GLCPs [GLCP-A(D)] reduces to a single GLCP, which can be readily solved
as a single subproblem of[GLCP-A(D)]. In other words, the present approach is
universally applicable to both the infinite-horizon and finite-horizon cases without
any essential modification. It should be emphasized that real option problems in an
infinite horizon can not be solved by the existing, more primitive methods, such
as the binomial approximation method, since, in contrast to the present method, in
these methods backward induction is unavoidable.

Second, if[P-A] was a plain vanilla American option rather than the cyclic option,
[GLCP-A(D)] reduces to a system ofstandardLCPs as shown in Appendix C. For
the system of standard LCPs, several numerical solution methods have been de-
veloped, and their accuracy and efficiency have been compared with those of the
other existing methods (see Huang and Pang, 1998; Dempster and Hutton, 1999;
and Coleman et al. 2002); this comparison is further discussed in Appendix A.
However, in the case of a cyclic option,[GLCP-A(D)] does not reduce to a system
of standard LCP, and the above existing methods for solving LCP systems are no
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longer applicable. We thus must develop a new numerical solution method to solve
the GLCPs, as discussed in Section 5.

4.2 Time-to-Build Option

We take a sufficiently large subspace [Pmin,Pmax] ⊂ R+ and a discrete grid in the
space corresponding to the remaining expenditure and the market price [0, K̄] ×
[Pmin,Pmax] with increments∆K and∆P. We denote each point of the grid by
(K i ,Pj) , (K̄ − i∆K,Pmin + j∆P), where the indicesi = 0,1, · · · , I and j =
0,1, · · · , J, J+1 characterize the locations of the points with respect to the remaining
expenditure and the market price, respectively. Similar to the previous discretized
framework, we denote the value of an arbitrary functionX : [0, K̄] × R+ → R at
the grid point (K i ,Pj) by Xi, j. We also use a J-dimensional column vector,V i ,
{Vi,1, · · · ,Vi,J}⊤ to denote the value function when the remaining expenditure isK i.

In the present discretized framework, the differential operatorD in Eqs. (26) and
(27) can be approximated as

DV(K i ,P) ≈ DV i , (31)

DV(K i ,P) − ∂V(K i ,P)
∂K

k ≈ LV i + MV i+1, (32)

whereD, L, andM are J× J square matrices determined by the remaining expen-
diture process (17) and the market price process (19). Problem[GLCP-B] can then
be expressed as a set of finite-dimensional GLCPs:

[GLCP-B(D)] Find {V i ∈ RJ|i = 0,1, · · · , I} such that

F(V i ,V i+1) ·G(V i) = 0, F(V i ,V i+1) ≥ 0, G(V i) ≥ 0, ∀i = 0, · · · , I − 1,

where

F(V i ,V i+1) , −LV i − MV i+1 + 1Jk, G(V i) , −DV i , (33)

and1J is a J-dimensional column with all elements equal to 1. The terminal condi-
tion (28) is also rewritten as

VI = Π, (34)

whereΠ ,
{
Π1, · · · ,ΠJ

}⊤
is a Jth-order column vector whosejth elementΠ j ,

Π(Pj) is the value of the completed factory defined by Eq. (18).

We denote the subproblems of[GLCP-B(D)] for the ith grid of the remaining ex-
penditure by[GLCP-Bi]. Analogous to the entry-exit option discussed above, theith
subproblem[GLCP-Bi ] can be solved given a solution,V i+1, of the one-step-ahead
subproblem. Hence,[GLCP-B(D)] reduces to a problem of successively solving the
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subproblems fromi = I − 1 to i = 0 in the same procedure as[Algo-A]; where the
subproblem in step 2 is, of course, replaced by[GLCP-Bi].

5 Algorithm for Solving the Subproblem

The previous section showed that each of the real option problems[P-A] and[P-B]
reduces to a problem of successively solving subproblems, each of which is formu-
lated as a finite-dimensional GLCP. This section provides the algorithm for solving
the subproblems[GLCP-Ai ] and[GLCP-Bi]. In this section, we simply express both
subproblems[GLCP-Ai] and[GLCP-Bi] as

[GLCP] Find V ∈ RJ such thatF(V) ·G(V) = 0, F(V) ≥ 0, G(V) ≥ 0,

whereF,G : RJ → RJ are known maps withjth elementsF j(V) andG j(V), re-
spectively. This type of finite-dimensional GLCP was first introduced by Cottle
and Dantzig (1970), and many solution algorithms have been developed in various
fields, including mathematical programming, control theory, engineering, and eco-
nomics. For recent works, see Ferris and Pang (1997), Peng (1999), Qi and Liao
(1999), Peng and Lin (1999), and the references therein.

In order to solve the subproblem[GLCP], we use the smoothing function approach
developed by Peng (1999) , Qi and Liao (1999), and Peng and Lin (1999). This
approach is not only a state-of-the-art technique, but is also well-suited to our prob-
lems from the view point of efficiency, as is discussed later.

In the smoothing function approach, one solves the following equivalent system of
nonlinear equations rather than the original problem,

H(V) , min. {F(V),G(V)} = 0, (35)

where min.{F,G} is a vector operator whosejth element is defined as min.
{
F j ,G j

}
.

Note that the system of equations,H(V) = 0, cannot be solved by naı̈ve methods,
sinceH(V) is undifferentiable, even if eitherF(V) or G(V) is affine.

In order to overcome difficulties caused by the undifferentiability ofH , the key
idea of the smoothing approach is to transform the original problem[GLCP] into
a system of smooth equations via a so-called smoothing functionH(V, ξ) with jth
component

H j(V, ξ) , −ξ ln

{
exp

[
−F j(V)
ξ

]
+ exp

[
−G j(V)
ξ

]}
, (36)

whereξ ≥ 0 is referred to as thesmoothing parameter. The type of function ex-
pressed in Eq. (36) is also known as an expected minimum cost (or a LOG-sum

14



function) for a LOGIT model in random utility theory (e.g., McFadden, 1974; Da-
ganzo, 1979; Ben-Akiva and Lerman, 1985). In this literature, it is known that the
smoothing function has two desirable properties for developing an efficient algo-
rithm: First, H(V,+0) , lim

ξ→+0
H(V, ξ) = H(V). In other words, the solution of

the smooth equations systemH(V, ξ) = 0 is equivalent to the solution of GLCP
H(V) = 0 in the limit asξ → 0; second,H j(V, ξ) is a continuously differentiable
function of V for all ξ > 0. The former property ensures that the present algo-
rithm provides a good approximation to the solution of[GLCP], whereas the latter
property is exploited to guarantee the efficiency of the algorithm.

The smoothing approach-based algorithm generates a solution set to the smooth
equations system, forming a path{(V, ξ)|H(V, ξ) = 0} as the parameterξ tends
to zero. This path is usually referred to as thesmoothing path. Let ξ(k) denote the
smoothing parameter in thekth iteration, andV(k) be a solution of the correspond-
ing smooth equationH(V, ξ(k)) = 0. In that case, we are able to summarize the
procedure for generating the smoothing path as follows:

[Algo-GLCP]

Step 0. Chooseξ(1) ∈ R+. Setk := 1;
Step 1. If H(V(k)) = 0 stop;V(k) is the approximate solution of the GLCP;
Step 2. Solve the smooth equations systemH(V(k), ξ(k)) = 0;
Step 3. Choose the next smoothing parameterξ(k+1) ∈ [0, ξ(k));
Step 4. Setk := k+ 1, return toStep1.

It is easy to verify that any accumulation point of the smoothing path{(V(k), ξ(k))}
generated by[Algo-GLCP] is the solution of the[GLCP], (V∗,+0), since the first
property of the smoothing functionH(V,+0) =H(V) and the condition applicable
on the smoothing parameters,ξ(k) > ξ(k+1) ≥ 0, is satisfied. The global convergence
of [Algo-GLCP] has been established (e.g., Peng and Lin, 1999): Any smoothing
path{(V(k), ξ(k))} generated by[Algo-GLCP] converges to (V∗,+0) globally, when i)
∇H (k) , ∇H(V(k), ξ(k)) is non-singular, and ii) the norm of (∇H (k))−1 is finite for all
k. Since both the conditions are naturally satisfied in our framework, the smoothing
path{(V(k), ξ(k))} globally converges to the solution of[GLCP].

We conclude this section with a discussion of the efficiency of [Algo-GLCP]. We
first emphasize that the smooth equations systemH(V, ξ) = 0 can be solved by
any Newton-type method thanks to the continuous differentiability ofH j(V, ξ), the
second property of the smoothing function. In thekth iteration of[Algo-GLCP], the
Newton directiond(k) is calculated as a solution of the following system of linear
equations, given thekth temporal solution, (V(k), ξ(k)),

∇H(V(k), ξ(k))d(k) + H(V(k), ξ(k)) = 0, (37)

where∇H(V(k), ξ(k)) is the Jacobian of the smoothing functionH evaluated at (V(k), ξ(k)).
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The efficiency of [Algo-GLCP] depends on whether or not the system of linear
equations (37) can be solved (i.e., the Newton directiond(k) can be evaluated) ef-
ficiently. Fortunately, efficiency is guaranteed by the following two desirable prop-
erties of our problems: First, the evaluation ofH(V(k), ξ(k)) requires neither a time-
consuming computational task nor a prohibitive storage for any large J, since the
evaluation of the mapsF(·) andG(·) reduces to a simple calculation of block ma-
trices,∇F and∇G, with blocks consisting of sparse matricesL,M , D and identity
matrices.

Second, the Jacobian of the smoothing function,∇H(V, ξ), is sparse, since it can
be rewritten as a linear combination of sparse matrices∇F and∇G,

∇H(V, ξ) , Λ(V, ξ)∇F(V) +
[
I − Λ(V, ξ)

]∇G(V), (38)

whereI is the Jth-order identity matrix andΛ : RJ×R+ → RJ×J is a diagonal matrix
whose (j, j) element is

Λ j(V, ξ) ,
1

1+ exp
[ {F j(V) −G j(V)}/ ξ] . (39)

The relation between the smoothing functionH(V, ξ) and its Jacobian in Eq. (38)
can be naturally derived from the expected minimum cost and the (binomial) Logit
choice probabilities. The sparsity of∇H enables us to solve the linear system of
equations (37) efficiently, by using iterative algorithms such as the Gauss-Seidel
algorithm or the Successive Over-Relaxation (SOR) algorithm, which only require
storage of the non-zero elements of∇H(V(k), ξ(k)). Therefore,[Algo-GLCP] is effi-
cient for sufficiently large-scale subproblems.

6 Numerical Examples

This section describes some numerical examples of the entry-exit problem[P-A]
and the time-to-build option problem[P-B]. In order to examine the accuracy of
the present method, we compare our results with those of previous studies by using
the same setting and parameter values as those studies. We also demonstrate the
efficiency and robustness of the algorithm[Algo-GLCP]. Rather than considering
complicated specialized problems in the general class of problems that the present
method makes possible to solve, we consider several illustrative test problems that
demonstrate that the present method can solve different types of real option prob-
lems in a unified manner.
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6.1 Entry-Exit Option

For the entry-exit option, we use the same settings as Dixit and Pindyck (1994,
Chap. 7), except that we assume a finite-horizon. We first assume that the market
price follows a geometric Brownian motion,

dP(t) = αP(t)dt + σP(t)dW(t), P(0) = P0. (40)

Next, we assume that a firm in the market produces at a constant rate of 1 unit of
output per unit of time, whose marginal cost is a given constantw. In other words,
the instantaneous profit per unit time will be

π(t,P(t)) , P(t) − w. (41)

The base case parameters in our numerical experiments are as follows: The duration
of the operation period isT = 30 years and the annual discount rate isρ = 0.04.
The annual appreciation and the annual volatility of the market price areα = 02

andσ = 0.2, respectively. The marginal cost of production isw = 0.8, the lump-
sum required to enter the market isCE = 20, and the exit costCQ = 2. For the sake
of simplicity, the lump-sum profit at the expiry date is assumed to beΠ(P) = 0.

It is well-known that the simplified entry-exit option problem in an infinite time
horizon has two thresholds that determine the optimal entry-exit strategy (e.g., Dixit
and Pindyck, 1994). In other words, a firm outside the market enters the market
when the market priceP(t) exceeds one threshold,PE, whereas a firm in the market
leaves the market when the price falls below another threshold,PQ, at any moment
t ∈ [0,∞). In contrast to the infinite-horizon model of Dixit and Pindyck, the thresh-
olds in our finite-horizon model are time varying. Figure 1 shows these thresholds
as functions of time. We are able to observe that both thresholds asymptotically
approach those of the time-invariant case,P∗E = 1.34 andP∗Q = 0.55 (shown as
dotted lines), when a sufficiently long period of the operation period remains. At
the end of the operation periodt = T, the entry thresholdPE(t) goes to infinity,
while the exit thresholdPQ(t) goes to 0. It should be noted that this property cannot
be observed in the analysis of models with an infinite-horizon.

Next, we demonstrate the robustness and efficiency of the present algorithm[Algo-GLCP].
Our parameters are: The numbers of grid points used in the discretization are
I = J = 300, and the numerical parameters of the algorithm areδ1 = 0.9, δ2 =
0.85, δ3 = 0.001, ξ(0) = 1 andϵ0 = 1.0 × 10−7. Figure 2 illustrates the number
of iterations required to solve each subproblem. In this figure, the horizontal axis,
i, represents the index of the subproblem of[GLCP-A(D)], and the vertical axis
represents the number of iterations that are required to solve the corresponding

2 The settingα = 0 in our framework corresponds to the settingµ = 0.04 andr = 0.04 in
Dixit and Pindyck (1994, Chap, 7).
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subproblems. We observe that the algorithm[Algo-GLCP] is capable of finding a
solution to each of the subproblems within a moderate number of iterations, rang-
ing from 3 to 19 iterations with an average of 12.9. It may also be seen that the
299th subproblem requires the least, and the 282nd subproblem the largest number
of iterations.

Figure 3 shows the convergence pattern for both[GLCP-A299] and [GLCP-A282].
In this figure, the horizontal axis,k, represents the iteration index, and the vertical
axis represents the discrepancy between thekth temporal solutionV(k) and the ex-
act solutionV∗ of the subproblem. It should be noted that the vertical axis has a
log-scale: this figure shows that the numerical solutions obtained from algorithm
[Algo-GLCP] converge to the corresponding exact solutions at an extremely fast
rate, even for the subproblem that requires the largest number of iterations to be
solved.

6.2 Time-to-Build Option

In the case of the time-to-build option problem[P-B], we use the same setting as
that used by Milne and Whalley (2000). We assume that the market price of the
output follows a geometric Brownian motion

dP(t) = αP(t)dt + σP(t)dW(t), P(0) = P0, (42)

and define the payoff for completing the building asΠ(P) = P. The base case
parameters used in our numerical experiments are as follows. The initial amount of
capital required to complete the factory is̄K = 6 and the maximum investment rate
per unit time isk = 1. The annual discount rate isρ = 0.02. The annual appreciation
and the annual volatility of the market price areα = 0 andσ = 0.4, respectively.

It is known that the time-to-build option problem has a critical value,P∗(K), which
provides the optimal investment strategy (see, e.g., Milne and Whalley, 2000). In
other words, the investment should take place at the maximum rate when the market
price of the outputP(t) is higher than the threshold, while no investment should be
undertaken when the market price is lower than this threshold. Figure 4 shows the
evolution of these thresholds,P∗(K), as a function of the remaining expenditureK.
Figure 4 also shows the other two thresholds,P0(K) andP1(K), which give alter-
native investment strategies in Milne and Whalley (2000).P0(K) is the investment
threshold which emerges from the “naı̈ve” net present value (NPV) rule, whereas
P1(K) is the investment threshold in the case that the project, once commenced,
must be carried through to completion. We see that the commencement-suspension
thresholdP∗(K) is always higher than the NPV thresholdP0(K), but is always lower
than the commencement threshold for undeferrable investmentP1(K). These results
are consistent with those of Milne and Whalley (2000).
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Finally, we show robustness and efficiency of the present method for the time-to-
build option problem[P-B]. In what follows, the numbers of grid points used in the
discretization are I= J = 400, and the parameters of the algorithm are the same
as those in the previous section. Figure 5 shows the number of iterations required
for each subproblem. In this figure, the horizontal axis,i, represents the index of
each subproblem of[GLCP-B(D)], and the vertical axis represents the number of
iterations. From this figure it may be seen that each of the subproblems is solved
within a moderate numbers of iterations, ranging from 5 to 12 iterations with an
average of 9.6.

Figure 6 shows the convergence patterns for both[GLCP-B4] and[GLCP-B399]; the
former required the smallest number of iterations to reach convergence, while the
latter required the the largest number of iterations to reach convergence. It may be
noted that the temporal solutionV(k) quite rapidly converges to the exact solution
V∗ for each problem. It can be concluded from these results that[Algo-GLCP] is
efficient for both the entry-exit option problem[P-A] and the time-to-build option
problem[P-B].

7 Concluding Remarks

This article provides a unified approach to analyzing a wide variety of real option
problems, taking into account the practical aspects of real-world investments, such
as a finite-horizon in which each of the state variables follows a generalized Ito pro-
cess. We first formulated a generalized version of two typical real option problems
—– the entry-exit option problems and the time-to-build option problems. We then
revealed that all the real option problems belonging to the more general class con-
sidered in this study are described by the same mathematical structure, which can
be solved by applying a computational algorithm developed in the field of mathe-
matical programming. In more precise terms, we found that the Bellman optimality
conditions of these apparently different real option problems can be universally
reduced to a dynamical system of generalized linear complementarity problems
(GLCPs). This enables us to develop an efficient and robust algorithm for solving
these real option problems in a unified manner, exploiting recent advances in the
theory of complementarity problems.

The present computational method for solving real option problems has four main
desirable properties: First, the present approach is straightforward in comparison
to the traditional VM-SP approach. The present method directly solves various real
option problems by naturally reformulating the optimality conditions as a GLCP
system, whereas the traditional approach derives the VM-SP conditions held at
each free-boundary by imposing certain restrictive assumptions specified for each
problem, and solutions are indirectly derived by solving the VM-SP conditions.
The VM-SP approach is therefore applicableonly to these simplified (or restricted)
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real option problems, whereas the present approach can be used to solve more com-
plicated and practical problems as well as these simplified problems.

Second, the GLCP approach presented in this paper can be applied to other types of
real option problems involving more complicated situations, for example, a time-
to-build option with capacity choice (Bar-Ilan et al., 2002), a repeated real option
(Malchow-Møller and Thorsen, 2005); or a multi-option (e.g. Trigeorgis, 1993).

Third, although the mathematics and algorithm presented in this article may, at
first glance, appear esoteric and thus inaccessible to readers who do not have a
specialized interest in advanced mathematical theory, this approach may in fact
be broadly applied to solve a range of complicated, practical real option problems
in economics and finance. For example, our approach may be implemented in an
integrated modeling system such as GAMS (General Algebraic Modeling System),
which is specifically designed for modeling linear, nonlinear and complementarity
problems and widely used to analyze economic models, e.g. computational general
equilibrium models, macro economic models, etc. Such an implementation will not
require enormous exertion because the present framework and algorithm here is not
only efficient, but is also systematic.

Finally, the analysis in this article can be exploited as a building-block for study-
ing a novel class of real option problems, termed as “option graphs,” which can be
interpreted as a generalized version of real option with flexibility, as described by
Kulatilaka (1995) for example. The option graph is a compound real option consist-
ing of decision making whose interdependent structure is represented as a general
directed graph. We refer the interested readers to our companion paper, Akamatsu
and Nagae (forthcoming). This companion paper provides a general algorithm, in
which the present algorithm[Algo-GLCP] is used as a subprocedure.

Appendix A A Review: Numerical Methods for Pricing Options with Timing
Choice

This appendix reviews the existing numerical methods for pricing option prob-
lems with timing choice, i.e., American options. The first rigorous mathematical
formulation of the American option pricing problem is given by McKean (1965),
Bensoussan (1984) and Karatzas (1988), where an American option problem is for-
mulated as anoptimal stopping problem, or equivalently, afree boundary problem.
Since closed-form solutions are not available for these problems, an extensive liter-
ature of numerical methods to approximate the option price and exercise strategies
has been developed by discretizing time and the state space as shown in Section 4.

In spite of the vast collection of numerical recipes that exist to solve American
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option problems3 , none of these methods seems to be applicable for options with
complicated exercise structures, such as[P-A] and [P-B], in general settings. The
reason is that the above existing methods have at least one of the following two seri-
ous disadvantages: First, some of the earlier (but still widely used) methods may be
inappropriate even for the plain vanilla American option in terms of their accuracy
and efficiency. Second, the other methods are based on mathematical structures
specific to the plain vanilla American options, and so are not capable of treating
more complicated real options such as[P-A]. In what follows, we briefly describe
the existing methods for solving the American option problems and outline their
disadvantages.

The existing methods are roughly classified into the following three categories: a)
explicit methods; b) LCP methods; and c) other miscellaneous approaches.

Explicit methods are among the earliest methods used to price both financial and
real options, and remain among the most widely used. In these methods, the option
price —– approximated in a discretized framework as shown in Section 4 —– at
the ith time-step is calculated by simple substitutions of the option prices at the
(i + 1)th time-step: for the case of a plain vanilla American put option with strike
priceK, the option value atith time-step at each state is calculated by the following
procedure:

Vi, j := max.
{
ϕ j(V i+1), Pj − K

}
, ∀ j = 1, · · · , J. (A.1)

whereϕ j(V i+1) , E
[
e−ρ∆tVi+1

∣∣∣P(ti) = Pj
]

andV i , {Vi,1, · · · ,Vi,J} for any i. The
expectation ofϕ j(·) is calculated by using either the binomial approximation of the
underlying process, or the finite-difference approximation of the partial differential
equations resulting from the Feynman-Kac formula. For more details, we refer the
reader to Cox et al. (1979), Boyle (1988), Hull (1989), and Duffie (1996). The ex-
plicit method characterized by (A.1) can be regarded as a straightforward extension
of the Euler explicit scheme for solving partial differential equations to the system
of Bellman equations for the American put:

V(t,P) = max. {ϕ(t,P; V), P− K} , ∀(t,P) ∈ [0,T] × R++, (A.2)

whereϕ(t,P; V) , lim
∆↓0
E

[
e−ρ∆ {V(t,P) + ∆V(t,P)}

∣∣∣P(t) = P
]

and∆V(t,P) is an in-

crement of the value function during∆. The explicit method thus inherits the dis-
advantages of the explicit Euler finite-difference scheme, which make the explicit
method inappropriate even for the plain vanilla problem in terms of its poor discrete-
to-continuous convergence: the approximate solutions obtained from the discretized
model may not converge to their continuous counterpart unless certain conditions

3 The (plain vanilla) American option here is defined as a single option which can be
exercised at any time; The option is killed and never restored when the exercise is carried
out, unlike the cyclic option[P-A], where the option to enter the market is restored whenever
the firm leaves the market.
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are satisfied (Amin and Khana, 1994; Lamberton, 1998; Leisen, 1998; and Jail-
let et al., 1990). Unfortunately, satisfying the conditions required to guarantee the
discrete-to-continuous convergence can make the computational procedure very de-
manding, as described by Huang and Pang (1998), Dempster and Hutton (1999),
and Coleman et al. (2002).

In contrast to the explicit method, thelinear complementarity problem(LCP) method,
which can be regarded as a special case of the present method, achieves both ac-
curacy and efficiency under reasonably mild conditions. In the LCP method, the
system of Bellman equations (A.2) of a plain vanilla American is formulated as a
system of LCPs, or equivalentvariational inequality problems. For the theoretical
foundation, we refer to Jaillet et al. (1990), Myneni (1992) and Dempster and Hut-
ton (1999). Numerical methods for the LCP approach are developed by Brennan
and Schwartz (1977), Wilmott, Dewynne, and Howison (1993), Huang and Pang
(1998), and Coleman et al. (2002). Several studies have demonstrated that the LCP
approach is more efficient than the explicit methods for the case of a plain vanilla
American option with the underlying state variable following a geometric Brow-
nian motion (Huang and Pang, 1989; Dempster and Hutton, 1999; and Coleman
et al., 2002). Despite its remarkable advantages, the LCP approach is not directly
applicable to[P-A] and [P-B], whose optimality conditions reduce to a system of
GLCPs rather than standard LCPs.

There are several other numerical methods for pricing vanilla American options,
such as the quasi-analytical solution method (Geske and Johnson, 1984; Barone-
Adesi and Whaley, 1987; and MacMillan, 1986) and the integral representation
method (Kim, 1990; Jacka, 1991; Broadie and Detemple, 1996; and Detemple and
Tian, 2002). Since these methods are based on the specific mathematical structure
associated with vanilla options with a single free boundary, it appears to be difficult
to directly apply these methods to the cyclic option models such as[P-A], where
multiple free boundaries exist.

It is worthwhile to note that there are several naı̈ve expansions of the explicit
method to more complex real option problems such as the cyclic option[P-A] (e.g.
Trigeorgis, 1991 and Kulatilaka and Trigeorgis, 1994). Unfortunately, these meth-
odsnot onlyinherit the above disadvantages of the explicit methodbut alsocause
an inconsistency: for the case of the cyclic option[P-A], the (expanded) explicit
method computes the value function atith time-step, (Vi, j

0 ,V
i, j
1 ), by the following

procedure. Vi, j
0 := max.

{
ϕi

0(V
i+1
0 ), ϕi

1(V
i+1
1 ) −CE

}
,

Vi, j
1 := max.

{
ϕi

1(V
i+1
1 ), ϕi

0(V
i+1
0 ) −CQ

}
,

j = 1, · · · , J, (A.3)

whereϕi
m(V i

m) , E
[
e−ρ∆tVi+1

m

∣∣∣P(ti) = Pj ,m(ti) = m
]

andV i
m , {Vi,1

m , · · · ,Vi,J
m } for

m = 0,1. It is clear that procedure (A.3) is inconsistent with the Bellman equation
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of [P-A] at each moment of time: V0(t,P) = max. {ϕ0(t,P; V), V1(t,P) −CE} ,

V1(t,P) = max.
{
ϕ1(t,P; V), V0(t,P) −CQ

}
,
∀P ∈ R++, (A.4)

whereϕm(t,P; V) , lim
∆↓0
E

[
e−ρ∆ {Vm(t,P) + ∆Vm(t,P)}

∣∣∣P(t) = P,m(t) = m
]

for m =

0,1. It should be emphasized that the solution of the Bellman equation system
(A.4),V0(t,P) andV1(t,P), should be determinedsimultaneouslywhatever the finite-
difference scheme is. According to this fact, the present method is quite natural and
perhaps the most simple for solving the cyclic option[P-A]: at each time-step, it
directly solves the Bellman equation (A.4) as a GLCP, and obtains the value func-
tionsV i

0 andV i
1 simultaneously. To the best of our knowledge, thus far there have

been no other numerical methods developed to solve the Bellman equation for the
cyclic option (A.4) without requiring inconsistent approximations like (A.3).

Appendix B Algorithm for [GLCP]

This appendix shows the algorithm of Peng and Lin (1999) for solving the sub-
problem[GLCP]. They employ a truncated Newton method in order to accelerate
its local convergence. Specifically, the inner loop of the outer iterationk, for solving
the system of smooth equations,H(V, ξ(k)) = 0, is truncated after a single iteration.
The details of their algorithm are as follows:

[Algo-Peng-Lin]

Step 0. Given constant numbersϵ0 ≥ 0, ω ∈ (0, 1), δ1 ∈ (0,1), δ2 ∈ (0,1), δ3 ∈
(0,1− δ2).

Choose anyξ(0) > 0, V(0) ∈ RJ andγ ≥ ∥H(V(0),ξ(0))∥
min{ξ(0),1} .

Step 1. The Newton step ofH(V, ξ(k)):
If ∇V H(V(k), ξ(k)) is singular,STOP. (the algorithm fails);
else if∥H(V(k))∥ ≤ ϵ0, STOP. (V(k) is an appropriate solution of[GLCP]);
Otherwise, compute a Newton stepd(k) satisfying Eq. (37).

Step 2. ComputeV(k+1):
Let h(k) be the maximum value of{1, δ1, δ21, · · · } such that

∥H(V(k) + h(k)d(k), ξ(k))∥ ≤ (1− ωh(k)) min{ξ(k), 1}γ, (B.1)

andV(k+1) := V(k) + h(k)d(k).
Step 3. Computeξ(k+1):

If
(
V(k+1),min.{δ3, ξ(k)}ξ(k)

)
∈ N

(
γ,min.{δ3, ξ(k)}ξ(k)

)
then setv(k) := 1−min.{δ3, ξ(k)}

;
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Otherwise, letv(k) be the maximum value of{δ2, δ22, · · · } such that

(
V(k+1), (1− v(k))ξ(k)

)
∈ N

(
γ, (1− v(k))ξ(k)

)
. (B.2)

Setξ(k+1) := (1− v(k))ξ(k).
Step 4. k := k+ 1, return toStep 1.

where in the above

N(β, ξ) =
{
(V, ξ) ∈ RJ× R+

∣∣∣∣∥H(V, ξ)∥ ≤ βmin.{ξ,1}
}
. (B.3)

Appendix C Standard LCP Representation of A Plain Vanilla American Op-
tion Problem

This appendix shows that for the case that the real option problem[P-A] is a plain
vanilla American option, this problem reduces to a system ofstandardLCPs. Con-
sider a problem with the same configuration as[P-A] in Section 2, but that there
is no option to leave the market: a firm that is in the market can not exit from the
market. In this case, the value of a firm that is in the market{V i

1} can be regarded
as a given constant: the unknown variable is given by the value of a firm that is
outside of the market (or, equivalently, the value of an option to enter the market),
{V i

0}. The option value at theith time-step can be obtained as the solution to the
following GLCP givenV i+1

0 andV i
1.

[GLCP-A’(D)] Find V0 such that

 (−LV0 − ḡ) ·
(
V0 − V̄1 + 1JCE

)
= 0,

−LV0 − ḡ ≥ 0, V0 − V̄1 + 1JCE ≥ 0,

where the suffix i is omitted for notational simplicity. Herēg , M iV i+1
0 andV̄1 , V i

1

are regarded as given vectors. By introducing a new variableY , V0 − V̄1 + 1JCE,
we can reduce[GLCP-A’(D)] to a standard LCP:

[LCP-A’] Find Y such that Y · F(Y) = 0, Y ≥ 0, F(Y) ≥ 0,

whereF(Y) , −L(Y + V̄1 − 1JCE) − ḡ.

However, it may be noted that the above variable transformation does not work in
the case of cyclic option, since bothV0 andV1 are unknown variables.
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Fig. 1. Entry and exit thresholds as functions oft. At any momentt ∈ [0,T], a firm that
is outside the market enters the market when the market price of the productP(t) exceeds
a certain thresholdPE(t), whereas a firm that is in the market leaves the market when the
price falls below the other thresholdPQ(t). WhenP(t) ∈ [PQ(t),PE(t)], the firm neither
enters nor leaves the market. The two dotted lines indicate these thresholds obtained in the
infinite horizon framework of Dixit and Pindyck (1994, Chap.7).
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Fig. 2. Number of iterations required to solve the subproblems of[GLCP-A(D)]. The hor-
izontal axis represents the index of subproblems,i, and the vertical axis represents the
number of iterations required for solving the subproblem. The 299th subproblem requires
the smallest number of iterations to be solved, whereas the 282nd subproblem requires the
largest number of iterations.
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Fig. 3. Convergence patterns of the Peng-Lin algorithm for the subproblems[GLCP-A299]
and[GLCP-A282]. The horizontal axis represents the number of iterations,k, and the vertical
axis represents the logarithm of the difference between the temporal solutionV(k) and the
exact solution of the subproblem,V∗.
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Fig. 4. Investment thresholds as functions of the remaining expenditureK. P∗(K) is the
commencement-suspension threshold of the time-to-build option[P-B]. P(0)(K) is the in-
vestment threshold for the naı̈ve NPV-rule, whileP1(K) is the commencement threshold
for a building project that cannot be suspended once commenced.
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Fig. 5. Number of iterations required to solve the subproblems of[GLCP-B(D)]. The hor-
izontal axis represents the index of subproblems,i, and the vertical axis represents the
number of iterations required for solving the subproblem. The 4th subproblem requires the
smallest number of iterations to be solved, whereas the 399th subproblem is solved in the
largest number of iterations.
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Fig. 6. Convergence patterns of the Peng-Lin algorithm for the subproblems[GLCP-B4] and
[GLCP-B399]. The horizontal axis represents the number of iterations,k, and the vertical
axis represents the logarithm of the difference between the smoothing pathV(k) and the
exact solution of the subproblem,V∗.
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