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The purpose of this paper is to develop the LOGIT type stochastic (equilibrium) 
assignment that satisfies three requirements: first, the path set for the loading 
should be defined by the simple paths without any restrictions, which do not 
depend on the travel cost pattern;  secondly, the model should give small 
probabilities for the paths with mazy structure, while the number of paths 
defined by the first requirement itself is enormous; and finally, the model should 
be efficiently computable even in large scale networks.  To achieve the purpose, 
we employ two strategies: first, we incorporate not only the conventional travel 
times but also the geometric attributes of paths into the model; and secondly, we 
construct the algorithm making fully use of the Markov property of LOGIT model.  
The incorporation of the geometric aspects into the model is not only natural to 
satisfy the second requirement but also effectively utilized to achieve the first 
requirement.  Moreover, the strategy combined with the Markov chain theory 
enables the model to inherit the computational efficiency of Markov Chain 
Assignment (MCA) developed by SASAKI (1965), BELL (1995) and AKAMATSU 

(1996a).  This property stems from the fact that the new model can be regarded 
as a mathematically natural extension of MCA: the conventional MCA reduces to 
a system of linear equations in real number space; and the new assignment 
model yields the almost same form of linear equations in complex number space.  
Finally, an algorithm for the flow dependent case (i.e. stochastic equilibrium 
case) is also presented by extending the results for the flow independent model. 

 
 
How we should define the path set for the traffic assignment is an open problem yet to be studied 

despite the long research history.  In deterministic (Wardrop) equilibrium model, we do not 
have to explicitly realize the problem, since the deterministic model assigns the flows only to the 
shortest paths.  However, when once we realize the fact that not only the shortest paths but also 
the other various paths are chosen by users in real traffic networks, we can not escape from this 
problem.  To date, various stochastic (equilibrium) assignment models (e.g. SASAKI (1965), 
VON FALKENHAUSEN (1966), BURRELL (1967), DIAL (1971), TOBIN (1977), DAGANZO and 



 2

SHEFFI (1977), FISK (1980), SHEFFI and DAGANZO (1980), DAGANZO (1982,1983), 
MIRCHANDANI and SOROUSH (1987), AKAMATSU (1989,1990, 1996a), BELL (1995), etc.) have 
tackled this problem.  These models, either explicitly or implicitly, decide the set of paths for 
assigning flows by a priori criteria, and then the route-choice probabilities are calculated over 
the path set.  
 Conventionally, some criteria for defining the path set have been employed.  The simple 
and natural one is to define all the simple paths (i.e. the paths that do not traverse any links more 
than once), PS, as the path set for the assignment. To the author’s knowledge, however, no 
efficient algorithm for generating the flow pattern that completely satisfies this definition has been 
developed.  This difficulty is mainly caused by the fact that the path enumeration is 
computationally impossible in real large-scale networks: the required storage and operations in 
enumerating simple paths increase exponentially with the growth of the network size. Note that 
the essential problem can not be theoretically overcome even if we utilize the conventional 
techniques such as column generation, simplicial decomposition, or Monte Carlo simulation. 
 In order to avoid the path enumeration, some models / algorithms take the strategy that 
restricts the path set for the assignment to a certain subset of PS.  For example, DIAL (1971) 
developed an efficient algorithm which generates the link flow pattern being consistent with the 
LOGIT type route choice model over the set of “efficient path”.  Although the path restriction 
strategy is useful for the efficient calculation,  it gives rise to the problem that the algorithm 
often generates unrealistic flow pattern (for the typical example, see AKAMATSU (1996a)).  The 
restriction of paths also causes another troublesome problem in the flow dependent assignment: 
the path set for the loading varies with the change of the link cost pattern, and as a result, all the 
iterative algorithms in which the Dial’s algorithm is utilized can not be guaranteed to converge 
(for further detail, see AKAMATSU (1996b,1996c)).  Recently, LAURENT (1996) proposed the 
modified definition of the efficient path, where the paths for the loading are restricted by some 
criteria based on the fixed “reference travel costs”. Although the definition has the advantage of 
stabilizing the paths in the flow dependent assignment, it suffers from over-restriction of paths: 
for example, in the ring-road network presented in Akamatsu(1996a), the definition can produce 
the unrealistic flow pattern as in the Dial’s algorithm. 
 Recently, BELL (1995) and AKAMATSU (1996a) showed a definition being in a striking 
contrast to the restriction strategy: they analyzed the LOGIT assignment whose path set consists of 
all the possible paths, where even paths with cycles are permitted. The model overcomes the 
deficiency of the Dial’s algorithm, and is applicable to large scale networks, since it avoid path 
enumeration by applying the Markov chain theory (Henceforth, we call the model MCA: Markov 
Chain Assignment).  The definition of the path set, however, is unnatural from the user’s 
behavior point of view, and therefore, it leaves rooms for various improvement.  Thus, we can 
conclude that there is no assignment model equipped with both the behaviorally satisfactory path 
set and the computationally efficient algorithm. 
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 This study aims to develop the efficient method for obtaining the flow pattern according to 
the LOGIT based stochastic (equilibrium) assignment model whose path set consists of only 
simple paths without any restrictions. To achieve the purpose, we employ two strategies: first, 
we incorporate not only the conventional travel times but also the spatial / geometric attributes of 
paths into the model; and secondly, we construct the algorithm exploiting the Markov property of 
the LOGIT model. 
 The first strategy, obviously, can be justified from the user’s behavior view point. Our 
model due to this strategy assigns only a small amount of flow to the paths with excessively  
mazy structure even if the travel times of the paths are moderate. This is consistent with the 
observations in various traffic surveys.  Interestingly, the incorporation of the geometric 
attributes not only improves the behavior model but also gives us the innovative method for 
constructing the set of simple paths.  To be specific, we first define the geometric 
“rotation-angle” between adjacent links over the network, and then, by representing the 
rotations-angles along paths in complex number space, we obtain the method for distinguishing 
the cycles from the simple paths without explicit enumeration of paths.  This method plays an 
important roll in developing the efficient assignment algorithm based on the second strategy. 
 The second strategy implies that the assignment algorithm can avoid explicitly dealing with 
vast path variables.  Namely, our algorithm operates only link variables instead of path 
variables, and it generates the link flows by origins / destinations.  Note that this does not mean 
that our algorithm can produce less information than path based algorithms.  From the Markov 
property of the LOGIT assignment, the link flows by origin / destination give us enough 
information to construct the corresponding path flows: we can obtain any path flows from the 
output of this algorithm “as wee needed”.  To exploit this property, we construct the assignment 
algorithm based on the MCA developed by SASAKI(1965), BELL(1995) and AKAMATSU(1996a).  
Although the original MCA assigns the flows over the path set with cycles, the MCA combined 
with the first strategy can successfully eliminate all the cycles from the path set.  Thus, we can 
achieve the purpose. 
 The paper is organized as follows.  We first briefly review the MCA that is consistent 
with LOGIT based route-choice model in Section 1, where we also draw attention to the problem 
caused by the cycle flows in MCA.  With this problem in mind, the subsequent sections develop 
the methods for reducing / eliminating the cycle flows in MCA.  In Section 2, we improve the 
MCA so as to avoid the simplest cycle flows of “U-turn”: we modify the MCA based on 
node-to-node transitions into the model based on link-to-link transitions.  In Section 3 we then 
incorporate the geometric rotations of paths into the link-based MCA model.  Based on these 
preliminary analyses, in Section 4 we consider the model whose path set is restricted to  simple 
paths only, and then the novel method to eliminate the cycle flows without computational burden 
is developed.  In Section 5, we discuss the extension to the flow dependent model.  Finally, we 
present our conclusions and discuss the future research. 
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1．Preliminaries - LOGIT Assignment through Markov Chain 
 
 Preliminary to the presentation of the new models, this section briefly reviews the Markov 
Chain Assignment that is consistent with LOGIT type route-choice model. For further detail, see 
AKAMATSU (1996a,b,c), BELL (1995) and SASAKI (1965). 

1.1. Networks 

 Our model is defined on a traffic network G [N, L ] which has the set N of nodes, the set L 
of directed links and given set of origin-destination(OD) node pairs. The set N consists of three 
subset: the set of traversal nodes, N, that of origin nodes, O, and that of destination nodes, D.  
The number of nodes in each subset are n, g, and s, respectively.  The link from node i to j is 
denoted as link (i, j).  Each link in L has the travel cost, which is assumed to be fixed (i.e. flow 
independent). The extension to the flow dependent costs will be discussed in Section 5. 
 
 In the followings,  each node in G is assumed to belong to only one of the subsets N, O, or 
D: N O∩ = ∅ , N D∩ = ∅ , and O D∩ = ∅ .  In addition, we assume that the number of 
links emanating from each origin is unique, and similarly, the number of links entering into each 
destination is unique.  These assumptions are made only for the clarity of the presentation.  In 
fact, they do not affect the generality of the subsequent models, since any traffic network can be 
modified so as to satisfies these assumptions without loss of generality (see Fig.1.1). 
 

   
Origin, Destination
and Traversal Node   

o d

Origin Destination 

   Fig. 1.1. (a) Original network.        (b) Modified network. 

 
1.2. Traffic Assignment through Markov Chain 

 We consider the network with multiple origins and single destination (“Many-to-One 
OD-pattern”).  As can be seen in below, we can easily extend the model to the case of 
Many-to-Many OD-pattern by simply overlapping the flow pattern for each Many-to-One 
OD-pattern.  The Markov Chain Assignment by SASAKI(1965) regards the nodes as the states 
in Markov chain, and the vehicles generated from origins are assumed to repeat the transition 
between the states according to the Markov chain rule.  To formulate the model, let Q[d] be the 
transition probabilities matrix with the following structure: 
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              1   g   n

Q[d ] =
0 0 0
0 0 Q1

Q2[d ] 0 Q[d ]

 

 

 
 

 

 

 
 

 1
 g
 n

       (1.1) 

where  Q1 is a g×n matrix whose (o, i) component is 1 if the origin o is connected with the 

traversal-node i, zero otherwise, 
 Q2[d] is an n×1 vector whose i th component is 1 if the destination d is connected with 

the traversal-node i, zero otherwise, 
 Q[d] is an n×n matrix whose (i, j) component denotes the (non-zero) transition 

probabilities, Qij,  if traversal-node pair (i, j) is connected by a single link, zero 
otherwise. 

Then, we easily see that the (i, j) component of Q[d]
k is the sum of choice probabilities of k- 

walks paths (i.e. the paths consisting of k nodes) between node pair (i,j).  Therefore, the 
node-choice probabilities (conditional on being generated from each node) are given by the 
matrix series  I + Q[dl + Q[dl

2 + Q[dl 
3 + ···,  and it converges to the following inverse matrix: 

  I + Q[d] + Q[d]
2 + Q[d]

3 + ··· = [I－Q[d]]-1 = 
I    0 0
P3[d ] I P1[d]

P2[d ] 0 P[d ]

 

 

 
 

 

 

 
 
,   (1.2a) 

  P[d] = [I－Q[d]]-1,            (1.2b) 

  P1[d] = Q1 P[d],  P2[d] = P[d] Q2[d],  P3[d] = Q1 P[d] Q2[d],    (1.2c) 

where P1[d]  is a g×n matrix whose (o, i) component, P1[d] (i|o), denotes the probability that a 

vehicle generated from origin o uses node i.  Thus, we can obtain the link-choice probabilities 
by OD-pair, by substituting the P1[d](i|o) obtained in (1.2) into the following definitional formula: 

    pij
od = P1[d](i|o)･Qij ,        (1.3) 

where pij
od denotes a probability that a vehicle with OD-pair (o,d) choose a link (i, j). 

. 

1.3. Transition Probabilities Consistent with LOGIT type Route Choice 

 At first sight, the MCA above has no background of behavior-theory, but it leads to the 
LOGIT based assignment: AKAMATSU (1996a) showed that MCA yields the flow pattern that is 
consistent with the LOGIT type route choice model, if the transition probabilities are given by 

  Qij =Q[d](j|i) = Wij Vjd / Vid  or Q[d] =V2[d]
-1 W V2[d],    (1.4) 

where Wij ≡ exp[−θ tij],           (1.5) 
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  V Cid r
id

r R id
≡ −

∈ ∞

∑   
 

exp[ ]θ ,          (1.6) 

  tij : the cost of link (i, j),  θ : the sensitivity parameter of LOGIT model, 

  Rid
∞ : the set of all the possible paths between traversal-node i to destination d, 

  C tr
kd

ij
ij L

r ij
kd≡

∈
∑ δ ,  : the cost of r th path from node k to destination d, 

  V2[d] = an n×n diagonal matrix whose (i, i) diagonal component is Vid. 

Note that we can deal with the Many-to-Many OD pattern by simply defining the transition 
probabilities for Many-to-One OD patterns by each origin. 

 How we calculate the Vid defined in (1.6) is not self-evident since the definition requires 
the summation with respect to infinite paths. Nevertheless, BELL (1995) showed that it can be 
obtained by the simple matrix operations as follows.  Let W be the “impedance” matrix with the 
following form: 

    

           s   g   n

W =
0 0 0
0 0 W1

W2 0 W

 

 

 
 

 

 

 
 

 s
 g
 n

        (1.7) 

where  W1 is a g×n matrix whose (o, i) component is 1 if the origin o is connected with the 

traversal-node i, zero otherwise, 
 W2 is an n×s matrix whose (i, d) component is 1 if the destination d is connected with 

the traversal-node i, zero otherwise, 
 W is an n×n matrix whose (i, j) component is Wij = exp[−θ tij]  if traversal-node pair 

(i, j) is connected by a link, zero otherwise. 

Then, it follows that the (i, j) component of W k is the sum of exp[−θ Cr
ij ] over the k-walks paths 

between node pair (i, j).  Therefore, the matrix V is given by  I + W + W2 + W3 + ···, and it 
converges to the following inverse matrix: 

  I + W + W2 + W3 + ··· = [I－W]-1 = 
I 0 0

V3 I V1

V2 0 V

 

 

 
 

 

 

 
 
     (1.8a) 

  V = [I－W]-1,  V1 = W1 V,  V2 = V W2,  V3 = W1 V W2,   (1.8b) 

where the (o, i) component of matrix V1, the (j, d) component of matrix V2 , and the (o, d) 
component of matrix V3 are defined as V Coi r

oi
r

= −∑ exp[ ]θ ，V Cjd r
jd

r
= −∑ exp[ ]θ ，and 

V Cod r
od

r
= −∑ exp[ ]θ , respectively. 
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1.4. LOGIT Assignment through Markov Chain 

 To sum up,  we can obtain the link-choice probabilities that are consistent with LOGIT  
model by the following procedures: 

 Step 1: (a) Calculate the variable V by (1.8), 
    (b) Determine the transition matrix Q by substituting the V into (1.4). 
 Step 2: (a) Compute the node-choice probabilities by the Markov Chain formula (1.2), 
    (b) Calculate the link-choice probabilities by (1.3). 
 
 It is worth mentioning that the calculation in Step 2 reduces to the simple calculation as 
follows. Substituting (1.4) into (1.2), the node-choice probabilities yields 

  P1[d] = Q1 [I－Q[d]]-1 = Q1 [I－V2[d]
-1 W V2[d]]-1 

      
  = Q1 V2[d]

-1 [I－W]-1 V2[d] 

        = Q1 V2[d]
-1 V V2[d] .         (1.9a) 

That is, the (o,i) component of P1[d], P1[d](i|o) = P(i|o,d), is 

  P(i|o,d) = δ ok
k

∑ {(1 / Vkd) Vki Vid } = Voi Vid / Vod .     (1.9b) 

Therefore, the the flow on link (i, j) with OD-pair od, xij
od, is given by the following formula 

without explicit calculation of the inverse matrix [I－Q[d]]-1: 

  xij
od =qod pij

od = qod P(i|o,d)･Q[d](j| i) = qod (Voi Vid / Vod )･(Wij Vjd / Vid)   

       = qod Voi Wij Vjd / Vod ,         (1.10) 

where qod is the OD-flow between o and d.  
 

1.5. The Problem Caused by Cycle Flows 

 The model above has a solution (i.e. the left hand side of (1.8a) converges and all the 
components take positive value) if and only if the spectral radius of W,ρ(W), is less than unity: 

     ρ(W)=Max.
i

 λ i  < 1,       (1.11) 

where λi  is the i th eigenvalue of matrix W.  The condition (1.11), however, may not be 

satisfied in some cases. For example, when the network has many cycles with zero costs, the 
network can induce infinite cycle flows, which means the non-existence of the solution.  There 
also may be possibilities that unrealistic cycle flows are assigned even if the model has a 
solution.  With this problem in mind, we will develop methods for reducing / eliminating the 
cyclic flows in the subsequent sections. 
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2．Markov Chain Assignment based on Link-to-Link Transitions  
 

2.1. Markov Chain Assignment on a Line-Graph 

 The cycle flows that have the worst effect on the assignment flow pattern in practical 
applications are “U-turn” flows in a pair of opposite-directional links that connect the same 
node-pair.  For example, the network shown in Fig.2.1 can induce excessive U-turn flows that 
repeat going between links 4 and 6.  This kind of cycle flows, however, can be easily 
eliminated by using the concept of “line-graph” (for the definition, see, for example, 
WILSON(1985), TAKENAKA(1989) etc.).  

1

2

3

4o d
1

2

3

4

5

6

7

8

  

Fig. 2.1. An example network. 

 Let us consider a line-graph G*(N*, L*) of a given original network G(N, L): each node in 
N* has one-to-one correspondence to a link in L, and the nodes in N* are connected by links in L*  
if the corresponding links in L are adjoining.  Note here that the “U-turn” movement in G(N, L) 
corresponds to a movement between a pair of nodes in N*. Therefore, we construct L* 
eliminating the links that connect such node pairs in N*.  Then any assignment models on the 
graph G*(N*, L*), clearly, can not generate the “U-turn” flows.  Thus, by considering a Markov 
chain assignment on G*(N*, L*), we can obtain a link flow pattern explicitly avoiding the “U-turn” 
flows. 
 Fig.2.2 illustrates the line-graph G*(N*, L*) for the example network G(N, L) shown in 
Fig.2.1.  In the line-graph the nodes 4 and 6 are not mutually connected, and therefore, we see 
that the Markov chain assignment on G*(N*, L*) does not generate any cycle flows. 

1

2

3

4

6

7

8

5

 

Fig. 2.2. A line-graph. 

 It is worth a mention in passing that this technique can be used not only for eliminating the 
cycles but also for representing turn-restrictions due to traffic control policies: we have only to 
eliminate the appropriate links in the line-graph corresponding to the turn-restrictions.
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2.2. The Implementation of the Link based Markov Chain Assignment 

 In order to implement the idea above, we slightly modify the previous MCA model as 
follows.  Note first that a Markov chain on G*(N*, L*) corresponds to the Markov chain based 
on “link-to-link” transitions on G(N, L).  Hence, it is natural to consider a “link-to-link” 
impedance matrix instead of the “node-to-node” matrix in the previous MCA model.  Before 
giving the formal representation, we first classify the link set L into the following three subsets: 

 LO : the set of links emanating from origins, where the number of elements is g,  

 LD : the set of links entering into destinations, where the number of elements is s, 
 L : the set of the other links ( LO ∪ LD ∪ L =L ), where the number of elements is l . 

We then define the link-to-link impedance matrix with the following structure: 

     

              

 
 
 

s g

s
g

l

l

$ $
$ $

W W
W W

=

















0 0 0
0 0

0
1

2

       (2.1) 

where the following matrix notation is used:  
a) $W  is an l× l  matrix whose (a, b) component $Wab  is exp(?θ tb) if the movement from link 

a to link b is permitted [when the movement involves the junction delay, dab, it is also 
appropriate to define $Wab = exp(?θ (tb +dab))],  zero otherwise;  

b) $W1  is a g× l  matrix whose (o, a) component $Woa  is exp(?θ ta) if link o in LO is adjoining to 

link a in L , zero otherwise; 
c) $W2  is an l×s matrix whose (a, d) component $Wad  is 1  if link a in L is adjoining to link d 

in LD, zero otherwise.  

 The definition of the impedance matrix is designed such that the (a,b) component of $Wk  
yields the sum of exp(?θ Cr

ab ) over the k+1-walks paths between link-pair (a,b), where Cr
ab denotes 

the cost of r th path between link a and link b in G(N, L) excluding ta.  Accordingly, the Markov 
chain assignment based on the link-to-link transition probabilities defined by 

    Q b a W
V

Vab
bd

ad

( ) $
$

$
$

$

  =   ∀ ∈a b, L, $d ∈LD    (2.2) 

    $ exp[ ]$
$

$

V C
ad r

ad

r Rad

≡ −
∈ ∞

∑ θ   $d ∈LD      (2.3) 

yields the LOGIT type assignment.  The proof almost parallels the case of the node-to-node 
MCA model, and it is omitted here.  It also immediately follows that ˆ V = [ ˆ V ab ; ∀ ∈a b, L] can be 

obtained by 
     ˆ V = [I − ˆ W ]−1 ,        (2.4) 
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and that $V1 ≡ [ $
$Voa ;∀ ∈ ∀ ∈a L o, $ LO], $V2 ≡ [ ˆ V 

a ˆ d 
;∀ ∈ ∀ ∈a L d, $ LD], and $V3 ≡ [ $

$ $V
od

;∀ ∈$o LO, 

∀ ∈$d LD ] are, respectively, given by 

    $ $ $V W V1 1=  , $ $ $V V W2 2=   and  $ $ $ $V W V W3 1 2= .   (2.5) 

Finally, the formula for the link flow can be obtained by utilizing the fact that the link-choice 
probability means the node-choice probability in the line-graph.  That is, considering the 
correspondence to (1.9b) in the node-to-node MCA model,  we have the following formula for 
the flow on link a with OD pair od: 

    x q V V Va
od

od oa ad od
=  $ $ / $

$ $ $ $ ,   $o ∈LO, $d ∈LD.    (2.6) 

Thus, we can efficiently obtain the link flow pattern that is consistent with LOGIT model 
explicitly avoiding the “U-turn” flow. 
 It is expected in many practical applications that the modified MCA model can avoid the 
problem that the solution does not exist due to the excessive cycle flows.  Nevertheless, the 
model may not necessarily yields the satisfactory flow pattern,  since there still be a possibility 
that excessive flows are assigned on various possible cycles except “U-turn”.  In the next 
section we will further devise another method for mitigating the cycle flows.  
 
 

3． Markov Chain Assignment with Geometric Rotations 
 

3.1. Rotation-angles between Links 

 Conventional stochastic assignment models assign the flows to many paths by some criteria 
based on the one-dimensional factor “travel time”.  In contrast, various traffic surveys have 
reported that the share of “mazy” paths with many zigzaggings or turns are very small even if the 
travel times are moderate.  In light of this fact, it is reasonable to introduce not only the travel 
time but also the geometric factors into the path-choice model. 
 To develop such a model, consider first the 2-dimentional Euclid geometric space to 
represent the geographic position of nodes in a traffic network.  Then the links can be 
represented as vectors on 2-dimentional real number space R2.  In other word, we can regard a 
traffic network as a set of vectors on R2.  Using the vectors, we define the rotation-angle 
between mutually adjacent links a and b as follows: 

   ωab =

  

sgn(
r 
a ,

r 
b )⋅ cos −1

r 
a ⋅

r 
b 

r a  
r 
b 

 

 
 

 

 
 ,   0 ≤ω ab ≤ π ,    (3.1) 

where   
r 
a  is a vector representing link a on R2; and   sgn(

r 
a ,

r 
b ) = +1 if the movement from   

r 
a  to 
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r 
b  is right-handed turn, -1 otherwise (See Fig.3.1). 

r
a

r
bωab

+−

ωac

rc

 

Fig. 3.1. The rotation-angle between mutually adjacent links 

 
Then the total rotation-angle along r th path between OD pair od is naturally introduced as the 
sum of the absolute angles between adjoining links on the path: 

     Dr
od

ab r ab
od

a b

≡
∈

∑    
 

ω δ ,
( , ) Λ

，      (3.2a) 

where δr ab
od
,  is 1 if the mutually adjacent links a and b are on r th path between OD pair od, zero 

otherwise, Λ  is the set of link-pairs where the two links are mutually adjacent.  Similarly, the 
“net” total rotation-angle for the path is also defined as follows: 

     Er
od

ab r ab
od

a b

≡
∈

∑   
 

ω δ ,
( , ) Λ

.       (3.2b) 

 In addition, we define the rotation-angle between links that are not mutually adjacent. 
While the definition is basically the same as that for the mutually adjacent links, we should note 
the definition when two links are in a parallel position.  The angle between the parallel links a 
and b is defined as follows: 

  Step 1: add two virtual links between the links a and b so as to construct a cycle  (See 
Fig.3.2); 

  Step 2: if the cycle is right-handed   then ωab = π and  ωba = −π,  
      otherwise ωab = −π and  ωba = π. 
 
 

   
ra

r
b

   
ra

r
b

 

  Fig.3.2. (a) Right-handed link-pair.  (b) Left-handed link-pair. 
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3.2. LOGIT assignment with Geometric Rotations 

 To incorporate the geometric factors into the path-choice model, suppose that the 
systematic utility for the r th path between o and d, Ur

od, is represented as 

    Ur
od = −θ Cr

od − σ Dr
od ,        (3.3) 

whereσis a “sensitivity” parameter for the total rotation-angle.  Then, by assuming the error 

term of the utility function to be i.i.d Gumbel distribution, the probability that users choose r th 
path between OD pair od yields 

    P
C D

C Dr
od r

od
r
od

r
od

r
od

r Rod

=
− −

− −
∈ ∞

∑
exp[ ]

exp[ ]
θ σ

θ σ
  

  
=

∈ ∞

∑
    

  
A

A
r
od

r
od

r Rod

,    (3.4a) 

    A C Dr
od

r
od

r
od≡ − −exp[ ]θ σ   ,       (3.4b) 

and the resulting link flow pattern is given by 

    x q Pa
od

od r
od

r a
od

r Rod

=
∈ ∞

∑ δ , .        (3.5) 

 Since this model is basically a LOGIT model, we can construct the corresponding MCA.  
Unlike the previous MCA, we can expect that this MCA does not give rise to much cycle flows, 
since the paths with cycles have large negative utilities due to the rotation-angles. 
 The algorithm for this model is almost same with that for the previous MCA model.  The 
only difference is the slight modification of the link impedance matrix: the (a,b) component of the 
matrix is defined as 

    $ exp[ ]W tab b ab= − −θ σ ω  .       (3.6) 

The reason why this modification yields the LOGIT assignment model in (3.4a), (3.4b) and (3.5) 
can be easily understood from the fact that the (a,b) component of $Wk  yields the sum of 
exp( − −θ σ  C Dr

od
r
od ) over the k+1-walks paths between link-pair (a,b). 

 
 Thus, one may expect that the model combined with the technique in Section 2 greatly 
reduces cycle flows in many cases.  The model, however, does not achieve our purpose, since it 
still remains a possibility of generating unrealistic flow patterns.  For example, the model can 
not distinguish between a path with one cycle and a simple path with 4 rectangular turns, while 
almost all real users think the former path unreasonable.  Recall here that the model shown 
above did not utilize the net total rotation-angles Er

od defined in (3.2b) at all.  Interestingly, the 
exploitation of the Er

od gives us the innovative method to achieve the complete elimination of 
cycle flows, which will be presented in the next section. 
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4．Complete Elimination of Cycle Flows 
 

4.1. LOGIT type Route Choice Model without Cycles 

 In this section we will consider the method for obtaining the link flow pattern according to 
the following LOGIT model: 

   P
C D

C Dr
od r

od
r
od

r
od

r
od

r Rod

=
− −

− −
∈
∑
      

    
exp[ ]

exp[ ]
( )

θ σ
θ σ

0

=

∈
∑
    

  
A

A
r
od

r
od

r Rod ( )0

,    (4.1a) 

   x q Pa
od

od r
od

r a
od

r Rod

=
∈
∑ δ ,

( )0

,         (4.1b) 

where the Rod(0) is the set of simple paths between nodes o and d.  Note that the path set in (4.1), 
unlike the MCA model in Section 3, consists of the simple paths only; the cycle flows are 
explicitly eliminated.  The main focus here is, thus, to develop the method for achieving the 
complete elimination of cycle flows by exploiting the Er

ab introduced in the previous section. 
 Just as in the case of the previous MCA, the method presented in this section consists of the 
following two steps: 
  Step 1: Calculate the matrix $V  whose (a,b) component is defined as 

     $
( )

V Aab r
ab

r Rab
≡

∈
∑   

0
.        (4.2) 

  Step 2: Compute the link flows by 

     x q X Va
od

od a
od

od=  / $ ,       (4.3a) 

     X Aa
od

r
od

r a
od

r Rod

≡
∈
∑ δ ,

( )0

.       (4.3b) 

Before going into the detailed discussions on the steps above, we will first examine the basic 
properties of the net rotation-angle Er

ab in 4.2.  Making use of the properties, we then develop a 
novel method for achieving Step 1.  The considerations on the method is divided into two parts, 
which are presented in the subsequent sections 4.3 and 4.4, respectively.  Finally, the method 
for calculating the Xa

od in Step 2 is presented in 4.5. 
 
4.2. Basic Properties of the Path Rotation-angle 

 Let us consider the properties of the net rotation-angle defined in (3.2).  First, it is easily 
observed that the rotation-angle of a path between links a and b, Er

ab, is equal to −wba if the path 
contains no cycles.  For example, the path (a,b,c) in Fig.4.1 (a) contains no cycles, and the 
rotation-angle is Eac = ωab + ωbc = −ωca or Eac + ωca = 0.  Next, consider the cases where the 
path contains cycles. In the example of Fig.4.1 (b), the path (a,b,c,d,e) contains one left-handed 
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cycle, and the rotation-angle is Eae + ωea = ωab + ωbc + ωcd + ωde+ ωea = −2π.  Similarly, the 
path (a,b,c,d,b,c,d,e) has double left-handed cycles, and Eae + ωea = −4π.  Thus, we see that Er

ab 
+ wba =2mπ (m=±1,±2,...) for the paths with cycles, and that the value of Er

ab + wba can be a 

“detector” that shows whether the path contains cycles or not.  Note, however, that there is a 
particular case that the Er

ab + wba can be zero even if the path contains cycles: when we consider 
the path where the number of right-handed cycles, NR , is equal to that of left-handed cycles, NL , 
the Er

ab + wba yields zero since the rotation-angles for the respective cycles mutually cancel. 

  

ra

rc

rc

r
b

ωab

ωbc

ωca

  

ra

r
b

r
c

r
d

r
e

r
e

ωea

ωbc

ωcd

 
  Fig. 4.1. (a) Path (a,b,c)     (b) Path (a,b,c,d,e) 

 To give the formal representation of these properties, we denote by Rk
ab  the set of k-walks 

paths between links a and b (paths from link a to link b consisting of k links).  The path set can 
be classified into the following three subsets: 

 Rk
ab ( )0 : the subset of Rk

ab , which consists of the only paths containing no cycles, 

 Rk
ab ( )1 : the subset of Rk

ab , which consists of the paths such that NR ≠ NL, 

 Rk
ab ( )2 : the subset of Rk

ab , which consists of the paths such that NR =NL ≠ 0. 

Similarly, we also classify the set of paths between links a and b, Rab, into three subsets:  

 Rab(m) ≡ ∪
=

∞

k
Rk

ab m
1

( )  for m=0,1, and 2. 

Then, the path rotation-angle satisfies the following: 

  E

r R

m m r R

r R
r
ab

ba

ab

ab

ab

+ =

∈

= ± ± ∈

∈









ω π

  0                                      

           

  0                                      

   

( )

( , ,... ) ( )

( )

0

2 1 2 1

2

    

( . )

( . )
( . )

4 4

4 4
4 4

a

b
c

 

 In the subsequent secction 4.3, we first consider the method for calculating the sum of Ar
ab 

for the path set Rab(0)∪Rab(2) (i.e. we eliminate the sum for Rab(1)); and then we proceed to the 
method to further exclude the path set Rab(2) as well as Rab(1) in section 4.4. 
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4.3. Elimination of the Path Set R(1)   

 Suppose for the moment that the path set Rod(2) is excluded from Rod by an appropriate 
method: we assume that Rod = Rod(0) ∪ Rod(1).  Then, the $Vod  defined in (4.2) can be 

re-written as follows:  

    $
( )

V Aod r
od

r Rod
=

∈
∑   

0
 =   δ ω( )E Ar

od
do r

od

r Rod
+ ⋅

∈
∑ ,    (4.5a) 

where δ
π

( )
. .

z
  if  z 0

otherwise i e z = 2m m= 1, 2,...
≡

=
± ±





1
0

    
         (     ,   )

 
.
    (4.5b) 

Recall here the Fourier series expansion of Dirac’s delta-function: 

    δ
π

( ) cosz
T T

n
T

z
n

= +






=

∞

∑1 2 2

1

  

        =






=−∞

∞

∑1 2
T

i
n
T

z
n

exp   
π

 for − ≤ ≤T z T/ /2 2 ,   (4.6) 

where i denotes an imaginary unit.  From (4.5) and (4.6), we see that $Vod  is represented by the 

(complex) exponential function, which can be decomposed into link variables.  Thus, if we 
construct the MCA model based on the appropriate impedance matrix that is consistent with (4.6), 
the sum of  Ar

ab for Rab(1) would naturally be eliminated.  The procedure presented below is, 
in essence, the realization of this idea. 
 Let ˆ W (n, N)  be the “complex impedance” matrix with the following (a, b) component: 

  $ exp[ ]( , )W t i
n
Nab b ab abn N = − − +θ σ ω ω   = Wab Yab(n,N)    (4.7) 

where W tab b ab≡ − −exp[ ]θ σ ω  ,Y i
n
Nab abn N( , ) exp[ ]≡ ω , and (n,N) are the integers satisfying 

1 ≤ n ≤ N .  Then, the (a, b) component of the k th power of the matrix, ˆ W ab (n,N )k , yields 

  $ exp[ ]( , )W A i E
n
Nab r

ab

k
ab

r
abn N k

r R
=

∈ +

∑   
1

,       (4.8) 

where Rk +1
ab  is the set of k+1-walks paths between links a and b.  Therefore, it immediately 

follows from (4.4a) and (4.4c) that 

 

$ exp[ ( ) ]

exp[ ( ) ]

( , ) ( , )

( ) ( ) ( )

W Y A i E
n
N

A A A i E
n
N

ab ba r
ab

k
ab

r
ab

ba

r
ab

k
ab

r
ab

k
ab

r
ab

k
ab

r
ab

ba

n N k n N
r R

r R r R r R

    

    

 

   

= +

= + + +

∈ +

∈ + ∈ + ∈ +

∑

∑ ∑ ∑
1

1 1 10 2 1

ω

ω
 
.
 (4.9) 
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 The present subject here is to eliminate the third term of the r.h.s. of (4.9), which leads us 
to exclude the summation with respect to the path set Rab(1) in the calculation of $V .  In order to 
construct the elimination method, recall the fact that the value of Er

ab + ω ba in the third term must 
be 2mπ , (m =±1,2,...).  Considering this property and the (4.6), we have 

   
1

1
1

11N
A i E

n
N

Ar
ab

k
ab

r
ab

ba
n

N

r
ab

k
abr R r R N

   
 
 

 
 ∈ +

= ∈ +

∑∑ ∑+ =
( ) ( )

exp[ ( ) ]ω ,    (4.10) 

where Rk +1
ab (N) is the subset of Rk +1

ab (1) such that Er
ab + ω ba = (2Nπ )× l , ( l =±1,±2,...).  

 Table 4.1 shows the simple numerical example for (4.10) when there is only a single route, 
N = 3, and Ar

ab=1.  The number in each cell denotes the value of 

   Re(exp[ i z
n
N

]) = COS ( z
n
N

 ) = COS (2 mπ
n
N

),  

where zαEr
ab + ω ba,  and the rows and the columns correspond to n = 1,2,3 and m = 1,2,..., 

respectively.  The final row denotes the Σn COS (z n/N)) for z = 2mπ  (m =0,1,2,...).  As seen in 
the table, the Σn COS (z n/N)) yields zero, except the cases where z = (2Nπ )× l = 0, 6π, 12π,....  
Thus, the r.h.s. of the (4.10) reduces to the sum over the paths such that Er

ab + ω ba = (2Nπ )× l . 

  Table 4.1.  The numerical example of (4.10):  
  COS (z n/N) and Σn COS (z n/N)  for  zαEr

ab + ω ba =2 mπ  (m =0,1,2,...). 

n 
↓ 

      m  → 
zαEr

ab + ω ba → 
0 
0 

1 
2π 

2 
4π 

3 
6π 

4 
8π 

5 
10π 

6 
12π 

... 

1 COS ( z / 3) → 1.0 -0.5 -0.5 1.0 -0.5 -0.5 1.0 ... 
2 COS (2z / 3) → 1.0 -0.5 -0.5 1.0 -0.5 -0.5 1.0 ... 
3 COS (3z / 3) → 1.0  1.0  1.0 1.0  1.0  1.0 1.0 ... 

  Sum. 3.0 0.000 0.000 3.0 0.000 0.000 3.0 ... 

 
 Note that the period (of z) that Σn COS (z n/N)) takes non-zero value grows as we increase N.  
Hence, by letting N be infinity in (4.10), we can eliminate the summation for the Rk +1

ab (1): 

  lim
N→∞

1
N

 Ar
ab

r∈R k+1
 ab (1)

∑ exp[i (E r
ab + ωba )

n
N

]
n=1

N

∑
 

 
  

 

 
 = 0 .     (4.11) 

Combining (4.9) and (4.11), we have 

  lim
N→∞

1
N

Wab(n,N)k  Yba (n, N)
n=1

N

∑
 

 
 

 

 
 = Ar

ab

r∈ R k +1
 ab (0)

∑ + Ar
ab

r∈ R k+1
 ab (2)

∑ ,    (4.12) 

and furthermore, summing up (4.12) for k=1,2,..., gives us 
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  lim ( , ) ( , )
( ) ( )N

k

r R r R
N

W n N Y n N A Aab ba

n

N

k

r
ab

ab
r
ab

ab→∞ ∈ ∈==

∞

∑∑ ∑ ∑










 = +

1

11 0 2

 
    

. 

Namely, the sum of Ar
ab for the path set Rab(0)∪Rab(2) (i.e. the path set where the Rab(1) is 

excluded) is given by the (a, b) component of the following matrix: 

  lim
N N→∞

1 ( )I Y∗ ∗ ∗+ + +
=

∑ ( , ) ( , ) ( , ) ( , ) ( , )$ $n N n N n N n N n NT T T

n

N

W Y W Y   
2

1

L  

     = lim
N N→∞

1 ( )[I W ] Y− − ∗
=

∑ $ ( , ) ( , )n N n N T

n

N
1

1

,       (4.13) 

where X∗ Y≡the component-wise multiplication of matrices X=[Xab] and Y=[Yab] (=the matrix 
whose (a,b) component is XabYab), Y(n,N)≡the matrix whose (a,b) component is Yab(n,N). 
 
4.4. Elimination of the Path Set R(2)  

  Let us extend the previous method so as to eliminate the path set Rab(2) as well as Rab(1). 
Suppose now that the set of k-walks paths containing no cycles,{Rk

ab (0)  ∀(a,b)}, is given.  

Then we can construct the k+1-walks paths by adding only one link to the paths in 
{Rk

ab (0)  ∀(a,b)}. We denote the set of the k+1-walks paths by { ˜ R k+1
ab (0)  ∀(a,b)}.  Clearly, the 

number of cycles contained in each k+1- walks path in { ˜ R k+1
ab (0)  ∀(a,b)} is at most one.  

Hence,  the following holds for the paths in { ˜ R k+1
ab (0)  ∀(a,b)}: 

   Er
ab +ωba = 0   if the path contains no cycles,   (4.14a) 

   Er
ab +ωba = ±2π   otherwise.       (4.14b) 

Consequently, if the path set in the summation in (4.8) was not Rk +1
ab  but ˜ R k +1

ab (0) , (4.12) would 
have reduced to the summation with respect to the only path set Rk +1

ab (0) (i.e. the terms for 

Rk +1
ab (2) as well as Rk +1

ab (1) vanishes). Besides, since    Er
ab

ba+ ≤ω π2 for the path set ˜ R k +1
ab (0) , 

it is not required to let N in (4.12) be infinity: setting N=2 is enough for eliminating the cycles.  
 The idea above can be stated more formally as follows. Given the k-walks path set 
{Rk

ab (0)  ∀(a,b)}, define a matrix ˆ W (n,N )[k − 1]  whose (a,b) component is 

   $ exp[ ] $( , ) ( , )[ ]

( ) ( )

W A iE
n
N

Aab r
ab

r
ab

k
ab

r
ab

k
ab

n N n Nk

r R r R

− ≡ =
∈ ∈

∑ ∑1

0 0

 ,   (4.15) 

where $ exp[ ]( , )A A i E
n
Nr

ab
r
ab

r
abn N ≡  . Then, the (a, b) component of $ $( ,2) ( ,2)[ ]W Wn nk−1  yields 

    
  

$ $( ,2) ( ,2)[ ]

( )

W Wap pb
A a

n nk

p

−

∈
∑ =1 $ ( , )

~
( )

Ar
ab

k
ab

n
r R

2

1 0∈ +

∑ ,     (4.16) 
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where A(a) denotes the set of links emanating from the end-node of link a (Note that the 
$ $( ,2) ( ,2)[ ]W Wn nk−1  is not equal to the $ ( ,2)W n k  nor the $ ( ,2)[ ]W n k  while it plays a similar roll 

with the $ ( ,2)W n k  in (4.12)).  Applying the same argument as (4.12) to (4.16), we see that the 
sum of Ar

ab for the path set Rk +1
ab (0) is given by the (a,b) component of the following matrix: 

   ( )~ $ $[ ] [ ]( ,2) ( ,2) ( ,2)W W W Yk k

n
n n n T≡ ∗−

=
∑1

2
1

1

2

.     (4.17) 

Since the $Vab  in (4.2) is defined as the sum of Ar
ab for the path set Rab(0) = ∪

=

∞

k
k
abR

1
(0), the matrix 

$V  with the component $Vab  can be obtained by simply summing up (4.17) with respect to k.  In 

addition, considering the fact that the number of links contained in the path without no cycles is at 
most l  (=the number of links in L), we have 

   $ ~ ~ ~ ~[ ] [ ] [ ] [ ]V I W W W  W= + + + + =−

=

−

∑1 2 1

0

1

L l
l

k

k
,     (4.18) 

where ˜ W [0] ≡ I  (a unit matrix).  
 We showed thus far the method for obtaining $V  when the path set {Rk

ab (0)  ∀(a,b)} or 

the matrix $ ( ,2)[ ]W n k − 1  are given in calculating ~
( ,2)[ ]W n k .  In the following, we consider the 

method for obtaining the matrix $ ( ,2)[ ]W n k − 1  such that  it works successively in ascending 

order of k : first, we set $ : $( ,2)[ ] ( ,2)W W n n1 =  for k=1;  and then, for each k≧2, we calculate 

the matrix $ ( ,2)[ ]W n k  using the $ ( ,2)[ ]W n k − 1  previously obtained.  Thus, the present subject is 

to constitute the appropriate formula for the successive calculation for k≧2. 
 To find the formula, let us first compare the definition of $ ( ,2)[ ]W n k  and the 
$ $( ,2) ( ,2)[ ]W Wn nk−1 :  the (a,b) component of $ $( ,2) ( ,2)[ ]W Wn nk−1  is given by (4.16), and that of 
$ ( ,2)[ ]W n k  is defined as 

   $ $( ,2) ( ,2)[ ]

( )

W Aab r
ab

k
ab

n nk

r R

≡
∈ +

∑
1 0

.        (4.15’) 

Note here that the set ~Rk
ab
+1 (0) in (4.16) can be classified into two subsets Rk

ab
+1 (0) and ~Rk

ab
+1 (1): 

   ~Rk
ab
+1 (0) =

~Rk
ab
+1 (1) ∪ Rk

ab
+1 (0)  and ~Rk

ab
+1 (1) ∩ Rk

ab
+1 (0) = ∅ , 

where the path set ~Rk
ab
+1 (1) is defined as ~Rk

ab
+1 (0) ∩ Rk

ab
+1 (1) (see Fig.4.2).  Thus it follows that 

  
  

$ $( ,2) ( ,2)[ ]

( )

W Wap pb
A a

n nk

p

−

∈
∑ −1 $ $ $( , ) ( , ) ( , )[ ]

( ) ( )
~

W A Aab r
ab

k
ab

r
ab

k
ab

n n nk

r R r R

2 2 2

1 10 0

= −
∈ + ∈ +

∑ ∑  

          =
∈ +

∑ $ ( , )
~

( )

Ar
ab

k
ab

n
r R

2

1 1

     (4.19) 
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R k+1

ab

R k+1
ab (1)

R̃ k+1
ab (1)

R̃ k+1
ab (0)

R k+1
ab (0)

R k+1
ab (2)

 

Fig. 4.2. The classification of k+1-walks paths. 

Therefore, given a matrix Z(n,2)
[k]

 whose (a,b) component is defined as 

   Zab(n,2)
[k] ≡

∈ +

∑ $
~

( )

( ,2)Ar
ab

k
abr R

n

1 1

,        (4.20) 

we have the following successive equation for calculating $ ( ,2)[ ]W n k  in ascending order of k: 

   $ : $ $( ,2) ( ,2) ( ,2) ( ,2)[ ] [ ] [ ]W W W Z n n n nk k k= −−1 .     (4.21) 

 The Zab(n,2)
[k]

 can be calculated without explicitly dealing with path variables, while the 
definition in (4.20) is represented by the summation with respect to the path set ~Rk

ab
+1 (1). Recall 

now the particular property for ~Rk
ab
+1 (1): if the k+1-walks path a →  ･･･ →  p →  b belongs to ~Rk

ab
+1 (1),  

   ˆ W ap(n,2)[ k−1] ˆ W pb (n,2) Yba (n,2)
n=1

2

∑ = 0 .      (4.22) 

For the concrete example, consider two 5-walks paths between links a and b as shown in Fig.4.3. 
The path a →  ･･･ →  p →  b belongs to ~R ab

5 (1) , where we can examine that (4.22) holds. On the other 
hand, for another path (a →  ･･･ →  q →  b) that belong to R ab

5 (0), it is easily seen that (4.22) does 

not hold. 
 

p

q

a

b

 

Fig. 4.3. Example network to consider (4.22). 
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 From this property, the Zab(n,2)
[k]

 is, clearly, computed by 

   Zab(n,2)
[k]

 :=  
  

$ $( ,2) ( ,2)[ ]W Wap pbn nk

p ab

−

∈

∑ 1

Ψ

,      (4.23) 

where Ψab  is the set of links {p} such that (4.22) hold.  Thus, the $ ( ,2)[ ]W n k  can be 

successively obtained in ascending order of k  by the formula (4.21)-(4.23). 

 
4.5. Calculation of Link Flows  

  We are now in a position to discuss the method for obtaining the link flows.  For the 
calculation we can not use the formula for the MCA model presented in Section 2: 

    x q V V Va
od

od oa ad od=  $ $ / $ ,   o ∈LO, d ∈LD.    (2.6) 

The reason is that the denominator of (2.6) contains the term for the paths with cycles. More 
specifically, the multiplication of $Voa  and $Vad  yields 

    $ $
( ) ( )

V V A A Aoa ad r
oa

r
ad

r
od

r R r R r Roa ad
a
od

=

















 =

∈ ∈ ∈
∑ ∑ ∑

0 0

,    (4.24) 

where Ra
od  is the set of paths in which each path is constructed by connecting the following two 

kinds of paths: the paths between links o and a in Roa(0), and the paths between links a and d in 
Rad(0).  Note that the path (o→ ･･･ → a→ ･･･ → d) in Ra

od  can contain cycles, even if both the 

paths (o→ ･･･ → a) and (a→ ･･･ → d) contain no cycles (for the simple example, see Fig. 4.4).  
Therefore, we must replace the $ $V Voa ad  in (2.6) with the variable Xa

od defined as  

    X A Aa
od

r
od

r a
od

r R
r
od

r Rod
a
od

≡ =
∈ ∈
∑ ∑δ ,

( ) ( )0 0

,      (4.25) 

where Ra
od (0) denotes the subset of Ra

od  whose elements are restricted to the simple paths. 

 
a

o
d

 

Fig. 4.4. The path (o→ ･･･ → a→ ･･･ → d) containing a cycle. 
 
 To consider the method for calculating the Xa

od, we first classify the set Ra
od (0) by the 

number of links contained in the paths; we denote by Ra
od (0: j+k ) the set of the simple paths 

between o and d where each path is constructed by connecting the following two kinds of paths: 
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the j-walks paths between o and a, and the k-walks paths between a and d.  Corresponding to 
this classification, we define X a

od j k [ ]+  as the sum of Ar
od for the paths in Ra

od (0: j+k ): 

    X Aa
od j k

r
od

r R j ka
od

     [ ]

( : )

+

∈ +

≡ ∑
0

.       (4.26) 

Clearly, 

            X Xa
od

a
od j k

k

j

j

= +

=

−

=
∑∑  [ ]

11

ll

.        (4.27) 

In precisely the same fashion, we also classify the path set Ra
od , and we denote by Ra

od (j+k) the 
subset corresponding to the subset Ra

od (0: j+k ) for the set Ra
od (0). 

 The key to calculate the X a
od j k [ ]+  is the fact that the number of cycles contained in any 

paths in Ra
od (j+k ) is at most one.  From this fact, we see that the sum of Ar

od for the paths 
in Ra

od (0: j+k ), X a
od j k [ ]+ , can be obtained by subtracting the terms such that Er

ab +ωba = ±2π  
from the sum for the paths in Ra

od (j+k ).  Hence, by applying the similar method as shown in 4.4, 

we obtain 

   ( )X W W Ya
od j k

oa
j

ad
k

do
n

n n n [ ] [ ] [ ]$ $( ,2) ( ,2) ( ,2)+

=

= ∑1
2 1

2

.     (4.28) 

Substituting this into (4.27),  we have 

   X a
od ( )=







==

−

=
∑∑∑1

2 1

2

11

$ $( ,2) ( ,2) ( ,2)[ ] [ ]W W Yoa
j

ad
k

do
nk

j

j

n n n
ll

 

       =
===

∑∑∑1
2 111

2

Y W Wdo oa
j

ad
k

kjn

n n n( ,2) ( ,2) ( ,2)$ $[ ] [ ]
ll

 

       =
=

∑1
2 1

2

Y V Vdo oa ad
n

n n n( ,2) ( ,2) ( ,2)
~ ~

  ,
      

(4.29) 

where  

    ~ $( ,2) ( ,2)[ ]V Wab ab
k

k

n n≡
=

∑
1

l

.       (4.30) 

 As shown in Section 4.4, the $ ( ,2)[ ]Wab
kn  can be computed in ascending order of k, and 

therefore, the ~
( ,2)Vab n in (4.29) also can be easily obtained.  Thus, we see that the link flows 

can be calculated by the following formula: 

  x q V V Y Va
od

od oa ad
n

do odn n n=
=

∑1
2 1

2

   
~ ~ / $( ,2) ( ,2) ( ,2) ,  o ∈LO, d ∈LD.   (4.31) 
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5．Extension to the Stochastic Equilibrium Model 
  

 In this section we first discuss the implementation issues of the model presented in the 
previous section, and then we extend the model and algorithm to the flow dependent case.  
 
5.1. The Outline of the Assignment Algorithm 

 The considerations for the assignment over a path set R(0) so far can be summarized as the 
following algorithm: 

Step 0: Initialization 

 for  each (a,b) in L × L do begin 
  $ :Vab = 0 ;  

~ :[ ]Wab
1 0 = ; 

  for  n = 1 to 2 do begin 

   Yab(n) := exp[i ωab / n]; $ : exp[ ]( )[ ]W tab b abn 1   = − −θ σ ω Yab(n) ;    (5.1) 

  end 
 end; 

Step 1: Calculation of Matrix [ $Vab ] 

 for k = 2 to l  do begin 
  for each (a,b) in L × L do begin 

   $ ( )[ ]Wab
k1 := 0; $ ( ) [ ]Wab

k2 := 0; 
~[ ]Wab

k  := 0; 

   for each p in A(a) do begin 
    X := 0;  
    for  n = 1 to 2 do begin 

     wp(n) := $ ( )[ ]Wap
kn −1 $ ( ) [ ]Wpb n 1  ; X := X + wp(n) Yba(n)   (5.2) 

    end; 

    for n = 1 to 2 do  if X ≠ 0 then  $ ( )[ ]Wab
kn  := $ ( )[ ]Wab

kn  + wp(n)  (5.3) 

   end; 
   for each q in A(a) do for n = 1 to 2 do 

~[ ]Wab
k  := 

~[ ]Wab
k  + wq(n)Ybq(n) ;  (5.4) 

   $Vab  := $Vab  + 
~[ ]Wab

k  / 2;            (5.5) 

   for n = 1 to 2 do 
~Vab (n) := 

~Vab (n) + $ ( )[ ]Wab
kn        (5.6) 

  end 
 end; 

Step 2: Calculation of Link Flows by OD-pairs 

 for each (o,d) in LO × LD do  

   for each a in L do xa
od :=

1
2 1

2

q V n V n Y n Vod oa ad do od
n

    ~ ( ) ~ ( ) ( ) $
=

∑ ;     (5.7) 
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5.2. Some Improvement of the Algorithm 

 In 5.1, we showed only a prototype of the algorithm. For the practical applications, however, 
the algorithm should be improved from the view point of both the required storage and the 
computational effort.  First, we do not have to store $ ( )[ ]W n ab

k  or ~[ ]Wab
k  for all k : obviously, 

only the temporal ~[ ]Wab
k  should be stored.  Secondly, it is expected in many cases that we can 

truncate the algorithm before k reaches l , since the maximum number of links contained in any 
simple paths in practical networks is usually much smaller than l .  Finally, it is not necessarily 
required for the calculation of {xij

od} to store { $Vab ∀ ∈ ×( , )a b L L}; storing { $Voa ∀ ∈ ∀ ∈a L o LO, } and 

{ $Vad ∀ ∈ ∀ ∈a L d LD, } is advantageous from the view point of the required storage.  From these 

considerations, the steps 1 and 2 in 5.1 can be modified as follows:  

Step 1 (a): Calculation of Matrix [ $Voa ] for each origin o 
 for each o in LO do begin  flag := 1; 
 while flag = 1 do begin  flag := 0; 
  for each a in L do begin  Wa(1) := 0;  Wa(2) := 0;  Z :=0; 
   for each p in A(a) do begin  X := 0;  
    for n = 1 to 2 do begin 

     wp(n) := Wp(n) $ ( )[ ]Wpa n 1
 ; X := X + wp(n) Ypa(n)     (5.2a) 

    end; 
    for n = 1 to 2 do  if X ≠ 0 then  Wa(n) := Wa(n) + wp(n)    (5.3a) 
   end; 
   for each q in A(a) do for n = 1 to 2 do  Z := Z + wq(n)Yqo(n) ;    (5.4a) 
   $Voa  := $Voa  + Z / 2 ; if  Z ≠ 0 then  flag := 1; 

   for n = 1 to 2 do 
~Voa (n) := 

~Voa (n) + Wa(n)        (5.6a) 
  end 
 end 
 end; 

Step 1 (b): Calculation of Matrix [ $Vad ] for each destination d 
 for each d in LD do begin  flag := 1; 
 while flag = 1 do begin  flag := 0; 
  for each a in L do begin  Wa(1) := 0;  Wa(2) := 0;  Z :=0; 
   for each p in A(a) do begin  X := 0;  
    for n = 1 to 2 do begin 

     wp(n) := $ ( )[ ]Wap n 1 Wp(n) ; X := X + wp(n) Ypa(n)     (5.2b) 

    end; 
    for n = 1 to 2 do  if X ≠ 0 then  Wa(n) := Wa(n) + wp(n)    (5.3b) 
   end; 
   for each q in A(a) do for n = 1 to 2 do  Z := Z + wq(n)Ydq(n) ;    (5.4b) 

   $Vad  := $Vad  + Z / 2 ; if  Z ≠ 0 then  flag := 1; 

   for n = 1 to 2 do 
~Vad (n) := 

~Vad (n) + Wa(n)        (5.6b) 
  end 
 end 
 end; 
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Step 2: Calculation of Link Flows by OD-pairs 

 for each (o,d) in LO × LD do begin 

 $Vod  := $Vad  ,where a is a link connected with link o; 

  for each a in L do xa
od :=

1
2 1

2

q V n V n Y n Vod oa ad do od
n

    ~ ( ) ~ ( ) ( ) $
=

∑ ;      (5.7) 

 end; 

 

5.3.Extension to the Flow Dependent (Equilibrium) Case 

 We can extend the model to the flow dependent case (i.e. stochastic equilibrium model) 
where the link travel time is given by ta = ta(xa).  The simple strategy for developing the 
algorithm is to employ the method of successive averages (cf. POWELL and SHEFFI (1982), 
SHEFFI and POWELL(1982)).  It can be summarized as follows:  

Step 0: Initialization 
(a) Set iteration counter:  k := 1. 
(b) Find an initial feasible link flow pattern {xa

(1)}. 

Step 1: Direction Finding 
(a) Set the link cost vector t(k) :  ta

(k) := ta(xa
(k))  ∀ ∈a L    

(b) Calculate the auxiliary link flow pattern {ya
(k)} by the stochastic assignment for the 

fixed link cost pattern {ta
(k)}. 

(c) Set the direction vector d(k) :  da
(k) := ya

(k) − xa
(k) ∀ ∈a L    

Step 2: Link Flow Update 
  Update the link flow pattern x(k+1) : xa 

(k+1) := xa
(k) +α (k) da

(k) ∀ ∈a L , 
  where α (k) is a real number such that 

   0<α (k) <1, α ( )k

k

= +∞
=

∞

∑
1

, and ( )( )α k

k

2

1

< ∞
=

∞

∑ . 

Step 3: Convergence Test 
  If appropriate convergence criteria are satisfied then stop;  
  otherwise set k := k +1 and go to Step 1. 

 Obviously, Step 1(b) can be efficiently accomplished by the procedure presented in 5.2.  It 
is noteworthy that we can not guarantee the convergence if we employ the Dial’s algorithm 
instead of our procedure.  The reason is that the path set generated by the Dial’s algorithm 
varies between iterations due to the updating of the link cost pattern, which prevents us to 
guarantee the closedness (see ZANGWILL (1969)) of the algorithmic mapping.  On the other hand, 
our procedure does not suffer from such troubles, since the path set is fixed whatever link cost 
patterns.  Thus, we obtained the algorithm that is guaranteed to converge to the stochastic 
equilibrium flow pattern. 
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 For the development of more efficient algorithms, it is convenient to exploit the equivalent 
optimization problem for the model.  Conventionally, the problem of FISK(1980) is well known 
as the equivalent programming for a standard stochastic equilibrium assignment, and therefore, 
we may construct the similar the programming for our model.  Such an approach, however, can 
not exploit the programming as the convenient tool for developing efficient algorithms.  The 
reason is that the objective function is hard to evaluate due to the explicit inclusion of path flows 
as in the Fisk’s problem.  Thus, it is natural to seek for a more convenient programming that is 
formulated by only link variables.  For the assignment model shown in Section 1, AKAMATSU 
(1996b,c) showed the following link-based equivalent problem: 
 

[P1]  min. ln lnt x x x y ya a
a L

a
o

a
o

a L
k
o

k
o

k No O∈ ∈ ∈∈
∑ ∑ ∑∑+ −







1
θ

        (5.8) 

  subject to 
    x xa a

o

o O

=
∈
∑      ∀ ∈a L        (5.9) 

    y xk
o

a
o

a In k
=

∈
∑    

( )
    ∀ ∈k N , ∀ ∈o O     

 (5.10) 

    x x qa
o

a In k
a
o

a Out k
ok

∈ ∈
∑ ∑− − =

( ) ( )
0   ∀ ∈k N , k o≠ , ∀ ∈o O   

 (5.11) 

    xa
o ≥ 0       ∀ ∈a L ,   ∀ ∈o O     

 (5.12) 

where In(k) denotes the set of links entering into node k, and Out(k) the set of links emanating 
from node k.  He also showed that the flow dependent case yields 

[P2]  min. ln ln( )t d x x y ya

a

a L
a
o

a
o

a L
k
o

k
o

k No O

x
ω ω

θ
+ −







∫∑ ∑ ∑∑

∈ ∈ ∈∈

1
0 

 
     

 (5.13) 
  subject to (5.9)-(5-12). 

Similarly, we see that the flow dependent version of the model in Section 3 is equivalent to the 
following problem: 

[P3]  min. ln ln( )
( )

t d x x x y ya ab
b A aa L

a

a

a L
a
o

a
o

a L
k
o

k
o

k No O

x
ω ω ω

θ
+ + −





∈∈∈ ∈ ∈∈

∑∑∫∑ ∑ ∑∑   
 

 1
0

  

 (5.14) 
  subject to (5.9)-(5-12). 

 As for the model in Section 4, however, finding the equivalent programming is not a trivial 
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problem. A naive conjecture is that the programming [P3] is equivalent if we regard that the 
feasible region constituted by (5.9)-(5.12) includes no cycles.  Although the conjecture is simple, 
the proof seems to be somewhat difficult.  Regrettably, I must confess that I have not yet 
obtained the clear answer to this problem, and it still remains to be studied. 
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6．Conclusions and Future Research 
  

 In this paper we have developed the efficient method for the LOGIT based stochastic 
(equilibrium) assignment model whose path set consists of only simple paths without any 
restrictions.  To achieve the purpose, the novel technique that represents the network structure 
by means of the complex “impedance” (adjacency) matrices was introduced.  The technique 
combined with the Markov chain assignment (originally developed by SASAKI (1965), BELL (1995) 
and AKAMATSU (1996a)) enabled us to completely eliminate the cycle flows from the path set for 
the assignment  without explicit path enumeration. 
 
 For the future research opportunity, it may be interesting to explore the applications of the 
technique to various other problems in the graph / network theory.  The reason why we suggest 
the exploration is that the technique is fairly natural from the mathematical view point.  As is 
well known, almost all the contents of the basic graph theory parallels the linear algebra.  For 
example, the various graph / network problems called “path problem” have the same algebraic 
structure with the system of linear equations (see, for example, CARRE (1979), TAKENAKA (1989) 
etc.).  Recall here that one of the most significant properties of the linear mapping is 
“enlargement and rotation”.  Obviously, it is essential to analyze the property in not a real 
number space but a complex number space.  Nevertheless, the mathematical means to represent / 
analyze the graph structure in the conventional graph theory have been restricted to the real 
number matrices such as incidence matrices or adjacency matrices with zero / one elements; the 
“rotation” seems to have been neglected in the theory while the “enlargement” has the 
correspondence in the theory.  Thus, there seems to be some significant problems that are natural 
to be analyzed in complex number space; the classification of graphs by means of the spectra of 
the adjacency matrices (see, for example, CVETKOVIC et al. (1978), TAKENAKA (1989) etc.) is such 
an example that can be meaningfully extended to the complex case. 
 
 For another important future research, we should mention the exploration of the equivalent 
programming problem for the LOGIT based stochastic assignment whose path set consists of 
only simple paths.  While the derivation of the path-based problem is very easy,  the 
link-based problem is an open question at present.  The link-based programming is 
indispensable for the development of the efficient algorithms for the flow dependent case (i.e. the 
Stochastic User Equilibrium assignment), and therefore, the construction of the programming is an 
important problem to be solved.  We hope this study gives the foundation for the construction. 
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