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The purpose of this paper is to develop the LOGIT type stochastic (equilibrium)

assignment that satisfies three requirements: first, the path set for the loading

should be defined by the simple paths without any restrictions, which do not

depend on the travel cost pattern; secondly, the model should give small

probabilities for the paths with mazy structure, while the number of paths
defined by the first requirement itself is enormous; and finally, the model should
be efficiently computable even in large scale networks.  To achieve the purpose,
we employ two strategies: first, we incorporate not only the conventional travel

times but also the geometric attributes of paths into the model; and secondly, we
construct the algorithm making fully use of the Markov property of LOGIT model.
The incorporation of the geometric aspects into the model is not only natural to
satisfy the second requirement but also effectively utilized to achieve the first

requirement. Moreover, the strategy combined with the Markov chain theory

enables the model to inherit the computational efficiency of Markov Chain
Assignment (MCA) developed by Sasaki (1965), BELL (1995) and AKAMATSU
(1996a). This property stems from the fact that the new model can be regarded
as a mathematically natural extension of MCA: the conventional MCA reduces to
a system of linear equations in real number space; and the new assignment
model yields the almost same form of linear equations in complex number space.
Finally, an algorithm for the flow dependent case (i.e. stochastic equilibrium

case) is also presented by extending the results for the flow independent model.

How we should define the path set for the traffic assignment is an open problem yet to be studied
despite the long research history. In deterministic (Wardrop) equilibrium model, we do not
have to explicitly realize the problem, since the deterministic model assigns the flows only to the
shortest paths.  However, when once we realize the fact that not only the shortest paths but also
the other various paths are chosen by usersin real traffic networks, we can not escape from this
problem. To date, various stochastic (equilibrium) assignment models (e.g. Sasaki (1965),
VON FALKENHAUSEN (1966), BURRELL (1967), DiaL (1971), ToBIN (1977), DAGANzO and



SHEFFI  (1977), Fisk (1980), SHerri and Dacanzo (1980), Dacanzo (1982,1983),
MIRCHANDANI and SorousH (1987), AKAMATSU (1989,1990, 1996a), BELL (1995), etc.) have
tackled this problem. These models, either explicitly or implicitly, decide the set of paths for
assigning flows by a priori criteria, and then the route-choice probabilities are calculated over
the path set.

Conventionally, some criteria for defining the path set have been employed. The smple
and natural one isto define all the ssimple paths (i.e. the paths that do not traverse any links more
than once), Ps, as the path set for the assignment. To the author’s knowledge, however, no
efficient algorithm for generating the flow pattern that completely satisfies this definition has been
developed. This difficulty is mainly caused by the fact that the path enumeration is
computationally impossible in real large-scale networks: the required storage and operations in
enumerating ssimple paths increase exponentialy with the growth of the network size. Note that
the essential problem can not be theoretically overcome even if we utilize the conventional
techniques such as column generation, smplicial decomposition, or Monte Carlo simulation.

In order to avoid the path enumeration, some models / agorithms take the strategy that
restricts the path set for the assgnment to a certain subset of Ps. For example, DiaL (1971)
developed an efficient algorithm which generates the link flow pattern being consistent with the
LOGIT type route choice model over the set of “ efficient path”. Although the path restriction
strategy is useful for the efficient calculation, it gives rise to the problem that the agorithm
often generates unrealistic flow pattern (for the typical example, see AKAMATSU (1996a)). The
restriction of paths also causes another troublesome problem in the flow dependent assignment:
the path set for the loading varies with the change of the link cost pattern, and as a result, al the
iterative algorithms in which the Dial’s algorithm is utilized can not be guaranteed to converge
(for further detail, see AKAMATSU (1996b,1996¢)). Recently, LAURENT (1996) proposed the
modified definition of the efficient path, where the paths for the loading are restricted by some
criteria based on the fixed “reference travel costs’. Although the definition has the advantage of
stabilizing the paths in the flow dependent assignment, it suffers from over-restriction of paths:
for example, in the ring-road network presented in Akamatsu(1996a), the definition can produce
the unredlistic flow pattern as in the Dial’ s algorithm.

Recently, BELL (1995) and AKAMATSU (1996a) showed a definition being in a striking
contrast to the restriction strategy: they analyzed the LOGIT assignment whose path set consists of
all the possible paths, where even paths with cycles are permitted. The model overcomes the
deficiency of the Dial’s algorithm, and is applicable to large scale networks, since it avoid path
enumeration by applying the Markov chain theory (Henceforth, we call the model MCA: Markov
Chain Assgnment). The definition of the path set, however, is unnatural from the user's
behavior point of view, and therefore, it leaves rooms for various improvement. Thus, we can
conclude that there is no assignment model equipped with both the behaviorally satisfactory path
set and the computationally efficient algorithm.



This study aims to develop the efficient method for obtaining the flow pattern according to
the LOGIT based stochastic (equilibrium) assignment model whose path set consists of only
simple paths without any restrictions. To achieve the purpose, we employ two strategies: firgt,
we incorporate not only the conventional travel times but also the spatial / geometric attributes of
paths into the model; and secondly, we construct the algorithm exploiting the Markov property of
the LOGIT modd.

The first strategy, obvioudy, can be justified from the user’s behavior view point. Our
model due to this strategy assigns only a small amount of flow to the paths with excessively
mazy structure even if the travel times of the paths are moderate. This is consistent with the
observations in various traffic surveys. Interestingly, the incorporation of the geometric
attributes not only improves the behavior model but also gives us the innovative method for
congtructing the set of simple paths. To be specific, we first define the geometric
“rotation-angle” between adjacent links over the network, and then, by representing the
rotations-angles along paths in complex number space, we obtain the method for distinguishing
the cycles from the simple paths without explicit enumeration of paths. This method plays an
important roll in developing the efficient assignment algorithm based on the second strategy.

The second strategy implies that the assignment algorithm can avoid explicitly dealing with
vast path variables. Namely, our agorithm operates only link variables instead of path
variables, and it generates the link flows by origins/ destinations. Note that this does not mean
that our algorithm can produce less information than path based algorithms. From the Markov
property of the LOGIT assignment, the link flows by origin / destination give us enough
information to construct the corresponding path flows. we can obtain any path flows from the
output of this algorithm “as wee needed”. To exploit this property, we construct the assignment
algorithm based on the MCA developed by Sasak1(1965), BELL(1995) and AKAMATSU(19964).
Although the origind MCA assigns the flows over the path set with cycles, the MCA combined
with the first strategy can successfully eliminate all the cycles from the path set. Thus, we can
achieve the purpose.

The paper is organized as follows. We first briefly review the MCA that is consistent
with LOGIT based route-choice model in Section 1, where we a so draw attention to the problem
caused by the cycleflowsin MCA. With this problem in mind, the subsequent sections develop
the methods for reducing / eliminating the cycle flows in MCA. In Section 2, we improve the
MCA so as to avoid the smplest cycle flows of “U-turn”: we modify the MCA based on
node-to-node transitions into the model based on link-to-link transitions. In Section 3 we then
incorporate the geometric rotations of paths into the link-based MCA model. Based on these
preliminary analyses, in Section 4 we consider the model whose path set isrestrictedto  simple
paths only, and then the novel method to eliminate the cycle flows without computational burden
isdeveloped. In Section 5, we discuss the extension to the flow dependent model. Finally, we
present our conclusions and discuss the future research.



1 Preiminaries- LOGIT Assignment through Markov Chain

Preliminary to the presentation of the new models, this section briefly reviews the Markov
Chain Assignment that is consistent with LOGIT type route-choice model. For further detail, see
AKAMATSU (1996a,b,c), BELL (1995) and Sasaki (1965).

1.1. Networks

Our model is defined on atraffic network G [N, L ] which has the set N of nodes, the set L
of directed links and given set of origin-destination(OD) node pairs. The set N consists of three
subset: the set of traversal nodes, N, that of origin nodes, O, and that of destination nodes, D.
The number of nodes in each subset are n, g, and s, respectively. The link from node i to j is
denoted aslink (i, j). Eachlinkin L hasthe travel cost, which is assumed to be fixed (i.e. flow
independent). The extension to the flow dependent costs will be discussed in Section 5.

In the followings, each nodein G is assumed to belong to only one of the subsets N, O, or
D: NCO=A,NCD=4A&, and OCD=/4. In addition, we assume that the number of
links emanating from each origin is unique, and similarly, the number of links entering into each
destination is unique. These assumptions are made only for the clarity of the presentation. In
fact, they do not affect the generality of the subsequent models, since any traffic network can be
modified so as to satisfies these assumptions without loss of generality (see Fig.1.1).
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Fig. 1.1. (a) Original network. (b) Modified network.

1.2. Traffic Assignment through Markov Chain

We consider the network with multiple origins and single destination (“Many-to-One
OD-pattern”). As can be seen in below, we can easily extend the model to the case of
Many-to-Many OD-pattern by smply overlapping the flow pattern for each Many-to-One
OD-pattern. The Markov Chain Assignment by Sasaki1(1965) regards the nodes as the states
in Markov chain, and the vehicles generated from origins are assumed to repeat the transition
between the states according to the Markov chain rule.  To formulate the model, let Qqj be the
transition probabilities matrix with the following structure:
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where Qqis agx n matrix whose (0, i) component is 1 if the origin o is connected with the
traversal-node i, zero otherwise,
Quqis an nx 1 vector whose i th component is 1 if the detination d is connected with
the traversal-node i, zero otherwise,
Qq is an nx n matrix whose (i, j) component denotes the (non-zero) transition
probabilities, Q;, if traversal-node pair (i, j) is connected by a single link, zero
otherwise.

Then, we easily see that the (i, j) component of Q[d]" is the sum of choice probabilities of k-
walks paths (i.e. the paths consisting of k nodes) between node pair (i,j). Therefore, the
node-choice probabilities (conditional on being generated from each node) are given by the

matrix series | + Qg+ Q[d|2 + Qi 3+ ., andit converges to the following inverse matrix:
él 0O Oou
|+ Qa+ Qu’+ Qu’+ ~=[1 Qul™= Py | Pyyl, (1.2a)
8:)2[d] O I:)[d] Ld
Pa=[ Qual™ (1.2b)
Pya= QuPay Paa1= Pra Qapr Paag = Q1 Pra) Qaas (1.2c)

where Pygy isa gx n matrix whose (0, i) component, Pyq (i|0), denotes the probability that a
vehicle generated from origin o uses node i. Thus, we can obtain the link-choice probabilities
by OD-pair, by substituting the P (i|0) obtained in (1.2) into the following definitional formula:

P> = Pye(ilo) Qy, (1.3)
where p; de denotes a probability that a vehicle with OD-pair (0,d) choose alink (i, j).

1.3. Transition Probabilities Consistent with LOGI T type Route Choice

At first sight, the MCA above has no background of behavior-theory, but it leads to the
LOGIT based assgnment: AkamaTsu (1996a) showed that MCA vyields the flow pattern that is
consistent with the LOGIT type route choice model, if the transition probabilities are given by

Qi =Qu(li) = W Via / Vig or  Qu :V2[d]-1W Vo, (1.4)

where W exp[- qt;], (1.5)



Ve ° & expl-qCl, (1.6)

r1 Ri
tj: thecost of link (i, j), q: the sensitivity parameter of LOGIT mode,
R: the set of all the possible paths between traversal-nodei to destination d,

cko t;d, :thecost of r th path from node k to destination d,
iTL

Vg1 = @ nx ndiagona matrix whose (i, i) diagonal component is Vig.

Note that we can deal with the Many-to-Many OD pattern by smply defining the transition
probabilities for Many-to-One OD patterns by each origin.

How we calculate the Vi4 defined in (1.6) is not self-evident since the definition requires
the summation with respect to infinite paths. Nevertheless, BELL (1995) showed that it can be
obtained by the ssmple matrix operations asfollows. Let W be the “impedance” matrix with the
following form:
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where W,is agx n matrix whose (0, i) component is 1 if the origin o is connected with the

traversal-nodei, zero otherwise,
W,is an nx s matrix whose (i, d) component is 1 if the destination d is connected with

the traversal-nodei, zero otherwise,

W isan nx n matrix whose (i, j) component is W; = exp[- q tj] if traversal-node pair

(i, ]) isconnected by alink, zero otherwise.
Then, it follows that the (i, j) component of W ¥ is the sum of exp[- q C"] over the k-walks paths
between node pair (i, j). Therefore, the matrix V is given by | + W + W? + W3 + .. and it
converges to the following inverse matrix:

el 0 Ou

L+ W+W+We+ =1 W'=8&y, | Vvl (1.8a)
&, 0 Vi

V= [l VV]-l, V]_ = le, V2 =V Wz, V3 = le Wz, (18b)

where the (o, i) component of matrix Vy the (j, d) component of matrix V, , and the (o, d)
component of matrix Vs are defined as V, = &olrexp[-qu"i] Vi :érexp[-q c¥1 and

V,=a _exp[-q C], respectively.



1.4. LOGIT Assignment through Markov Chain

To sum up, we can obtain the link-choice probabilities that are consistent with LOGIT
model by the following procedures:

Step 1. (a) Calculate the variable V by (1.8),
(b) Determine the transition matrix Q by substituting the V into (1.4).

Step 2: (a) Compute the node-choice probabilities by the Markov Chain formula (1.2),
(b) Cdculate the link-choice probabilities by (1.3).

It is worth mentioning that the calculation in Step 2 reduces to the smple calculation as
follows. Substituting (1.4) into (1.2), the node-choice probabilities yields

Pug=Qull Qul™ =Qu[l Vo'W Vygg]
=QuVaa [l W™ Vayg
= Qy Vg™V Vag. (1.93)
That is, the (o,i) component of Py, Pyig(ilo) = P(i|o,d), is

PGlod) = & dy {(1/ Via) Via Via} = Voi Vig/ Vog. (1.9b)
k
Therefore, the the flow on link (i, j) with OD-pair od, xi,-°d, is given by the following formula
without explicit calculation of the inverse matrix [I - Q] ™
%i°® =Cod Pi™" = Goa P(I[0,d) Qi 1) = Goa (Voi Via/ Voa) (Wi Via/ Vig)
=0od Voi Wi Via / Vod , (1.10)

where qoq is the OD-flow between o and d.

1.5. The Problem Caused by Cycle Flows

The model above has a solution (i.e. the left hand side of (1.8a) converges and al the
components take positive value) if and only if the spectral radius of W,p (W), isless than unity:

p (W)=Max. |l || <1, (1.12)

where |, isthe i th eigenvalue of matrix W. The condition (1.11), however, may not be
satisfied in some cases. For example, when the network has many cycles with zero costs, he
network can induce infinite cycle flows, which means the non-existence of the solution. There
also may be possibilities that unrealistic cycle flows are assigned even if the model has a
solution.  With this problem in mind, we will develop methods for reducing / eliminating the
cyclic flows in the subsequent sections.



2 Markov Chain Assignment based on Link-to-Link Transtions

2.1. Markov Chain Assignment on a Line-Graph

The cycle flows that have the worst effect on the assignment flow pattern in practical
applications are “U-turn” flows in a pair of opposite-directional links that connect the same
node-pair. For example, the network shown in Fig.2.1 can induce excessive U-turn flows that
repeat going between links 4 and 6. This kind of cycle flows, however, can be easly
eliminated by using the concept of “line-graph” (for the definition, see, for example,
WILSON(1985), TAKENAKA(1989) etc.).

Fig. 2.1. An example network.

Let us consider aline-graph G' (N, L") of a given original network G(N, L): each node in
N’ has one-to-one correspondence to alink in L, and the nodesin N* are connected by linksin L’
if the corresponding linksin L are adjoining. Note here that the “U-turn” movement in G(N, L)
corresponds to a movement between a pair of nodes in N'. Therefore, we construct L
eliminating the links that connect such node pairsin N". Then any assignment models on the
graph G (N', L), clearly, can not generate the “U-turn” flows. Thus, by considering a Markov
chain assignment on G’ (N, L"), we can obtain alink flow pattern explicitly avoiding the “ U-turn”
flows.

Fig.2.2 illustrates the line-graph G (N, L") for the example network G(N, L) shown in
Fig.2.1. In the line-graph the nodes 4 and 6are not mutually connected, and therefore, we see
that the Markov chain assignment on G (N, L") does not generate any cycle flows.

KB

Fig. 2.2. A line-graph.

It is worth a mention in passing that this technique can be used not only for eiminating the
cycles but also for representing turn-restrictions due to traffic control policies. we have only to
eliminate the appropriate links in the line-graph corresponding to the turn-restrictions.



2.2. The I mplementation of the Link based Markov Chain Assignment

In order to implement the idea above, we dightly modify the previous MCA model as
follows. Note first that a Markov chain on G (N, L") corresponds to the Markov chain based
on “link-to-link” transitions on G(N, L). Hence, it is natural to consider a “link-to-link”
impedance matrix instead of the “node-to-node” matrix in the previous MCA moddl. Before
giving the formal representation, we first classify the link set L into the following three subsets:

L° : the set of links emanating from origins, where the number of elementsisg,
LP : the set of links entering into destinations, where the number of elementsiss,
L : the set of the other links (L°E LPE L =L ), where the number of elementsis 7.

We then define the link-to-link impedance matrix with the following structure:
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where the following matrix notation is used:
a) Wisan ¢x ¢ matrix whose (a, b) component Wab Is exp(dty) if the movement from link

a to link b is permitted [when the movement involves the junction delay, d., it is aso
appropriate to define W, = exp(q (t, +da5))],  zero otherwise;
b) \/A\/1 isagx ¢ matrix whose (0, a) component V%a isexp(@t,) if link 0in L° is adjoining to
linkainL , zero otherwise;
C) \/AV2 iIsan ¢ x smatrix whose (a, d) component Vféd isl iflinkainL isadjoiningtolink d
inL°, zero otherwise,
The definition of the impedance matrix is designed such that the (a,b) component of W
yields the sum of exp(8 C*”) over the k+1-walks paths between link-pair (a,b), where C* denotes

the cost of r th path between link aand link b in G(N, L) excluding t,. Accordingly, the Markov
chain assgnment based on the link-to-link transition probabilities defined by

<

Q(b|a):VVab\7bd "a,biL, diLP (2.2)
ad

e y i

V.° aexpl-qC*] diL (2.3

ri R
yields the LOGIT type assgnment. The proof amost paralels the case of the node-to-node
MCA model, and it is omitted here. It also immediately followsthat V =[V,; " a,b1 L] canbe
obtained by

vV =[I- W'Y, (2.4)



andthat V, ° [V ;"al L,"61L9, V,° [Va&;"ai L," dT L%, and V40 [V, ;" 61 L
"dT LP] are, respectively, given by
V,=W,\V , V,=VW, ad V,=W\VW,. (2.5)

Finaly, the formula for the link flow can be obtained by utilizing the fact that the link-choice
probability means the node-choice probability in the line-graph. That is, considering the
correspondence to (1.9b) in the node-to-node MCA model, we have the following formula for
the flow on link a with OD pair od:

A

X = Qo VooV g 1V 61 L° di L. (2.6)

a od !

Thus, we can efficiently obtain the link flow pattern that is consistent with LOGIT model
explicitly avoiding the “U-turn” flow.

It is expected in many practical applications that the modified MCA model can avoid the
problem that the solution does not exist due to the excessive cycle flows. Nevertheless, the
model may not necessarily yields the satisfactory flow pattern, since there still be a possibility
that excessive flows are assigned on various possible cycles except “U-turn”. In the next
section we will further devise another method for mitigating the cycle flows.

3  Markov Chain Assignment with Geometric Rotations

3.1. Rotation-angles between Links

Conventional stochastic assignment models assign the flows to many paths by some criteria
based on he one-dimensional factor “travel time”. In contrast, various traffic surveys have
reported that the share of “mazy” paths with many zigzaggings or turns are very small even if the
travel times are moderate. In light of this fact, it is reasonable to introduce not only the travel
time but also the geometric factors into the path-choice model.

To develop such a model, consider first the 2-dimentional Euclid geometric space to
represent the geographic position of nodes in a traffic network. Then the links can be
represented as vectors on 2-dimentional real number space R?. In other word, we can regard a
traffic network as a set of vectors on R. Using the vectors, we define the rotation-angle
between mutually adjacent links a and b as follows:

- L Faxp 6
Wap =sgn(a, b) >xcos™ ¢c— =+, Ofw, £p, (3.1)
&l |bly

where & isavector representing link a on R%; and sgn(3, B) = +1 if the movement from a to
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b is right-handed turn, -1 otherwise (See Fig.3.1).

Fig. 3.1. The rotation-angle between mutually adjacent links

Then the total rotation-angle dong r th path between OD pair od is naturally introduced as the
sum of the absolute angles between adjoining links on the path:

DrOd © é. |Wab| droib (323)
(a,b)i L Y
where d°9, is 1if themutually adjacent linksa and b are on r th path between OD pair od, zero

otherwise, L istheset of link-pairs where the two links are mutually adjacent. Similarly, the
“net” total rotation-angle for the path is aso defined as follows:

EXC A w,d,. (3.2b)
(ab)i L
In addition, we define the rotation-angle between links that are not mutually adjacent.
While the definition is basically the same as that for the mutually adjacent links, we should note
the definition when two links are in a paralel position. The angle between the parallel links a
and b is defined as follows:

Step 1. add two virtual links between the links a and b so as to construct a cycle (See
Fig.3.2);
Step 2: if thecycleisright-handed  then wy,=p and Wpa=-p,
otherwise wpp=-p and wy,=p.

Fig.3.2. (a) Right-handed link-pair. (b) Left-handed link-pair.

o—=0 o0
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3.2. LOGIT assignment with Geometric Rotations

To incorporate the geometric factors into the path-choice model, suppose that the
systematic utility for ther th path between o and d, U,*, is represented as

u¥=-qCc™-sD™, (3.3)

whereo isa*sengtivity” parameter for thetotal rotation-angle. Then, by assuming the error
term of the utility function to bei.i.d Gumbel distribution, the probability that users chooser th
path between OD pair od yields

_ o _ od od
PrOd = oexp[ q Cr - S Dr ]d = Ar —, (34a)
aep[-qgC*-sD"] a A
ri R4 1 R
A™ ° exp[-qC - 's D], (3.4b)
and the resulting link flow pattern is given by
X =0, Q PdS. (3.5)

ri R
Since this model is basically a LOGIT model, we can construct the corresponding MCA.
Unlike the previous MCA, we can expect that this MCA does not give rise to much cycle flows,
since the paths with cycles have large negative utilities due to the rotation-angles.
The agorithm for this model is almost same with that for the previous MCA model. The
only differenceisthe dight modification of the link impedance matrix: the (a,b) component of the
matrix is defined as

W, =expl-qt, - s W[l (36)

The reason why this modification yields the LOGIT assignment mode! in (3.4a), (3.4b) and (3.5)

can be easly understood from the fact that the (a,b) component of W yields the sum of
exp(- q C™ - s D) over the k+ 1-walks paths between link-pair (a,b).

Thus, one may expect that the model combined with the technique in Section 2 greatly
reduces cycle flowsin many cases. The model, however, does not achieve our purpose, since it
still remains a possibility of generating unrealistic flow patterns. For example, the model can
not distinguish between a path with one cycle and a simple path with 4 rectangular turns, while
amost all real users think the former path unreasonable. Recall here that the model shown
above did not utilize the net total rotation-angles E,*® defined in (3.2b) at al. Interestingly, the
exploitation of the E;°® gives us the innovative method to achieve the complete eimination of
cycle flows, which will be presented in the next section.
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4 Complete Elimination of Cycle Flows

4.1. LOGIT type Route Choice Model without Cycles

In this section we will consider the method for obtaining the link flow pattern according to
the following LOGIT mode:

expl- Cod - s Dod od
F)rOd — 5 p[ q r . r ]d = 5 A’ -, (41a)
a ep-qC*-sb’]  a A
T R%(0) rT R (0)
X' =0, Q PXd%, (4.1b)
rT R (0)

where the R*%(0) is the set of simple paths between nodeso and d.  Note that the path set in (4.1),
unlike the MCA model in Section 3, consists of the smple paths only; the cycle flows are
explicitly diminated. The main focus here is, thus, to develop the method for achieving the
complete elimination of cycle flows by exploiting the E* introduced in the previous section.
Just asin the case of the previous MCA, the method presented in this section consists of the
following two steps:
Step 1: Calculate the matrix V whose (a,b) component is defined as

Voo a A" (4.2)

rl R20(0)

Step 2: Compute the link flows by

ng = 0Ou X:d /\70d , (4.39)
X&o @ Adr. (4.30)
rT R (0)

Before going into the detailed discussions on the steps above, we will first examine the basic
properties of the net rotation-angle E;* in 4.2.  Making use of the properties, we then develop a
novel method for achieving Step 1. The considerations on the method is divided into two parts,
which are presented in the subsequent sections 4.3 and 4.4, respectively.  Finally, the method
for calculating the X,°? in Step 2 is presented in 4.5.

4.2. Basic Properties of the Path Rotation-angle

Let us consider the properties of the net rotation-angle defined in (3.2). Firgt, it is easily
observed that the rotation-angle of a path between links a and b, E®, is equal to - Wy, if the path
contains no cycles. For example, the path @b,c) in Fig.4.1 (a) contains no cycles, and the
rotation-angle is B = Wap + Wie = - Wea OF E* + W, = 0. Next, consider the cases where the
path contains cycles. In the example of Fig.4.1 (b), the path (a,b,c,d,e) contains one left-handed
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cycle, and the rotation-angle is E*® + Weq = Wap + Wiye + Weg + Woet Wea = - 2p. Similarly, the
path (a,b,c,d,b,c,d,e) has double |eft-handed cycles, and E*® + we, = - 4p.  Thus, we see that E*
+ Wha =2mp (M 1+ 2,..) for the paths with cycles, and that the value of E* + wy, can be a
“detector” that shows whether the path contains cycles or not. Note, however, that there is a
particular case that the E,2® + W, can be zero even if the path contains cycles. when we consider
the path where the number of right-handed cycles, N , is equal to that of left-handed cycles, N, ,
the E,*® + wy, yields zero since the rotation-angles for the respective cycles mutually cancel.

I
|
Wy |
o7 |
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=
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!
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w <\ W
\ ca \ ea
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c e
Fig. 4.1. (a) Path (a,b,c) (b) Path (a,b,c,d,e)

To give the formal representation of these properties, we denote by R* the set of k-walks

paths between links a and b (paths from link ato link b consisting of k links). The path set can
be classified into the following three subsets:

R (0): thesubset of R, which consists of the only paths containing no cycles,
R® (1) : the subset of R, which consists of the paths such that Ng* N,
R®(2): thesubset of R, which consists of the paths such that Ng=N_* 0.

Similarly, we also classify the set of paths between links a and b, R?®, into three subsets:

¥
RP(m) = kE_l R®(m) for m=0,1, and 2.

Then, the path rotation-angle satisfies the following:

10 ri R®(0) (44a)
E® +w,, :_:'_2mp (m=+1%2,...) ri R®(D (4.4b)
10 r1 R®(2) (4.4¢)

In the subsequent secction 4.3, we first consider the method for calculating the sum of A
for the path set R°(0) R°(2) (i.e. we eliminate the sum for R?°(1)); and then we proceed to the
method to further exclude the path set R?°(2) as well as R°(1) in section 4.4.
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4.3. Elimination of the Path Set R(1)

Suppose for the moment that the path set R*%(2) is excluded from R by an appropriate
method: we assume that R = RY0) E R%(1). Then, the V,, defined in (4.2) can be

re-written as follows:

V= & AT =8 d(EY +w,) A", (4.59)
RO

O ~
rT R(0) r1 RM

il if z=0
where d(z)° |

10 otherwise (i.e z=2mp, m==+1#2,.) (4.5b)

Recall here the Fourier series expansion of Dirac’s delta-function:

d(z) :%+$a cosgz—

g np o6
7=
T @

n=1

13 @2np o
=Ta epy—27; for - T/I2EZET/2, (4.6)

n=-¥

where i denotes an imaginary unit. From (4.5) and (4.6), we see that \70d is represented by the
(complex) exponential function, which can be decomposed into link variables. Thus, if we
construct the MCA model based on the appropriate impedance matrix that is consistent with (4.6),
the sum of A® for R®(1) would naturally be eliminated. The procedure presented below is,
in essence, the realization of this idea.

Let W(n, N) be the*complex impedance” matrix with the following (a, b) component:

A _n
W (0 N) = XL Gt = S Wy | + Wy 1] = W Yan(n) (4.7)
n
where W, © exp[-qt,-s W[, Y, (N N)° exp[iwabﬁ], and (n,N) are the integers satisfying

1£n£N. Then,the(a, b) component of the k th power of the matrix, Wab (n, N)k, yields

Wi, % = 8 A®expli EX 1. (4.8)
rl +1

where R is the set of k+1-walks paths between links a and b. Therefore, it immediately
followsfrom (4.4a) and (4.4c) that

~ o . al n
W) Yo )= & AT expli (B +w,,) ]

i Ra
MR

o o) o n (49)
= a A"t aA”+t a AYexpli (E”+w,)—] .

MR®O  rRP,2 rR®, N
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The present subject here is to eliminate the third term of the r.h.s. of (4.9), which leads us
to exclude the summation with respect to the path set R*°(1) in the calculation of V. In order to
construct the elimination method, recall the fact that the value of E,*®+ w, in the third term must
be2mp,(m=x 1,2,...). Considering this property and the (4.6), we have

14 n
L& 8 ATeqli (E*+w.) 1= 8 A®, (4.10)
=111 RE2, (1) R (N)

where R (N) isthesubset of R, (1) suchthat E®+wpa = (2Np )x 7, (/= 1,% 2,...).
Table 4.1 shows the smple numerical example for (4.10) when there is only a single route,
N =3, and A%®=1. The number in each cell denotes the value of

LR LI n
Re(expl i 2. 1) = COS(z ;) =COS(2Mp—),

where zaE® + w,, and the rows and the columns correspond to n =123 and m=1.2,...,
respectively. Thefina row denotesthe S, COS(zn/N)) for z=2mp (m=0,1,2,...). As seen in
the table, the S, COS (zn/N)) yields zero, except the cases where z= (2Np )x /= 0, 6p, 12p,....
Thus, ther.h.s. of the (4.10) reduces to the sum over the paths such that E.** + w,, = (2Np )x 7.

Table4.1l. Thenumerical example of (4.10):
CcoS(zn/N) and S, coS(zn/N) for zaE*+wp,=2mp (m=0,1,2,...).

n | m -] o 1 2 3 4 5 6
bl 2aE™+ Wea — 0 2m 4t 6T 8 10m | 12m
. cos(z/3) - | 10 | -05 | 05 | 10 | -05 | -05 | 10
cos(2z/3) -~ | 10 | 05 | -05 | 10 | -05 | -05 | 10
CoS(3z/3) - | 10 10 10 | 10 10 10 | 10

sum. 30 | 0000 | 0000 | 30 | 0000 | 0000 | 30

Note that the period (of z) that S, COS(zn/N)) takes non-zero value grows as we increase N.
Hence, by letting N be infinity in (4.10), we can eliminate the summation for the Rffl(l):

& 6
N
lim=cA A& A®expli (E® +w,)2]-=0. (4.11)
N® ¥ Nen:1 MRE,(1) N 7]

Combining (4.9) and (4.11), we have
1% K 0 9 ,ab 2 aab
lim N cad W, (n,N)" Y,(nN\Nx="a A"+ aA, (4.12)
Ne¥ Ne 9 nRD 0 rMR®EEQ

and furthermore, summing up (4.12) for k=1,2,..., gives us
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o1& d 0O 5 o .
lim &2 AW, (NN Yu(nN)I= @ A”+ a A"
N®¥ k=1n=1 2 i RO 1 R®(Q)

Namely, the sum of A for the path set R°(0) R®(2) (i.e. the path set where the R°(1) is
excluded) is given by the (a, b) component of the following matrix:

|mi°N|*Y T W N)*Y (0, N)T +W(n N2+ Y (nN)T
Na (n,N)" +W(n,N)*Y(n,N)" +W(n,N) (n,N) + -

a (- Wonr=ymnT), (4.13)

>
1
[y

where X* Y= the component-wise multiplication of matrices X=[Xa] and Y=[ Yap] (=the matrix
whose (a,b) component is Xa,Yap), Y (n,N)= the matrix whose (a,b) component is Yap(n,N).

4.4. Elimination of the Path Set R(2)

Let us extend the previous method so as to eliminate the path set R?°(2) as well as R°(1).
Suppose now that the set of kwalks paths containing no cycles{ R>(0) " (a,b)}, is given.

Then we can construct the k+1-walks paths by adding only one link to the paths in
{Rk""b(O) " (a,b)} . We denote the set of the k+1-walks paths by {Iikaf’l(O) " (a,b)}. Clearly, the
number of cycles contained in each k+1- walks path in {Iikaf’l(O) " (a,b)} is a most one.
Hence, thefollowing holdsfor the pathsin {Iikaf’l(O) " (a,b)}:

Ef‘b +w,, =0 if the path contains no cycles, (4.149)
E® +w,, =+2p otherwise. (4.14p)
Consequently, if the path set in the summation in (4.8) wasnot R, but R®,(0), (4.12) would
have reduced to the summation with respect to the only path set Rffl (O) (i.e. the terms for
£ 2p for the path st R®,(0),
itisnot required to let N in (4.12) be infinity: setting N=2 is enough for eliminating the cycles.
The idea above can be stated more formally as follows. Given the k-walks path set
{ij(O) " (a,b)}, define amatrix VAV(n,N)[k' 1 whose (a,b) component is

R™ (2) aswell as R, (1) vanishes). Besides, since | E® +w,,

WM To & ATepliEP 1= & ARnN), (4.15)
1 R®(0) rTRE(0)

Aab 0 A e A [k-1\A -
where A™(n,N) ° A” exp[i E; I\I].Then, the (a, b) component of W(n,2)'" “W(n,2) yields

a W02 W, n2= A A"n2), (4.16)
PLA® 1R&O
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where A(a) denotes the set of links emanating from the end-node of link a (Note that the
W2k IW(n,2) is not equa to theW(n,2)K nor theWn,2)™ while it plays a similar roll
with the \/AV(n,z)k in (4.12)). Applying the same argument as (4.12)  (4.16), we see that the
sum of A2 for the path set Rffl (0) isgiven by the (a,b) component of the following matrix:

~ 18 (.~ .
Wikl o Eé‘ W(n2 "  IWn2*Yn2)T). (4.17)
n=1

. ¥
Sincethe V,, in(4.2) isdefined asthe sum of A for the path set R°(0) = E R (0), the matrix
k=1

V' with the component V,, can be obtained by simply summing up (4.17) with respect to k. In

addition, considering the fact that the number of links contained in the path without no cyclesis at
most ¢ (=the number of linksin L), we have

-1
V=1 +WH + W+ 4wl -8 =8 Wik (4.18)
k=0

where W' © | (aunit matrix).
We showed thus far the method for obtaining V' when the path set {be(O) " (a,b)} or

the matrix W(n,2)'*~ ¥ are given in calculating W(n,2)!*!. In the following, we consider the
method for obtaining the matrix W(n,2)*~ ¥ such that it works successively in ascending
order of k : first, we set W(n2)l8 :=W(n2 for k=1; and then, for each k 2, we calculate

the matrix W(n,2)'*! using the W(n,2)!*~ ¥ previously obtained. Thus, the present subject is
to congtitute the appropriate formulafor the successive calculation for k2.

To find the formula, let us first compare the definition of Wn2)!*! and the
W2 ¥ Wn,2): the (ab) component of W(n,2)!* ¥W(n2) is given by (4.16), and that of
W(n,2)!*! isdefined as

A [} Aa 1
W, n2Me q A®(n2). (4.15')
i R, (0)

Note here that the set R, (0) in (4.16) can be classified into two subsets R, (0) and R®,(1):

R®,(0)=R%1E R®,0) and R®(1)C R® (0= A,

where the path set R®, (1) isdefined as R®,(0)C R®, (1) (see Fig.4.2). Thusit follows that

~ RIS ~ o A o Ay
a W2 W, 02 - W2 = a A*n2- a A®n2)
PLA 1RO 1R )

= aA*n (4.19)

R ()
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Rab

k+1

R

Fig. 4.2. The classification of k+1-walks paths.
Therefore, given amatrix Z(n,2)[k] whose (a,b) component is defined as

[ A
Zo(n2) ° A A®n2), (4.20)
R
we have the following successive equation for calculatingW(n,2)!%! in ascending order of k:

W2 = Wn, 2 YWn2) - z(n,2)M. (4.21)

The Zy(n.2)" can be calculated without explicitly dealing with path variables, while the
definition in (4.20) is represented by the summation with respect to the path set R, (1). Recall
now the particular property for R, (1): if the k+ 1-walkspatha - - p - b belongsto R®, (1),

2 . .
a W, (n2* W, (n2) Y, (n,2) =0. (4.22)
n=1

For the concrete example, consider two 5-walks paths between links a and b as shown in Fig.4.3.
Thepatha- - p - bbeongsto R* (1), where we can examine that (4.22) holds. On the other

hand, for another path (a -~ q - b) that belong to R (0), it is easily seen that (4.22) does
not hold.

P b

O—O0—"~0O—=0

Fig. 4.3. Example network to consider (4.22).
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From this property, the Zab(n,2)[k] is, clearly, computed by

Zon2)" = a W, (02! W, (n,2), (4.23)
PT Yap
where Y, is the set of links {p} such that (4.22) hold. Thus, theW(n2)!*! can be
successively obtained in ascending order of k by the formula (4.21)-(4.23).

4.5. Calculation of Link Flows

We are now in a position to discuss the method for obtaining the link flows. For the
calculation we can not use the formula for the MCA model presented in Section 2:

X! = Gog VouVig / Vg ol L° dTLP, (2.6)

oa 'ad

The reason is that the denominator of (2.6) contains the term for the paths with cycles. More
specifically, the multiplication of V., and V,, yields

T \7 & o oaO% 2 ad(.-j 2 od
Voavad :9 a A Tg a = a A ' (424)
€iRr20 iR 9 IR
where R* isthe set of pathsin which each path is constructed by connecting the following two

kinds of paths: the paths between links o and ain R°*(0), and the paths between links a and d in
RY0). Note that the path (0. - a~ - d) in R™ can contain cycles, even if both the

paths (o- - a) and (a- - d) contain no cycles (for the simple example, see Fig. 4.4).
Therefore, we must replace the V, V., in (2.6) with the variable X, defined as

xZe aAmidi= an”, (4.25)

ri R™ (0) rT RY (0)

where R* (0) denotesthe subset of R* whose elements are restricted to the smple paths.

______ .'_ _____J d
| O
O 0] I___________Q_____;O
Fig. 44. Thepah(o-. - a. . d)containingacycle.

To consider the method for calculating the X.°%, we first classify the set R (0) by the
number of links contained in the paths, we denote by R™ (0: j+k ) the set of the simple paths

between o and d where each path is constructed by connecting the following two kinds of paths:
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the j-walks paths between o and a, and the k-walks paths between a and d. Corresponding to
this classification, we define XU asthe sum of A for the paths inR™ (0: j+K):

Xo¥lKo 3 pud (4.26)
1 R4 (0:j+k)
Clearly,
0ol
X% =§ § xoi+w, (4.27)
j=1k=1

In precisely the same fashion, we also classify the path setR™, and we denote by R™ (j+k) the
subset corresponding to the subset R* (0: j+k) for the set R™ (0).

The key to calculate the X'U* s the fact that the number of cycles contained in any
paths inR* (j+k ) is a most one. From this fact, we see that the sum of A% for the paths
inR™(0: j+k), X2U* can be obtained by subtracting the terms such that E™ +w,, = +2p
from the sum for the pathsinR™ (j+k). Hence, by applying the similar method as shown in 4.4,
we obtain

. 18« oA
Xg0 =~ 8 (W02, (020, (02) (4.28)

n=1
Substituting thisinto (4.27), we have

od 10( o.,<:>2 A Ny (K] u
x¢ =28 aiad (W, (2", (n2) Ydom,z))%

1 2 14 / R .
= Eé Yo (n2a a W, (n2) WL, (n,2)!"

n=1 i=1 k=1
18 - -
=58 Y2 Ve (12) Ve (02), (4.29)
n=1
where

V., (n2)° & W, (n2) (4.30)
ab ab .

k=1

As shown in Section 4.4, the W, (n2)!! can be computed in ascending order of k, and
therefore, the \7ab (n,2)in (4.29) also can be easily obtained. Thus, we see that the link flows

can be calculated by the following formula:

1 & - . -
X =20 aVv.n2aVyn2Y,(n2)/V,,, ol L° dTLP. (4.31)
n=1
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5 Extension tothe Stochastic Equilibrium M odel

In this section we first discuss the implementation issues of the model presented in the
previous section, and then we extend the model and agorithm to the flow dependent case.

5.1. The Outline of the Assignment Algorithm

The considerations for the assignment over a path set R(0) so far can be summarized as the
following a gorithm:
Step 0:  Initialization
for each (a,b)inL” L do begin
\73b =0; V.\Zé] :=0;
for n= 1to 2 do begin
Yao(N) := expli Wa / 1; VAL () = exp[- qt, - S W] Yasl(); (5.1)
end
end;
Step 1. Calculation of Matrix [\73b]
fork=2to ¢ dobegin
for each (a,b) inL" L do begin
W, =0, W, (2™M:=0;, W = 0;
for each pin A(a) do begin

X:=0;
for n= 1to 2 do begin
wo(n) = VL mE T W™ 5 X=X+ wy(n) Yea(n) (5.2)

end;

forn=1to2do ifX 10 then W, m™ = W, )™ +wyn) (5.3)
end;
for each qin A(a) do forn=1to2do v@ab” = v@ab” + Wy(N) Ype(N) ; (5.9
V, =V, + W /2 (5.5)
forn=1to2do Vg (n):= V,,(n)+ W, n)" (5.6)

end

end;
Step 2:  Calculation of Link Flows by OD-pairs

for each (0,d) inL°” L° do

1 S~ ~ n
for echainL do X = Oog a V..(n) V., (N) Y, (N)/ Vo, (5.7)
n=1

a
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5.2. Some | mprovement of the Algorithm

In 5.1, we showed only a prototype of the algorithm. For the practical applications, however,
the algorithm should be improved from the view point of both the required storage and the
computational effort. First, we do not have to store W(n)% or WE for all k : obviously,
only the temporal V\Z{Q‘] should be stored. Secondly, it is expected in many cases that we can

truncate the algorithm before k reaches ¢, since the maximum number of links contained in any
simple pathsin practical networksis usually much smaller than /. Finaly, it is not necessarily
required for the calculation of {xi,-°d} to store{\?ab "(ab)i L” L}; storing {V_ " ai L," of L°} and
{\7ad "al L,"di L} Is advantageous from the view point of the required storage. From these
considerations, the steps 1 and 2 in 5.1 can be modified as follows:

Step 1 (a): Calculation of Matrix [\70a] for each origin o
for each 0inL° do begin flag := 1;
whileflag=1do begin flag :=0;
for eachainL do begin  W,(1) := 0; W,(2) :=0; Z:=0;
for each pinA(a) do begin X :=0;
for n=1to2dobegin

wy(n) = Wem) W, (M) 5 X 1= X+ () Ype() (5.2a)
end;
for n=1to2do if X1 0 then W(n):=Wy(n) + wy(n) (5.39)
end;
for each qin A(a) do forn=1t02do Z:=Z+ wy(n)Ye(n) ; (5.4a)
Voa = Voa +27212; if Z1 Othen flag:=1;
forn=1to2do \70a (n) = \7Oel (n) + Wy(n) (5.6a)
end
end
end;

Step 1 (b): Calculation of Matrix [\7ad] for each destination d
for each d inL° do begin flag := 1;
whileflag=1do begin flag :=0;
for eachainL dobegin W,(1) :=0; W,(2) :=0; Z:=0;
for each pinA(a) do begin X :=0;
for n=1to 2dobegin

wi(n) =W, (P We(n) ;X = X+ w(n) Ype(N) (5.2b)
end;
for n=1to2do if X1 0 then W(n):=Wy(n) + wy(n) (5.3b)
end;
for each qin A(a) do forn=1t02do Z:=Z+ wy(n)Ygy(n) ; (5.4b)
\7ad = \7ad +2/2; if Z! Othen flag:=1;
forn=1to2do V()= V,n)+ Wyn) (5.6b)
end
end
end;
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Step 2:  Calculation of Link Flows by OD-pairs
for each (0,d) in L°” LP do begin
\70d :=\7ad ,.where aisalink connected with link o;
1 5~ ~ A
for echainL do X = Oog a V..(n) V., (N) Y, (N)/ Vo, (5.7)

n=1

end;

5.3.Extension to the Flow Dependent (Equilibrium) Case

We can extend the model to the flow dependent case (i.e. stochastic equilibrium model)
where the link travel time is given by t, = ti(x)). The smple strategy for developing the
algorithm is to employ the method of successive averages (cf. PoweLL and SHEFFI (1982),
SHEFFI and PoweLL(1982)). It can be summarized as follows:

Step 0: Initialization
(a) Set iteration counter:  k:=1.
(b) Find an initial feasible link flow pattern {x,\"} .

Step 1:  Direction Finding
(a) Set thelink cost vector t®: .4 := t,(x.*) "al L
(b) Calculate the auxiliary link flow pattern {y,*} by the stochastic assignment for the
fixed link cost pattern {t,} .
(c) Set the direction vector d®:  d,® :=y,© - x,© "al L

Step 2:  Link Flow Update
Update thelink flow pattern x**9:  x, @V :=x® +a ©g,0 " al L,
where a ® isarea number such that
¥ ¥
0<a®<1, §a® =+¥ ,and § @¥)2<¥.
k=1 k=1
Step 3: Convergence Test
If appropriate convergence criteria are satisfied then stop;
otherwise set k := k+1 and go to Step 1.

Obvioudly, Step 1(b) can be efficiently accomplished by the procedure presented in 5.2. It
is noteworthy that we can not guarantee the convergence if we employ the Dia’s agorithm
instead of our procedure. The reason is that the path set generated by the Did’s algorithm
varies between iterations due to the updating of the link cost pattern, which prevents us to
guarantee the closedness (see ZANGWiILL (1969)) of the algorithmic mapping. On the other hand,
our procedure does not suffer from such troubles, since the path set is fixed whatever link cost
patterns. Thus, we obtained the algorithm that is guaranteed to converge to the stochastic
equilibrium flow pattern.
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For the development of more efficient algorithms, it is convenient to exploit the equivalent
optimization problem for the model. Conventionally, the problem of Fis<(1980) iswell known
as the equivalent programming for a standard stochastic equilibrium assignment, and therefore,
we may construct the similar the programming for our model. Such an approach, however, can
not exploit the programming as the convenient tool for developing efficient algorithms. The
reason is that the objective function is hard to evaluate due to the explicit inclusion of path flows
as in the Fisk’s problem. Thus, it is natural to seek for a more convenient programming that is
formulated by only link variables. For the assgnment model shown in Section 1, AKAMATSU
(1996h,¢) showed the following link-based equivaent problem:

P mindtx +13 Ga X Inxe - & yeinyss (5.8)
al L 0 oio®aiL ki N a
subject to
X, = X "al L (5.9)
ol O
w=a x "kI N, "0l O
al In(k)
(5.10)
é.x;’- é.x;’-qokzo "k N,kto, "ol O
al In(k) al out(k)
(5.11)
X230 "al L, "ol O
(5.12)

where In(k) denotes the set of links entering into node k, and Out(k) the set of links emanating
fromnodek. He also showed that the flow dependent case yields

- lo & o 0
P2 mina O t.w)dw+—a ca xInx; - a Y Iny,=
[F2] aTLQ quOSaTL % kTNyk ykﬂ

(5.13)
subject to (5.9)-(5-12).

Similarly, we see that the flow dependent version of the model in Section 3 is equivaent to the
following problem:

.o Ja o o lo o o o o 06
[P3]  ming q t.wdw+a a .| x,+-adcd xing- awiny:
L al Lbl Aa) doioCaL KI N 9

(5.14)
subject to (5.9)-(5-12).

As for the model in Section 4, however, finding the equivaent programming is not atrivid
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problem. A naive conjecture is that the programming [P3] is equivaent if we regard that the
feasible region constituted by (5.9)-(5.12) includes no cycles.  Although the conjectureis simple,
the proof seems to be somewhat difficult. Regrettably, | must confess that | have not yet
obtained the clear answer to this problem, and it still remains to be studied.
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6 Conclusions and Future Research

In this paper we have developed the efficient method for the LOGIT based stochastic
(equilibrium) assignment model whose path set consists of only simple paths without any
restrictions. To achieve the purpose, the novel technique that represents the network structure
by means of the complex “impedance” (adjacency) matrices was introduced. The technique
combined with the Markov chain assignment (originally developed by Sasaki (1965), BeLL (1995)
and AxamaTsu(19964)) enabled us to completely eliminate the cycle flows from the path set for
the assgnment  without explicit path enumeration.

For the future research opportunity, it may be interesting to explore the applications of the
technique to various other problems in the graph / network theory. The reason why we suggest
the exploration is that the technique is fairly natural from the mathematical view point. As is
well known, almost all the contents of the basic graph theory parallels the linear agebra. For
example, the various graph / network problems called “path problem” have the same agebraic
structure with the system of linear equations (see, for example, Carre (1979), Takenaka (1989)
etc.). Recal here that one of the most significant properties of the linear mapping is
“enlargement and rotation”. Obvioudly, it is essential to analyze the property in not a real
number space but acomplex number space. Nevertheless, the mathematical means to represent /
analyze the graph structure in the conventional graph theory have been restricted to the real
number matrices such as incidence matrices or adjacency matrices with zero / one elements; the
“rotation” seems to have been neglected in the theory while the “enlargement” has the
correspondence in the theory.  Thus, there seems to be some significant problems that are natural
to be analyzed in complex number space; the classification of graphs by means of the spectra of
the adjacency matrices (see, for example, Cverkovic et al. (1978), Takenaka (1989) etc.) is such
an example that can be meaningfully extended to the complex case.

For another important future research, we should mention the exploration of the equivalent
programming problem for the LOGIT based stochastic assignment whose path set consists of
only simple paths. While the derivation of the path-based problem is very easy, the
link-based problem is an open question a present. The link-based programming is
indispensable for the development of the efficient algorithms for the flow dependent case (i.e. the
Stochastic User Equilibrium assignment), and therefore, the construction of the programming is an
important problem to be solved. We hope this study gives the foundation for the construction.
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