
Revised July 3, 1996
submitted to Transportation Science (July 1, 1996)

1

Stochastic Traffic Assignment with Geometric Attributes of Paths

Takashi Akamatsu
Department of Knowledge-based Information Engineering,

Toyohashi University of Technology, Toyohashi, Aichi 441, Japan

E-mail: akamatsu@tutkie.tut.ac.jp

The purpose of this paper is to develop the LOGIT type stochastic (equilibrium)
assignment that satisfies three requirements: first, the path set for the loading
should be defined by the simple paths without any restrictions, which do not
depend on the travel cost pattern; secondly, the model should give small
probabilities for the paths with mazy structure, while the number of paths
defined by the first requirement itself is enormous; and finally, the model should
be efficiently computable even in large scale networks. To achieve the purpose,
we employ two strategies: first, we incorporate not only the conventional travel
times but also the geometric attributes of paths into the model; and secondly, we
construct the algorithm making fully use of the Markov property of LOGIT model.
The incorporation of the geometric aspects into the model is not only natural to
satisfy the second requirement but also effectively utilized to achieve the first
requirement. Moreover, the strategy combined with the Markov chain theory
enables the model to inherit the computational efficiency of Markov Chain
Assignment (MCA) developed by SASAKI (1965), BELL (1995) and AKAMATSU

(1996a). This property stems from the fact that the new model can be regarded
as a mathematically natural extension of MCA: the conventional MCA reduces to
a system of linear equations in real number space; and the new assignment
model yields the almost same form of linear equations in complex number space.
Finally, an algorithm for the flow dependent case (i.e. stochastic equilibrium
case) is also presented by extending the results for the flow independent model.

How we should define the path set for the traffic assignment is an open problem yet to be studied

despite the long research history. In deterministic (Wardrop) equilibrium model, we do not
have to explicitly realize the problem, since the deterministic model assigns the flows only to the
shortest paths. However, when once we realize the fact that not only the shortest paths but also
the other various paths are chosen by users in real traffic networks, we can not escape from this
problem. To date, various stochastic (equilibrium) assignment models (e.g. SASAKI (1965),
VON FALKENHAUSEN (1966), BURRELL (1967), DIAL (1971), TOBIN (1977), DAGANZO and

 2

SHEFFI (1977), FISK (1980), SHEFFI and DAGANZO (1980), DAGANZO (1982,1983),
MIRCHANDANI and SOROUSH (1987), AKAMATSU (1989,1990, 1996a), BELL (1995), etc.) have
tackled this problem. These models, either explicitly or implicitly, decide the set of paths for
assigning flows by a priori criteria, and then the route-choice probabilities are calculated over
the path set.
 Conventionally, some criteria for defining the path set have been employed. The simple
and natural one is to define all the simple paths (i.e. the paths that do not traverse any links more
than once), PS, as the path set for the assignment. To the author’s knowledge, however, no
efficient algorithm for generating the flow pattern that completely satisfies this definition has been
developed. This difficulty is mainly caused by the fact that the path enumeration is
computationally impossible in real large-scale networks: the required storage and operations in
enumerating simple paths increase exponentially with the growth of the network size. Note that
the essential problem can not be theoretically overcome even if we utilize the conventional
techniques such as column generation, simplicial decomposition, or Monte Carlo simulation.
 In order to avoid the path enumeration, some models / algorithms take the strategy that
restricts the path set for the assignment to a certain subset of PS. For example, DIAL (1971)
developed an efficient algorithm which generates the link flow pattern being consistent with the
LOGIT type route choice model over the set of “efficient path”. Although the path restriction
strategy is useful for the efficient calculation, it gives rise to the problem that the algorithm
often generates unrealistic flow pattern (for the typical example, see AKAMATSU (1996a)). The
restriction of paths also causes another troublesome problem in the flow dependent assignment:
the path set for the loading varies with the change of the link cost pattern, and as a result, all the
iterative algorithms in which the Dial’s algorithm is utilized can not be guaranteed to converge
(for further detail, see AKAMATSU (1996b,1996c)). Recently, LAURENT (1996) proposed the
modified definition of the efficient path, where the paths for the loading are restricted by some
criteria based on the fixed “reference travel costs”. Although the definition has the advantage of
stabilizing the paths in the flow dependent assignment, it suffers from over-restriction of paths:
for example, in the ring-road network presented in Akamatsu(1996a), the definition can produce
the unrealistic flow pattern as in the Dial’s algorithm.
 Recently, BELL (1995) and AKAMATSU (1996a) showed a definition being in a striking
contrast to the restriction strategy: they analyzed the LOGIT assignment whose path set consists of
all the possible paths, where even paths with cycles are permitted. The model overcomes the
deficiency of the Dial’s algorithm, and is applicable to large scale networks, since it avoid path
enumeration by applying the Markov chain theory (Henceforth, we call the model MCA: Markov
Chain Assignment). The definition of the path set, however, is unnatural from the user’s
behavior point of view, and therefore, it leaves rooms for various improvement. Thus, we can
conclude that there is no assignment model equipped with both the behaviorally satisfactory path
set and the computationally efficient algorithm.

 3

 This study aims to develop the efficient method for obtaining the flow pattern according to
the LOGIT based stochastic (equilibrium) assignment model whose path set consists of only
simple paths without any restrictions. To achieve the purpose, we employ two strategies: first,
we incorporate not only the conventional travel times but also the spatial / geometric attributes of
paths into the model; and secondly, we construct the algorithm exploiting the Markov property of
the LOGIT model.
 The first strategy, obviously, can be justified from the user’s behavior view point. Our
model due to this strategy assigns only a small amount of flow to the paths with excessively
mazy structure even if the travel times of the paths are moderate. This is consistent with the
observations in various traffic surveys. Interestingly, the incorporation of the geometric
attributes not only improves the behavior model but also gives us the innovative method for
constructing the set of simple paths. To be specific, we first define the geometric
“rotation-angle” between adjacent links over the network, and then, by representing the
rotations-angles along paths in complex number space, we obtain the method for distinguishing
the cycles from the simple paths without explicit enumeration of paths. This method plays an
important roll in developing the efficient assignment algorithm based on the second strategy.
 The second strategy implies that the assignment algorithm can avoid explicitly dealing with
vast path variables. Namely, our algorithm operates only link variables instead of path
variables, and it generates the link flows by origins / destinations. Note that this does not mean
that our algorithm can produce less information than path based algorithms. From the Markov
property of the LOGIT assignment, the link flows by origin / destination give us enough
information to construct the corresponding path flows: we can obtain any path flows from the
output of this algorithm “as wee needed”. To exploit this property, we construct the assignment
algorithm based on the MCA developed by SASAKI(1965), BELL(1995) and AKAMATSU(1996a).
Although the original MCA assigns the flows over the path set with cycles, the MCA combined
with the first strategy can successfully eliminate all the cycles from the path set. Thus, we can
achieve the purpose.
 The paper is organized as follows. We first briefly review the MCA that is consistent
with LOGIT based route-choice model in Section 1, where we also draw attention to the problem
caused by the cycle flows in MCA. With this problem in mind, the subsequent sections develop
the methods for reducing / eliminating the cycle flows in MCA. In Section 2, we improve the
MCA so as to avoid the simplest cycle flows of “U-turn”: we modify the MCA based on
node-to-node transitions into the model based on link-to-link transitions. In Section 3 we then
incorporate the geometric rotations of paths into the link-based MCA model. Based on these
preliminary analyses, in Section 4 we consider the model whose path set is restricted to simple
paths only, and then the novel method to eliminate the cycle flows without computational burden
is developed. In Section 5, we discuss the extension to the flow dependent model. Finally, we
present our conclusions and discuss the future research.

 4

1．Preliminaries - LOGIT Assignment through Markov Chain

 Preliminary to the presentation of the new models, this section briefly reviews the Markov
Chain Assignment that is consistent with LOGIT type route-choice model. For further detail, see
AKAMATSU (1996a,b,c), BELL (1995) and SASAKI (1965).

1.1. Networks

 Our model is defined on a traffic network G [N, L] which has the set N of nodes, the set L
of directed links and given set of origin-destination(OD) node pairs. The set N consists of three
subset: the set of traversal nodes, N, that of origin nodes, O, and that of destination nodes, D.
The number of nodes in each subset are n, g, and s, respectively. The link from node i to j is
denoted as link (i, j). Each link in L has the travel cost, which is assumed to be fixed (i.e. flow
independent). The extension to the flow dependent costs will be discussed in Section 5.

 In the followings, each node in G is assumed to belong to only one of the subsets N, O, or
D: N O∩ = ∅ , N D∩ = ∅ , and O D∩ = ∅ . In addition, we assume that the number of
links emanating from each origin is unique, and similarly, the number of links entering into each
destination is unique. These assumptions are made only for the clarity of the presentation. In
fact, they do not affect the generality of the subsequent models, since any traffic network can be
modified so as to satisfies these assumptions without loss of generality (see Fig.1.1).

Origin, Destination
and Traversal Node

o d

Origin Destination

 Fig. 1.1. (a) Original network. (b) Modified network.

1.2. Traffic Assignment through Markov Chain

 We consider the network with multiple origins and single destination (“Many-to-One
OD-pattern”). As can be seen in below, we can easily extend the model to the case of
Many-to-Many OD-pattern by simply overlapping the flow pattern for each Many-to-One
OD-pattern. The Markov Chain Assignment by SASAKI(1965) regards the nodes as the states
in Markov chain, and the vehicles generated from origins are assumed to repeat the transition
between the states according to the Markov chain rule. To formulate the model, let Q[d] be the
transition probabilities matrix with the following structure:

 5

 1 g n

Q[d] =
0 0 0
0 0 Q1

Q2[d] 0 Q[d]















 1
 g
 n

 (1.1)

where Q1 is a g×n matrix whose (o, i) component is 1 if the origin o is connected with the

traversal-node i, zero otherwise,
 Q2[d] is an n×1 vector whose i th component is 1 if the destination d is connected with

the traversal-node i, zero otherwise,
 Q[d] is an n×n matrix whose (i, j) component denotes the (non-zero) transition

probabilities, Qij, if traversal-node pair (i, j) is connected by a single link, zero
otherwise.

Then, we easily see that the (i, j) component of Q[d]
k is the sum of choice probabilities of k-

walks paths (i.e. the paths consisting of k nodes) between node pair (i,j). Therefore, the
node-choice probabilities (conditional on being generated from each node) are given by the
matrix series I + Q[dl + Q[dl

2 + Q[dl
3 + ···, and it converges to the following inverse matrix:

 I + Q[d] + Q[d]
2 + Q[d]

3 + ··· = [I－Q[d]]-1 =
I 0 0
P3[d] I P1[d]

P2[d] 0 P[d]














, (1.2a)

 P[d] = [I－Q[d]]-1, (1.2b)

 P1[d] = Q1 P[d], P2[d] = P[d] Q2[d], P3[d] = Q1 P[d] Q2[d], (1.2c)

where P1[d] is a g×n matrix whose (o, i) component, P1[d] (i|o), denotes the probability that a

vehicle generated from origin o uses node i. Thus, we can obtain the link-choice probabilities
by OD-pair, by substituting the P1[d](i|o) obtained in (1.2) into the following definitional formula:

 pij
od = P1[d](i|o)･Qij , (1.3)

where pij
od denotes a probability that a vehicle with OD-pair (o,d) choose a link (i, j).

.

1.3. Transition Probabilities Consistent with LOGIT type Route Choice

 At first sight, the MCA above has no background of behavior-theory, but it leads to the
LOGIT based assignment: AKAMATSU (1996a) showed that MCA yields the flow pattern that is
consistent with the LOGIT type route choice model, if the transition probabilities are given by

 Qij =Q[d](j|i) = Wij Vjd / Vid or Q[d] =V2[d]
-1 W V2[d], (1.4)

where Wij ≡ exp[−θ tij], (1.5)

 6

 V Cid r
id

r R id
≡ −

∈ ∞

∑

exp[]θ , (1.6)

 tij : the cost of link (i, j), θ : the sensitivity parameter of LOGIT model,

 Rid
∞ : the set of all the possible paths between traversal-node i to destination d,

 C tr
kd

ij
ij L

r ij
kd≡

∈
∑ δ , : the cost of r th path from node k to destination d,

 V2[d] = an n×n diagonal matrix whose (i, i) diagonal component is Vid.

Note that we can deal with the Many-to-Many OD pattern by simply defining the transition
probabilities for Many-to-One OD patterns by each origin.

 How we calculate the Vid defined in (1.6) is not self-evident since the definition requires
the summation with respect to infinite paths. Nevertheless, BELL (1995) showed that it can be
obtained by the simple matrix operations as follows. Let W be the “impedance” matrix with the
following form:

 s g n

W =
0 0 0
0 0 W1

W2 0 W















 s
 g
 n

 (1.7)

where W1 is a g×n matrix whose (o, i) component is 1 if the origin o is connected with the

traversal-node i, zero otherwise,
 W2 is an n×s matrix whose (i, d) component is 1 if the destination d is connected with

the traversal-node i, zero otherwise,
 W is an n×n matrix whose (i, j) component is Wij = exp[−θ tij] if traversal-node pair

(i, j) is connected by a link, zero otherwise.

Then, it follows that the (i, j) component of W k is the sum of exp[−θ Cr
ij] over the k-walks paths

between node pair (i, j). Therefore, the matrix V is given by I + W + W2 + W3 + ···, and it
converges to the following inverse matrix:

 I + W + W2 + W3 + ··· = [I－W]-1 =
I 0 0

V3 I V1

V2 0 V














 (1.8a)

 V = [I－W]-1, V1 = W1 V, V2 = V W2, V3 = W1 V W2, (1.8b)

where the (o, i) component of matrix V1, the (j, d) component of matrix V2 , and the (o, d)
component of matrix V3 are defined as V Coi r

oi
r

= −∑ exp[]θ ，V Cjd r
jd

r
= −∑ exp[]θ ，and

V Cod r
od

r
= −∑ exp[]θ , respectively.

 7

1.4. LOGIT Assignment through Markov Chain

 To sum up, we can obtain the link-choice probabilities that are consistent with LOGIT
model by the following procedures:

 Step 1: (a) Calculate the variable V by (1.8),
 (b) Determine the transition matrix Q by substituting the V into (1.4).
 Step 2: (a) Compute the node-choice probabilities by the Markov Chain formula (1.2),
 (b) Calculate the link-choice probabilities by (1.3).

 It is worth mentioning that the calculation in Step 2 reduces to the simple calculation as
follows. Substituting (1.4) into (1.2), the node-choice probabilities yields

 P1[d] = Q1 [I－Q[d]]-1 = Q1 [I－V2[d]
-1 W V2[d]]-1

 = Q1 V2[d]

-1 [I－W]-1 V2[d]

 = Q1 V2[d]
-1 V V2[d] . (1.9a)

That is, the (o,i) component of P1[d], P1[d](i|o) = P(i|o,d), is

 P(i|o,d) = δ ok
k

∑ {(1 / Vkd) Vki Vid } = Voi Vid / Vod . (1.9b)

Therefore, the the flow on link (i, j) with OD-pair od, xij
od, is given by the following formula

without explicit calculation of the inverse matrix [I－Q[d]]-1:

 xij
od =qod pij

od = qod P(i|o,d)･Q[d](j| i) = qod (Voi Vid / Vod)･(Wij Vjd / Vid)

 = qod Voi Wij Vjd / Vod , (1.10)

where qod is the OD-flow between o and d.

1.5. The Problem Caused by Cycle Flows

 The model above has a solution (i.e. the left hand side of (1.8a) converges and all the
components take positive value) if and only if the spectral radius of W,ρ(W), is less than unity:

 ρ(W)=Max.
i

 λ i < 1, (1.11)

where λi is the i th eigenvalue of matrix W. The condition (1.11), however, may not be

satisfied in some cases. For example, when the network has many cycles with zero costs, the
network can induce infinite cycle flows, which means the non-existence of the solution. There
also may be possibilities that unrealistic cycle flows are assigned even if the model has a
solution. With this problem in mind, we will develop methods for reducing / eliminating the
cyclic flows in the subsequent sections.

 8

2．Markov Chain Assignment based on Link-to-Link Transitions

2.1. Markov Chain Assignment on a Line-Graph

 The cycle flows that have the worst effect on the assignment flow pattern in practical
applications are “U-turn” flows in a pair of opposite-directional links that connect the same
node-pair. For example, the network shown in Fig.2.1 can induce excessive U-turn flows that
repeat going between links 4 and 6. This kind of cycle flows, however, can be easily
eliminated by using the concept of “line-graph” (for the definition, see, for example,
WILSON(1985), TAKENAKA(1989) etc.).

1

2

3

4o d
1

2

3

4

5

6

7

8

Fig. 2.1. An example network.

 Let us consider a line-graph G*(N*, L*) of a given original network G(N, L): each node in
N* has one-to-one correspondence to a link in L, and the nodes in N* are connected by links in L*
if the corresponding links in L are adjoining. Note here that the “U-turn” movement in G(N, L)
corresponds to a movement between a pair of nodes in N*. Therefore, we construct L*
eliminating the links that connect such node pairs in N*. Then any assignment models on the
graph G*(N*, L*), clearly, can not generate the “U-turn” flows. Thus, by considering a Markov
chain assignment on G*(N*, L*), we can obtain a link flow pattern explicitly avoiding the “U-turn”
flows.
 Fig.2.2 illustrates the line-graph G*(N*, L*) for the example network G(N, L) shown in
Fig.2.1. In the line-graph the nodes 4 and 6 are not mutually connected, and therefore, we see
that the Markov chain assignment on G*(N*, L*) does not generate any cycle flows.

1

2

3

4

6

7

8

5

Fig. 2.2. A line-graph.

 It is worth a mention in passing that this technique can be used not only for eliminating the
cycles but also for representing turn-restrictions due to traffic control policies: we have only to
eliminate the appropriate links in the line-graph corresponding to the turn-restrictions.

 9

2.2. The Implementation of the Link based Markov Chain Assignment

 In order to implement the idea above, we slightly modify the previous MCA model as
follows. Note first that a Markov chain on G*(N*, L*) corresponds to the Markov chain based
on “link-to-link” transitions on G(N, L). Hence, it is natural to consider a “link-to-link”
impedance matrix instead of the “node-to-node” matrix in the previous MCA model. Before
giving the formal representation, we first classify the link set L into the following three subsets:

 LO : the set of links emanating from origins, where the number of elements is g,

 LD : the set of links entering into destinations, where the number of elements is s,
 L : the set of the other links (LO ∪ LD ∪ L =L), where the number of elements is l .

We then define the link-to-link impedance matrix with the following structure:

s g

s
g

l

l

$ $
$ $

W W
W W

=

















0 0 0
0 0

0
1

2

 (2.1)

where the following matrix notation is used:
a) $W is an l× l matrix whose (a, b) component $Wab is exp(?θ tb) if the movement from link

a to link b is permitted [when the movement involves the junction delay, dab, it is also
appropriate to define $Wab = exp(?θ (tb +dab))], zero otherwise;

b) $W1 is a g× l matrix whose (o, a) component $Woa is exp(?θ ta) if link o in LO is adjoining to

link a in L , zero otherwise;
c) $W2 is an l×s matrix whose (a, d) component $Wad is 1 if link a in L is adjoining to link d

in LD, zero otherwise.

 The definition of the impedance matrix is designed such that the (a,b) component of $Wk
yields the sum of exp(?θ Cr

ab) over the k+1-walks paths between link-pair (a,b), where Cr
ab denotes

the cost of r th path between link a and link b in G(N, L) excluding ta. Accordingly, the Markov
chain assignment based on the link-to-link transition probabilities defined by

 Q b a W
V

Vab
bd

ad

() $
$

$
$

$

 = ∀ ∈a b, L, $d ∈LD (2.2)

 $ exp[]$
$

$

V C
ad r

ad

r Rad

≡ −
∈ ∞

∑ θ $d ∈LD (2.3)

yields the LOGIT type assignment. The proof almost parallels the case of the node-to-node
MCA model, and it is omitted here. It also immediately follows that ˆ V = [ˆ V ab ; ∀ ∈a b, L] can be

obtained by
 ˆ V = [I − ˆ W]−1 , (2.4)

 10

and that $V1 ≡ [$
$Voa ;∀ ∈ ∀ ∈a L o, $ LO], $V2 ≡ [ˆ V

a ˆ d
;∀ ∈ ∀ ∈a L d, $ LD], and $V3 ≡ [$

$ $V
od

;∀ ∈$o LO,

∀ ∈$d LD] are, respectively, given by

 $ $ $V W V1 1= , $ $ $V V W2 2= and $ $ $ $V W V W3 1 2= . (2.5)

Finally, the formula for the link flow can be obtained by utilizing the fact that the link-choice
probability means the node-choice probability in the line-graph. That is, considering the
correspondence to (1.9b) in the node-to-node MCA model, we have the following formula for
the flow on link a with OD pair od:

 x q V V Va
od

od oa ad od
= $ $ / $

$ $ $ $, $o ∈LO, $d ∈LD. (2.6)

Thus, we can efficiently obtain the link flow pattern that is consistent with LOGIT model
explicitly avoiding the “U-turn” flow.
 It is expected in many practical applications that the modified MCA model can avoid the
problem that the solution does not exist due to the excessive cycle flows. Nevertheless, the
model may not necessarily yields the satisfactory flow pattern, since there still be a possibility
that excessive flows are assigned on various possible cycles except “U-turn”. In the next
section we will further devise another method for mitigating the cycle flows.

3． Markov Chain Assignment with Geometric Rotations

3.1. Rotation-angles between Links

 Conventional stochastic assignment models assign the flows to many paths by some criteria
based on the one-dimensional factor “travel time”. In contrast, various traffic surveys have
reported that the share of “mazy” paths with many zigzaggings or turns are very small even if the
travel times are moderate. In light of this fact, it is reasonable to introduce not only the travel
time but also the geometric factors into the path-choice model.
 To develop such a model, consider first the 2-dimentional Euclid geometric space to
represent the geographic position of nodes in a traffic network. Then the links can be
represented as vectors on 2-dimentional real number space R2. In other word, we can regard a
traffic network as a set of vectors on R2. Using the vectors, we define the rotation-angle
between mutually adjacent links a and b as follows:

 ωab =

sgn(
r
a ,

r
b)⋅ cos −1

r
a ⋅

r
b

r a
r
b









 , 0 ≤ω ab ≤ π , (3.1)

where
r
a is a vector representing link a on R2; and sgn(

r
a ,

r
b) = +1 if the movement from

r
a to

 11

r
b is right-handed turn, -1 otherwise (See Fig.3.1).

r
a

r
bωab

+−

ωac

rc

Fig. 3.1. The rotation-angle between mutually adjacent links

Then the total rotation-angle along r th path between OD pair od is naturally introduced as the
sum of the absolute angles between adjoining links on the path:

 Dr
od

ab r ab
od

a b

≡
∈

∑

ω δ ,
(,) Λ

， (3.2a)

where δr ab
od
, is 1 if the mutually adjacent links a and b are on r th path between OD pair od, zero

otherwise, Λ is the set of link-pairs where the two links are mutually adjacent. Similarly, the
“net” total rotation-angle for the path is also defined as follows:

 Er
od

ab r ab
od

a b

≡
∈

∑

ω δ ,
(,) Λ

. (3.2b)

 In addition, we define the rotation-angle between links that are not mutually adjacent.
While the definition is basically the same as that for the mutually adjacent links, we should note
the definition when two links are in a parallel position. The angle between the parallel links a
and b is defined as follows:

 Step 1: add two virtual links between the links a and b so as to construct a cycle (See
Fig.3.2);

 Step 2: if the cycle is right-handed then ωab = π and ωba = −π,
 otherwise ωab = −π and ωba = π.

ra

r
b

ra

r
b

 Fig.3.2. (a) Right-handed link-pair. (b) Left-handed link-pair.

 12

3.2. LOGIT assignment with Geometric Rotations

 To incorporate the geometric factors into the path-choice model, suppose that the
systematic utility for the r th path between o and d, Ur

od, is represented as

 Ur
od = −θ Cr

od − σ Dr
od , (3.3)

whereσis a “sensitivity” parameter for the total rotation-angle. Then, by assuming the error

term of the utility function to be i.i.d Gumbel distribution, the probability that users choose r th
path between OD pair od yields

 P
C D

C Dr
od r

od
r
od

r
od

r
od

r Rod

=
− −

− −
∈ ∞

∑
exp[]

exp[]
θ σ

θ σ

=

∈ ∞

∑

A

A
r
od

r
od

r Rod

, (3.4a)

 A C Dr
od

r
od

r
od≡ − −exp[]θ σ , (3.4b)

and the resulting link flow pattern is given by

 x q Pa
od

od r
od

r a
od

r Rod

=
∈ ∞

∑ δ , . (3.5)

 Since this model is basically a LOGIT model, we can construct the corresponding MCA.
Unlike the previous MCA, we can expect that this MCA does not give rise to much cycle flows,
since the paths with cycles have large negative utilities due to the rotation-angles.
 The algorithm for this model is almost same with that for the previous MCA model. The
only difference is the slight modification of the link impedance matrix: the (a,b) component of the
matrix is defined as

 $ exp[]W tab b ab= − −θ σ ω . (3.6)

The reason why this modification yields the LOGIT assignment model in (3.4a), (3.4b) and (3.5)
can be easily understood from the fact that the (a,b) component of $Wk yields the sum of
exp(− −θ σ C Dr

od
r
od) over the k+1-walks paths between link-pair (a,b).

 Thus, one may expect that the model combined with the technique in Section 2 greatly
reduces cycle flows in many cases. The model, however, does not achieve our purpose, since it
still remains a possibility of generating unrealistic flow patterns. For example, the model can
not distinguish between a path with one cycle and a simple path with 4 rectangular turns, while
almost all real users think the former path unreasonable. Recall here that the model shown
above did not utilize the net total rotation-angles Er

od defined in (3.2b) at all. Interestingly, the
exploitation of the Er

od gives us the innovative method to achieve the complete elimination of
cycle flows, which will be presented in the next section.

 13

4．Complete Elimination of Cycle Flows

4.1. LOGIT type Route Choice Model without Cycles

 In this section we will consider the method for obtaining the link flow pattern according to
the following LOGIT model:

 P
C D

C Dr
od r

od
r
od

r
od

r
od

r Rod

=
− −

− −
∈
∑

exp[]

exp[]
()

θ σ
θ σ

0

=

∈
∑

A

A
r
od

r
od

r Rod ()0

, (4.1a)

 x q Pa
od

od r
od

r a
od

r Rod

=
∈
∑ δ ,

()0

, (4.1b)

where the Rod(0) is the set of simple paths between nodes o and d. Note that the path set in (4.1),
unlike the MCA model in Section 3, consists of the simple paths only; the cycle flows are
explicitly eliminated. The main focus here is, thus, to develop the method for achieving the
complete elimination of cycle flows by exploiting the Er

ab introduced in the previous section.
 Just as in the case of the previous MCA, the method presented in this section consists of the
following two steps:
 Step 1: Calculate the matrix $V whose (a,b) component is defined as

 $
()

V Aab r
ab

r Rab
≡

∈
∑

0
. (4.2)

 Step 2: Compute the link flows by

 x q X Va
od

od a
od

od= / $, (4.3a)

 X Aa
od

r
od

r a
od

r Rod

≡
∈
∑ δ ,

()0

. (4.3b)

Before going into the detailed discussions on the steps above, we will first examine the basic
properties of the net rotation-angle Er

ab in 4.2. Making use of the properties, we then develop a
novel method for achieving Step 1. The considerations on the method is divided into two parts,
which are presented in the subsequent sections 4.3 and 4.4, respectively. Finally, the method
for calculating the Xa

od in Step 2 is presented in 4.5.

4.2. Basic Properties of the Path Rotation-angle

 Let us consider the properties of the net rotation-angle defined in (3.2). First, it is easily
observed that the rotation-angle of a path between links a and b, Er

ab, is equal to −wba if the path
contains no cycles. For example, the path (a,b,c) in Fig.4.1 (a) contains no cycles, and the
rotation-angle is Eac = ωab + ωbc = −ωca or Eac + ωca = 0. Next, consider the cases where the
path contains cycles. In the example of Fig.4.1 (b), the path (a,b,c,d,e) contains one left-handed

 14

cycle, and the rotation-angle is Eae + ωea = ωab + ωbc + ωcd + ωde+ ωea = −2π. Similarly, the
path (a,b,c,d,b,c,d,e) has double left-handed cycles, and Eae + ωea = −4π. Thus, we see that Er

ab
+ wba =2mπ (m=±1,±2,...) for the paths with cycles, and that the value of Er

ab + wba can be a

“detector” that shows whether the path contains cycles or not. Note, however, that there is a
particular case that the Er

ab + wba can be zero even if the path contains cycles: when we consider
the path where the number of right-handed cycles, NR , is equal to that of left-handed cycles, NL ,
the Er

ab + wba yields zero since the rotation-angles for the respective cycles mutually cancel.

ra

rc

rc

r
b

ωab

ωbc

ωca

ra

r
b

r
c

r
d

r
e

r
e

ωea

ωbc

ωcd

 Fig. 4.1. (a) Path (a,b,c) (b) Path (a,b,c,d,e)

 To give the formal representation of these properties, we denote by Rk
ab the set of k-walks

paths between links a and b (paths from link a to link b consisting of k links). The path set can
be classified into the following three subsets:

 Rk
ab ()0 : the subset of Rk

ab , which consists of the only paths containing no cycles,

 Rk
ab ()1 : the subset of Rk

ab , which consists of the paths such that NR ≠ NL,

 Rk
ab ()2 : the subset of Rk

ab , which consists of the paths such that NR =NL ≠ 0.

Similarly, we also classify the set of paths between links a and b, Rab, into three subsets:

 Rab(m) ≡ ∪
=

∞

k
Rk

ab m
1

() for m=0,1, and 2.

Then, the path rotation-angle satisfies the following:

 E

r R

m m r R

r R
r
ab

ba

ab

ab

ab

+ =

∈

= ± ± ∈

∈









ω π

 0

 0

()

(, ,...) ()

()

0

2 1 2 1

2

(.)

(.)
(.)

4 4

4 4
4 4

a

b
c

 In the subsequent secction 4.3, we first consider the method for calculating the sum of Ar
ab

for the path set Rab(0)∪Rab(2) (i.e. we eliminate the sum for Rab(1)); and then we proceed to the
method to further exclude the path set Rab(2) as well as Rab(1) in section 4.4.

 15

4.3. Elimination of the Path Set R(1)

 Suppose for the moment that the path set Rod(2) is excluded from Rod by an appropriate
method: we assume that Rod = Rod(0) ∪ Rod(1). Then, the $Vod defined in (4.2) can be

re-written as follows:

 $
()

V Aod r
od

r Rod
=

∈
∑

0
 = δ ω()E Ar

od
do r

od

r Rod
+ ⋅

∈
∑ , (4.5a)

where δ
π

()
. .

z
 if z 0

otherwise i e z = 2m m= 1, 2,...
≡

=
± ±





1
0

 (,)

.
 (4.5b)

Recall here the Fourier series expansion of Dirac’s delta-function:

 δ
π

() cosz
T T

n
T

z
n

= +






=

∞

∑1 2 2

1

 =






=−∞

∞

∑1 2
T

i
n
T

z
n

exp
π

 for − ≤ ≤T z T/ /2 2 , (4.6)

where i denotes an imaginary unit. From (4.5) and (4.6), we see that $Vod is represented by the

(complex) exponential function, which can be decomposed into link variables. Thus, if we
construct the MCA model based on the appropriate impedance matrix that is consistent with (4.6),
the sum of Ar

ab for Rab(1) would naturally be eliminated. The procedure presented below is,
in essence, the realization of this idea.
 Let ˆ W (n, N) be the “complex impedance” matrix with the following (a, b) component:

 $ exp[](,)W t i
n
Nab b ab abn N = − − +θ σ ω ω = Wab Yab(n,N) (4.7)

where W tab b ab≡ − −exp[]θ σ ω ,Y i
n
Nab abn N(,) exp[]≡ ω , and (n,N) are the integers satisfying

1 ≤ n ≤ N . Then, the (a, b) component of the k th power of the matrix, ˆ W ab (n,N)k , yields

 $ exp[](,)W A i E
n
Nab r

ab

k
ab

r
abn N k

r R
=

∈ +

∑
1

, (4.8)

where Rk +1
ab is the set of k+1-walks paths between links a and b. Therefore, it immediately

follows from (4.4a) and (4.4c) that

$ exp[()]

exp[()]

(,) (,)

() () ()

W Y A i E
n
N

A A A i E
n
N

ab ba r
ab

k
ab

r
ab

ba

r
ab

k
ab

r
ab

k
ab

r
ab

k
ab

r
ab

ba

n N k n N
r R

r R r R r R

= +

= + + +

∈ +

∈ + ∈ + ∈ +

∑

∑ ∑ ∑
1

1 1 10 2 1

ω

ω

.
 (4.9)

 16

 The present subject here is to eliminate the third term of the r.h.s. of (4.9), which leads us
to exclude the summation with respect to the path set Rab(1) in the calculation of $V . In order to
construct the elimination method, recall the fact that the value of Er

ab + ω ba in the third term must
be 2mπ , (m =±1,2,...). Considering this property and the (4.6), we have

1

1
1

11N
A i E

n
N

Ar
ab

k
ab

r
ab

ba
n

N

r
ab

k
abr R r R N

 ∈ +

= ∈ +

∑∑ ∑+ =
() ()

exp[()]ω , (4.10)

where Rk +1
ab (N) is the subset of Rk +1

ab (1) such that Er
ab + ω ba = (2Nπ)× l , (l =±1,±2,...).

 Table 4.1 shows the simple numerical example for (4.10) when there is only a single route,
N = 3, and Ar

ab=1. The number in each cell denotes the value of

 Re(exp[i z
n
N

]) = COS (z
n
N

) = COS (2 mπ
n
N

),

where zαEr
ab + ω ba, and the rows and the columns correspond to n = 1,2,3 and m = 1,2,...,

respectively. The final row denotes the Σn COS (z n/N)) for z = 2mπ (m =0,1,2,...). As seen in
the table, the Σn COS (z n/N)) yields zero, except the cases where z = (2Nπ)× l = 0, 6π, 12π,....
Thus, the r.h.s. of the (4.10) reduces to the sum over the paths such that Er

ab + ω ba = (2Nπ)× l .

 Table 4.1. The numerical example of (4.10):
 COS (z n/N) and Σn COS (z n/N) for zαEr

ab + ω ba =2 mπ (m =0,1,2,...).

n
↓

 m →
zαEr

ab + ω ba →
0
0

1
2π

2
4π

3
6π

4
8π

5
10π

6
12π

...

1 COS (z / 3) → 1.0 -0.5 -0.5 1.0 -0.5 -0.5 1.0 ...
2 COS (2z / 3) → 1.0 -0.5 -0.5 1.0 -0.5 -0.5 1.0 ...
3 COS (3z / 3) → 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ...

 Sum. 3.0 0.000 0.000 3.0 0.000 0.000 3.0 ...

 Note that the period (of z) that Σn COS (z n/N)) takes non-zero value grows as we increase N.
Hence, by letting N be infinity in (4.10), we can eliminate the summation for the Rk +1

ab (1):

 lim
N→∞

1
N

 Ar
ab

r∈R k+1
 ab (1)

∑ exp[i (E r
ab + ωba)

n
N

]
n=1

N

∑



 




 = 0 . (4.11)

Combining (4.9) and (4.11), we have

 lim
N→∞

1
N

Wab(n,N)k Yba (n, N)
n=1

N

∑








 = Ar

ab

r∈ R k +1
 ab (0)

∑ + Ar
ab

r∈ R k+1
 ab (2)

∑ , (4.12)

and furthermore, summing up (4.12) for k=1,2,..., gives us

 17

 lim (,) (,)
() ()N

k

r R r R
N

W n N Y n N A Aab ba

n

N

k

r
ab

ab
r
ab

ab→∞ ∈ ∈==

∞

∑∑ ∑ ∑










 = +

1

11 0 2

.

Namely, the sum of Ar
ab for the path set Rab(0)∪Rab(2) (i.e. the path set where the Rab(1) is

excluded) is given by the (a, b) component of the following matrix:

 lim
N N→∞

1 ()I Y∗ ∗ ∗+ + +
=

∑ (,) (,) (,) (,) (,)$ $n N n N n N n N n NT T T

n

N

W Y W Y
2

1

L

 = lim
N N→∞

1 ()[I W] Y− − ∗
=

∑ $ (,) (,)n N n N T

n

N
1

1

, (4.13)

where X∗ Y≡the component-wise multiplication of matrices X=[Xab] and Y=[Yab] (=the matrix
whose (a,b) component is XabYab), Y(n,N)≡the matrix whose (a,b) component is Yab(n,N).

4.4. Elimination of the Path Set R(2)

 Let us extend the previous method so as to eliminate the path set Rab(2) as well as Rab(1).
Suppose now that the set of k-walks paths containing no cycles,{Rk

ab (0) ∀(a,b)}, is given.

Then we can construct the k+1-walks paths by adding only one link to the paths in
{Rk

ab (0) ∀(a,b)}. We denote the set of the k+1-walks paths by { ˜ R k+1
ab (0) ∀(a,b)}. Clearly, the

number of cycles contained in each k+1- walks path in { ˜ R k+1
ab (0) ∀(a,b)} is at most one.

Hence, the following holds for the paths in { ˜ R k+1
ab (0) ∀(a,b)}:

 Er
ab +ωba = 0 if the path contains no cycles, (4.14a)

 Er
ab +ωba = ±2π otherwise. (4.14b)

Consequently, if the path set in the summation in (4.8) was not Rk +1
ab but ˜ R k +1

ab (0) , (4.12) would
have reduced to the summation with respect to the only path set Rk +1

ab (0) (i.e. the terms for

Rk +1
ab (2) as well as Rk +1

ab (1) vanishes). Besides, since Er
ab

ba+ ≤ω π2 for the path set ˜ R k +1
ab (0) ,

it is not required to let N in (4.12) be infinity: setting N=2 is enough for eliminating the cycles.
 The idea above can be stated more formally as follows. Given the k-walks path set
{Rk

ab (0) ∀(a,b)}, define a matrix ˆ W (n,N)[k − 1] whose (a,b) component is

 $ exp[] $(,) (,)[]

() ()

W A iE
n
N

Aab r
ab

r
ab

k
ab

r
ab

k
ab

n N n Nk

r R r R

− ≡ =
∈ ∈

∑ ∑1

0 0

 , (4.15)

where $ exp[](,)A A i E
n
Nr

ab
r
ab

r
abn N ≡ . Then, the (a, b) component of $ $(,2) (,2)[]W Wn nk−1 yields

$ $(,2) (,2)[]

()

W Wap pb
A a

n nk

p

−

∈
∑ =1 $ (,)

~
()

Ar
ab

k
ab

n
r R

2

1 0∈ +

∑ , (4.16)

 18

where A(a) denotes the set of links emanating from the end-node of link a (Note that the
$ $(,2) (,2)[]W Wn nk−1 is not equal to the $ (,2)W n k nor the $ (,2)[]W n k while it plays a similar roll

with the $ (,2)W n k in (4.12)). Applying the same argument as (4.12) to (4.16), we see that the
sum of Ar

ab for the path set Rk +1
ab (0) is given by the (a,b) component of the following matrix:

 ()~ $ $[] [](,2) (,2) (,2)W W W Yk k

n
n n n T≡ ∗−

=
∑1

2
1

1

2

. (4.17)

Since the $Vab in (4.2) is defined as the sum of Ar
ab for the path set Rab(0) = ∪

=

∞

k
k
abR

1
(0), the matrix

$V with the component $Vab can be obtained by simply summing up (4.17) with respect to k. In

addition, considering the fact that the number of links contained in the path without no cycles is at
most l (=the number of links in L), we have

 $ ~ ~ ~ ~[] [] [] []V I W W W W= + + + + =−

=

−

∑1 2 1

0

1

L l
l

k

k
, (4.18)

where ˜ W [0] ≡ I (a unit matrix).
 We showed thus far the method for obtaining $V when the path set {Rk

ab (0) ∀(a,b)} or

the matrix $ (,2)[]W n k − 1 are given in calculating ~
(,2)[]W n k . In the following, we consider the

method for obtaining the matrix $ (,2)[]W n k − 1 such that it works successively in ascending

order of k : first, we set $: $(,2)[] (,2)W W n n1 = for k=1; and then, for each k≧2, we calculate

the matrix $ (,2)[]W n k using the $ (,2)[]W n k − 1 previously obtained. Thus, the present subject is

to constitute the appropriate formula for the successive calculation for k≧2.
 To find the formula, let us first compare the definition of $ (,2)[]W n k and the
$ $(,2) (,2)[]W Wn nk−1 : the (a,b) component of $ $(,2) (,2)[]W Wn nk−1 is given by (4.16), and that of
$ (,2)[]W n k is defined as

 $ $(,2) (,2)[]

()

W Aab r
ab

k
ab

n nk

r R

≡
∈ +

∑
1 0

. (4.15’)

Note here that the set ~Rk
ab
+1 (0) in (4.16) can be classified into two subsets Rk

ab
+1 (0) and ~Rk

ab
+1 (1):

 ~Rk
ab
+1 (0) =

~Rk
ab
+1 (1) ∪ Rk

ab
+1 (0) and ~Rk

ab
+1 (1) ∩ Rk

ab
+1 (0) = ∅ ,

where the path set ~Rk
ab
+1 (1) is defined as ~Rk

ab
+1 (0) ∩ Rk

ab
+1 (1) (see Fig.4.2). Thus it follows that

$ $(,2) (,2)[]

()

W Wap pb
A a

n nk

p

−

∈
∑ −1 $ $ $(,) (,) (,)[]

() ()
~

W A Aab r
ab

k
ab

r
ab

k
ab

n n nk

r R r R

2 2 2

1 10 0

= −
∈ + ∈ +

∑ ∑

 =
∈ +

∑ $ (,)
~

()

Ar
ab

k
ab

n
r R

2

1 1

 (4.19)

 19

R k+1

ab

R k+1
ab (1)

R̃ k+1
ab (1)

R̃ k+1
ab (0)

R k+1
ab (0)

R k+1
ab (2)

Fig. 4.2. The classification of k+1-walks paths.

Therefore, given a matrix Z(n,2)
[k]

 whose (a,b) component is defined as

 Zab(n,2)
[k] ≡

∈ +

∑ $
~

()

(,2)Ar
ab

k
abr R

n

1 1

, (4.20)

we have the following successive equation for calculating $ (,2)[]W n k in ascending order of k:

 $: $ $(,2) (,2) (,2) (,2)[] [] []W W W Z n n n nk k k= −−1 . (4.21)

 The Zab(n,2)
[k]

 can be calculated without explicitly dealing with path variables, while the
definition in (4.20) is represented by the summation with respect to the path set ~Rk

ab
+1 (1). Recall

now the particular property for ~Rk
ab
+1 (1): if the k+1-walks path a → ･･･ → p → b belongs to ~Rk

ab
+1 (1),

 ˆ W ap(n,2)[k−1] ˆ W pb (n,2) Yba (n,2)
n=1

2

∑ = 0 . (4.22)

For the concrete example, consider two 5-walks paths between links a and b as shown in Fig.4.3.
The path a → ･･･ → p → b belongs to ~R ab

5 (1) , where we can examine that (4.22) holds. On the other
hand, for another path (a → ･･･ → q → b) that belong to R ab

5 (0), it is easily seen that (4.22) does

not hold.

p

q

a

b

Fig. 4.3. Example network to consider (4.22).

 20

 From this property, the Zab(n,2)
[k]

 is, clearly, computed by

 Zab(n,2)
[k]

 :=

$ $(,2) (,2)[]W Wap pbn nk

p ab

−

∈

∑ 1

Ψ

, (4.23)

where Ψab is the set of links {p} such that (4.22) hold. Thus, the $ (,2)[]W n k can be

successively obtained in ascending order of k by the formula (4.21)-(4.23).

4.5. Calculation of Link Flows

 We are now in a position to discuss the method for obtaining the link flows. For the
calculation we can not use the formula for the MCA model presented in Section 2:

 x q V V Va
od

od oa ad od= $ $ / $, o ∈LO, d ∈LD. (2.6)

The reason is that the denominator of (2.6) contains the term for the paths with cycles. More
specifically, the multiplication of $Voa and $Vad yields

 $ $
() ()

V V A A Aoa ad r
oa

r
ad

r
od

r R r R r Roa ad
a
od

=

















 =

∈ ∈ ∈
∑ ∑ ∑

0 0

, (4.24)

where Ra
od is the set of paths in which each path is constructed by connecting the following two

kinds of paths: the paths between links o and a in Roa(0), and the paths between links a and d in
Rad(0). Note that the path (o→ ･･･ → a→ ･･･ → d) in Ra

od can contain cycles, even if both the

paths (o→ ･･･ → a) and (a→ ･･･ → d) contain no cycles (for the simple example, see Fig. 4.4).
Therefore, we must replace the $ $V Voa ad in (2.6) with the variable Xa

od defined as

 X A Aa
od

r
od

r a
od

r R
r
od

r Rod
a
od

≡ =
∈ ∈
∑ ∑δ ,

() ()0 0

, (4.25)

where Ra
od (0) denotes the subset of Ra

od whose elements are restricted to the simple paths.

a

o
d

Fig. 4.4. The path (o→ ･･･ → a→ ･･･ → d) containing a cycle.

 To consider the method for calculating the Xa

od, we first classify the set Ra
od (0) by the

number of links contained in the paths; we denote by Ra
od (0: j+k) the set of the simple paths

between o and d where each path is constructed by connecting the following two kinds of paths:

 21

the j-walks paths between o and a, and the k-walks paths between a and d. Corresponding to
this classification, we define X a

od j k []+ as the sum of Ar
od for the paths in Ra

od (0: j+k):

 X Aa
od j k

r
od

r R j ka
od

 []

(:)

+

∈ +

≡ ∑
0

. (4.26)

Clearly,

 X Xa
od

a
od j k

k

j

j

= +

=

−

=
∑∑ []

11

ll

. (4.27)

In precisely the same fashion, we also classify the path set Ra
od , and we denote by Ra

od (j+k) the
subset corresponding to the subset Ra

od (0: j+k) for the set Ra
od (0).

 The key to calculate the X a
od j k []+ is the fact that the number of cycles contained in any

paths in Ra
od (j+k) is at most one. From this fact, we see that the sum of Ar

od for the paths
in Ra

od (0: j+k), X a
od j k []+ , can be obtained by subtracting the terms such that Er

ab +ωba = ±2π
from the sum for the paths in Ra

od (j+k). Hence, by applying the similar method as shown in 4.4,

we obtain

 ()X W W Ya
od j k

oa
j

ad
k

do
n

n n n [] [] []$ $(,2) (,2) (,2)+

=

= ∑1
2 1

2

. (4.28)

Substituting this into (4.27), we have

 X a
od ()=







==

−

=
∑∑∑1

2 1

2

11

$ $(,2) (,2) (,2)[] []W W Yoa
j

ad
k

do
nk

j

j

n n n
ll

 =
===

∑∑∑1
2 111

2

Y W Wdo oa
j

ad
k

kjn

n n n(,2) (,2) (,2)$ $[] []
ll

 =
=

∑1
2 1

2

Y V Vdo oa ad
n

n n n(,2) (,2) (,2)
~ ~

 ,

(4.29)

where

 ~ $(,2) (,2)[]V Wab ab
k

k

n n≡
=

∑
1

l

. (4.30)

 As shown in Section 4.4, the $ (,2)[]Wab
kn can be computed in ascending order of k, and

therefore, the ~
(,2)Vab n in (4.29) also can be easily obtained. Thus, we see that the link flows

can be calculated by the following formula:

 x q V V Y Va
od

od oa ad
n

do odn n n=
=

∑1
2 1

2

~ ~ / $(,2) (,2) (,2) , o ∈LO, d ∈LD. (4.31)

 22

5．Extension to the Stochastic Equilibrium Model

 In this section we first discuss the implementation issues of the model presented in the
previous section, and then we extend the model and algorithm to the flow dependent case.

5.1. The Outline of the Assignment Algorithm

 The considerations for the assignment over a path set R(0) so far can be summarized as the
following algorithm:

Step 0: Initialization

 for each (a,b) in L × L do begin
 $:Vab = 0 ;

~ :[]Wab
1 0 = ;

 for n = 1 to 2 do begin

 Yab(n) := exp[i ωab / n]; $: exp[]()[]W tab b abn 1 = − −θ σ ω Yab(n) ; (5.1)

 end
 end;

Step 1: Calculation of Matrix [$Vab]

 for k = 2 to l do begin
 for each (a,b) in L × L do begin

 $ ()[]Wab
k1 := 0; $ () []Wab

k2 := 0;
~[]Wab

k := 0;

 for each p in A(a) do begin
 X := 0;
 for n = 1 to 2 do begin

 wp(n) := $ ()[]Wap
kn −1 $ () []Wpb n 1 ; X := X + wp(n) Yba(n) (5.2)

 end;

 for n = 1 to 2 do if X ≠ 0 then $ ()[]Wab
kn := $ ()[]Wab

kn + wp(n) (5.3)

 end;
 for each q in A(a) do for n = 1 to 2 do

~[]Wab
k :=

~[]Wab
k + wq(n)Ybq(n) ; (5.4)

 $Vab := $Vab +
~[]Wab

k / 2; (5.5)

 for n = 1 to 2 do
~Vab (n) :=

~Vab (n) + $ ()[]Wab
kn (5.6)

 end
 end;

Step 2: Calculation of Link Flows by OD-pairs

 for each (o,d) in LO × LD do

 for each a in L do xa
od :=

1
2 1

2

q V n V n Y n Vod oa ad do od
n

 ~ () ~ () () $
=

∑ ; (5.7)

 23

5.2. Some Improvement of the Algorithm

 In 5.1, we showed only a prototype of the algorithm. For the practical applications, however,
the algorithm should be improved from the view point of both the required storage and the
computational effort. First, we do not have to store $ ()[]W n ab

k or ~[]Wab
k for all k : obviously,

only the temporal ~[]Wab
k should be stored. Secondly, it is expected in many cases that we can

truncate the algorithm before k reaches l , since the maximum number of links contained in any
simple paths in practical networks is usually much smaller than l . Finally, it is not necessarily
required for the calculation of {xij

od} to store { $Vab ∀ ∈ ×(,)a b L L}; storing { $Voa ∀ ∈ ∀ ∈a L o LO, } and

{ $Vad ∀ ∈ ∀ ∈a L d LD, } is advantageous from the view point of the required storage. From these

considerations, the steps 1 and 2 in 5.1 can be modified as follows:

Step 1 (a): Calculation of Matrix [$Voa] for each origin o
 for each o in LO do begin flag := 1;
 while flag = 1 do begin flag := 0;
 for each a in L do begin Wa(1) := 0; Wa(2) := 0; Z :=0;
 for each p in A(a) do begin X := 0;
 for n = 1 to 2 do begin

 wp(n) := Wp(n) $ ()[]Wpa n 1
 ; X := X + wp(n) Ypa(n) (5.2a)

 end;
 for n = 1 to 2 do if X ≠ 0 then Wa(n) := Wa(n) + wp(n) (5.3a)
 end;
 for each q in A(a) do for n = 1 to 2 do Z := Z + wq(n)Yqo(n) ; (5.4a)
 $Voa := $Voa + Z / 2 ; if Z ≠ 0 then flag := 1;

 for n = 1 to 2 do
~Voa (n) :=

~Voa (n) + Wa(n) (5.6a)
 end
 end
 end;

Step 1 (b): Calculation of Matrix [$Vad] for each destination d
 for each d in LD do begin flag := 1;
 while flag = 1 do begin flag := 0;
 for each a in L do begin Wa(1) := 0; Wa(2) := 0; Z :=0;
 for each p in A(a) do begin X := 0;
 for n = 1 to 2 do begin

 wp(n) := $ ()[]Wap n 1 Wp(n) ; X := X + wp(n) Ypa(n) (5.2b)

 end;
 for n = 1 to 2 do if X ≠ 0 then Wa(n) := Wa(n) + wp(n) (5.3b)
 end;
 for each q in A(a) do for n = 1 to 2 do Z := Z + wq(n)Ydq(n) ; (5.4b)

 $Vad := $Vad + Z / 2 ; if Z ≠ 0 then flag := 1;

 for n = 1 to 2 do
~Vad (n) :=

~Vad (n) + Wa(n) (5.6b)
 end
 end
 end;

 24

Step 2: Calculation of Link Flows by OD-pairs

 for each (o,d) in LO × LD do begin

 $Vod := $Vad ,where a is a link connected with link o;

 for each a in L do xa
od :=

1
2 1

2

q V n V n Y n Vod oa ad do od
n

 ~ () ~ () () $
=

∑ ; (5.7)

 end;

5.3.Extension to the Flow Dependent (Equilibrium) Case

 We can extend the model to the flow dependent case (i.e. stochastic equilibrium model)
where the link travel time is given by ta = ta(xa). The simple strategy for developing the
algorithm is to employ the method of successive averages (cf. POWELL and SHEFFI (1982),
SHEFFI and POWELL(1982)). It can be summarized as follows:

Step 0: Initialization
(a) Set iteration counter: k := 1.
(b) Find an initial feasible link flow pattern {xa

(1)}.

Step 1: Direction Finding
(a) Set the link cost vector t(k) : ta

(k) := ta(xa
(k)) ∀ ∈a L

(b) Calculate the auxiliary link flow pattern {ya
(k)} by the stochastic assignment for the

fixed link cost pattern {ta
(k)}.

(c) Set the direction vector d(k) : da
(k) := ya

(k) − xa
(k) ∀ ∈a L

Step 2: Link Flow Update
 Update the link flow pattern x(k+1) : xa

(k+1) := xa
(k) +α (k) da

(k) ∀ ∈a L ,
 where α (k) is a real number such that

 0<α (k) <1, α ()k

k

= +∞
=

∞

∑
1

, and ()()α k

k

2

1

< ∞
=

∞

∑ .

Step 3: Convergence Test
 If appropriate convergence criteria are satisfied then stop;
 otherwise set k := k +1 and go to Step 1.

 Obviously, Step 1(b) can be efficiently accomplished by the procedure presented in 5.2. It
is noteworthy that we can not guarantee the convergence if we employ the Dial’s algorithm
instead of our procedure. The reason is that the path set generated by the Dial’s algorithm
varies between iterations due to the updating of the link cost pattern, which prevents us to
guarantee the closedness (see ZANGWILL (1969)) of the algorithmic mapping. On the other hand,
our procedure does not suffer from such troubles, since the path set is fixed whatever link cost
patterns. Thus, we obtained the algorithm that is guaranteed to converge to the stochastic
equilibrium flow pattern.

 25

 For the development of more efficient algorithms, it is convenient to exploit the equivalent
optimization problem for the model. Conventionally, the problem of FISK(1980) is well known
as the equivalent programming for a standard stochastic equilibrium assignment, and therefore,
we may construct the similar the programming for our model. Such an approach, however, can
not exploit the programming as the convenient tool for developing efficient algorithms. The
reason is that the objective function is hard to evaluate due to the explicit inclusion of path flows
as in the Fisk’s problem. Thus, it is natural to seek for a more convenient programming that is
formulated by only link variables. For the assignment model shown in Section 1, AKAMATSU
(1996b,c) showed the following link-based equivalent problem:

[P1] min. ln lnt x x x y ya a
a L

a
o

a
o

a L
k
o

k
o

k No O∈ ∈ ∈∈
∑ ∑ ∑∑+ −







1
θ

 (5.8)

 subject to
 x xa a

o

o O

=
∈
∑ ∀ ∈a L (5.9)

 y xk
o

a
o

a In k
=

∈
∑

()
 ∀ ∈k N , ∀ ∈o O

 (5.10)

 x x qa
o

a In k
a
o

a Out k
ok

∈ ∈
∑ ∑− − =

() ()
0 ∀ ∈k N , k o≠ , ∀ ∈o O

 (5.11)

 xa
o ≥ 0 ∀ ∈a L , ∀ ∈o O

 (5.12)

where In(k) denotes the set of links entering into node k, and Out(k) the set of links emanating
from node k. He also showed that the flow dependent case yields

[P2] min. ln ln()t d x x y ya

a

a L
a
o

a
o

a L
k
o

k
o

k No O

x
ω ω

θ
+ −







∫∑ ∑ ∑∑

∈ ∈ ∈∈

1
0

 (5.13)
 subject to (5.9)-(5-12).

Similarly, we see that the flow dependent version of the model in Section 3 is equivalent to the
following problem:

[P3] min. ln ln()
()

t d x x x y ya ab
b A aa L

a

a

a L
a
o

a
o

a L
k
o

k
o

k No O

x
ω ω ω

θ
+ + −





∈∈∈ ∈ ∈∈

∑∑∫∑ ∑ ∑∑

 1
0

 (5.14)
 subject to (5.9)-(5-12).

 As for the model in Section 4, however, finding the equivalent programming is not a trivial

 26

problem. A naive conjecture is that the programming [P3] is equivalent if we regard that the
feasible region constituted by (5.9)-(5.12) includes no cycles. Although the conjecture is simple,
the proof seems to be somewhat difficult. Regrettably, I must confess that I have not yet
obtained the clear answer to this problem, and it still remains to be studied.

 27

6．Conclusions and Future Research

 In this paper we have developed the efficient method for the LOGIT based stochastic
(equilibrium) assignment model whose path set consists of only simple paths without any
restrictions. To achieve the purpose, the novel technique that represents the network structure
by means of the complex “impedance” (adjacency) matrices was introduced. The technique
combined with the Markov chain assignment (originally developed by SASAKI (1965), BELL (1995)
and AKAMATSU (1996a)) enabled us to completely eliminate the cycle flows from the path set for
the assignment without explicit path enumeration.

 For the future research opportunity, it may be interesting to explore the applications of the
technique to various other problems in the graph / network theory. The reason why we suggest
the exploration is that the technique is fairly natural from the mathematical view point. As is
well known, almost all the contents of the basic graph theory parallels the linear algebra. For
example, the various graph / network problems called “path problem” have the same algebraic
structure with the system of linear equations (see, for example, CARRE (1979), TAKENAKA (1989)
etc.). Recall here that one of the most significant properties of the linear mapping is
“enlargement and rotation”. Obviously, it is essential to analyze the property in not a real
number space but a complex number space. Nevertheless, the mathematical means to represent /
analyze the graph structure in the conventional graph theory have been restricted to the real
number matrices such as incidence matrices or adjacency matrices with zero / one elements; the
“rotation” seems to have been neglected in the theory while the “enlargement” has the
correspondence in the theory. Thus, there seems to be some significant problems that are natural
to be analyzed in complex number space; the classification of graphs by means of the spectra of
the adjacency matrices (see, for example, CVETKOVIC et al. (1978), TAKENAKA (1989) etc.) is such
an example that can be meaningfully extended to the complex case.

 For another important future research, we should mention the exploration of the equivalent
programming problem for the LOGIT based stochastic assignment whose path set consists of
only simple paths. While the derivation of the path-based problem is very easy, the
link-based problem is an open question at present. The link-based programming is
indispensable for the development of the efficient algorithms for the flow dependent case (i.e. the
Stochastic User Equilibrium assignment), and therefore, the construction of the programming is an
important problem to be solved. We hope this study gives the foundation for the construction.

 27

REFERENCES

T. Akamatsu, “Integrated Transportation Network Models based on Stochastic Equilibrium

Approach” (in Japanese), Dr. course Dissertation, Department of Civil Engineering, Tokyo
University, Tokyo, 1990.

T. Akamatsu, “Cyclic Flows, Markov Process and Stochastic Traffic Assignment”, to appear in
Transportation Research Part B (1996a).

T. Akamatsu, “Decomposition of Path Choice Entropy in General Transport Networks”, to
appear in Transportation Science (1996b).

T. Akamatsu, “Partial Linearization Algorithm for Stochastic Equilibrium Assignment without
Path Restrictions”, submitted to Transportation Research Part B (1996c).

T. Akamatsu and Y. Matsumoto, "A Stochastic User Equilibrium Model with Elastic Demand and
Its Solution Method" (in Japanese), Proc. of JSCE 401, pp.109-118 (1989).

M.G.H. Bell, “Alternatives to Dial's Logit Assignment Algorithm”, Transportation Research
29B, pp.287-295 (1995).

J.E. Burrell, “Multipath Route Assignment and Its Applications to Capacity Restraint”, Proc. of
the 4th International Symposium on the Theory of Road Traffic Flow, West Germany, 1968.

J.E. Burrell, “Multipath Route Assignment: A Comparison of Two Methods”, In M. Florian (Ed.)
Traffic Equilibrium Methods, Lecture Notes in Economics and Mathematical Systems 118,
Springer-Verlag, New York, pp.229-239, 1976.

B. Carre, Graphs and Networks, Oxford University Press, 1979.
D.M. Cvetkovic, M.Doob and H.Sachs, Spectra of Graphs, Academic Press, 1978.
C.F. Daganzo, “Unconstrained Extremal Formulation of Some Transportation Equilibrium

Problem”, Transportation Science 16, pp.332-360 (1982).
C.F. Daganzo, “Stochastic Network Equilibrium with Multiple Vehicle Types and Asymmetric

Indefinite Link Cost Jacobian”, Transportation Science 17, pp.282-300 (1983).
C.F. Daganzo and Y. Sheffi, “On Stochastic Models of Traffic Assignment”, Transportation

Science 11, pp.253-274 (1977).
R.B. Dial, “A Probabilistic Multipath Traffic Assignment Algorithm which Obviates Path

Enumeration”, Transportation Research 5, pp.83-111 (1971).
C.S. Fisk, "Some Developments in Equilibrium Traffic Assignment", Transportation Research

14B, pp.243-255 (1980).
F.M. Leurent, “Contribution to Logit Assignment Model”, Transportation Research Record 1493,

pp.207-212 (1996).
P. Mirchandani and H. Soroush, “General Traffic Equilibrium with Probabilistic Travel Time

and Perceptions”, Transportation Science 21, pp.133-152 (1987).
T. Miyagi, “On the Formulation of a Stochastic User Equilibrium Model Consistent with Random

Utility Theory”, Proc. of the 4th World Conference for Transportation Research,

 28

pp.1619-1635, 1985.
W.B. Powell and Y. Sheffi, “The Convergence of Equilibrium Algorithms with Predtermined

Step Sizes”, Transportation Science 16, pp.45-55 (1982).
T. Sasaki, “Theory of Traffic Assignment through Absorbing Markov Process” (in Japanese),

Proc. of JSCE 121, pp.28-32 (1965).
Y. Sheffi and C.F. Daganzo, “Computation of Equilibrium over Transportation Networks: The

Case of Disaggregate Demand Models”, Transportation Science 14, pp.155-173 (1980).
Y. Sheffi and W.B. Powell, “A Comparison of Stochastic and Deterministic Traffic Assignment

over Congested Networks”, Transportation Research 15B, pp.53-64 (1981).
Y. Sheffi and W.B. Powell, “An Algorithm for the Equilibrium Assignment Problem with

Random Link Times”, Networks 12, pp.191-207 (1982).
T. Takenaka, Linear Algebraic Graph Theory (in Japanese), Baifukan, 1989.
R.L. Tobin, “An Extension of Dial's Algorithm Utilizing a Model of Tripmaker's Perceptions”,

Transportation Research 11, pp.337-342 (1977).
D.Van Vliet, “Selected Node-Pair Analysis in Dial's Assignment Algorithm”, Transportation

Research 15B, pp.65-68 (1981).
D.Van. Vliet and P.D.C. Dow, “Capacity-restrained Road Assignment”, Traffic Engineering &

Control, pp.296-305 (1979).
H.Von Falkenhausen, “Traffic Assignment by a Stochastic Model”, Proc. of International

Conference on Operational Science, pp.415-421, 1966.
W.I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-Hall, 1969.
R.J. Wilson, Introduction to Graph Theory, Longman, 1985.

