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Abstract 

 

This study proposes a prototype quantitative method for dynamic revenue management of a 

private toll road, taking into account the long-term dynamics of transportation demand. This is 

first formulated as a stochastic singular control problem, in which the manager can choose the 

toll level from two discrete values. Each toll change requires nonnegative adjustment costs. Our 

analysis then reveals that the optimality condition reduces to standard linear complementarity 

problems, by using certain function transformation techniques. This enables us to develop an 

efficient algorithm for solving the problem, exploiting the recent advances in the theory of 

complementarity problems. 
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Recently, private toll roads have received a fair amount of attention as an alternative to 

public-free-access roads. This private provision appears to be motivated by shortages of public 

funds, particularly in developing countries, as well as the fact (or belief) that the private sector is 

likely to be more efficient than the public sector. The main concern of the private sector would be 

the maximization of the ENPV (expected net present value) of the cash flow streams—normally 

comprising the revenue from the road toll charge, maintenance costs and operation cost—within 

the operating period. In general, the revenue from the toll road fluctuates due to the long-term 

dynamics of the transportation demand of the toll road over the period. From such a viewpoint, in 

the examination of the profitability of a project with a long-operating duration, the day-to-day 

demand dynamics and feedback intertemporal decision-making should be more dominant as 

compared to within-day dynamics. Despite this significance, neither the dynamic uncertainty of 

transportation demand nor intertemporal decision-making has received satisfactory treatment in 

the road transportation literature. 

The discussion regarding private toll roads in the literature of transportation could be 

categorized into three directions. The first direction pertains to expansion or generalization of the 

marginal pricing theory after Dupuit and was developed by Beckman (1965), Dafermos and 

Sparrow (1971) and Smith (1979). Yang and Huang (1998) and Yang (1999) investigated the 

marginal cost pricing in a general network. Yang and Huang (1997) analyzed a time-varying toll 

model of a road bottleneck using optimal control theory. The second direction of this discussion 

involves Yang and Huang’s (1997) examination of efficiency from the viewpoint of social 

welfare and their analysis of both profitability and efficiency among various ownership regimes 

of the private toll road. De Palma and Lindsey (2000, 2002) examined the profitability of 

time-based congestion tolling on a bottleneck using Vickrey’s queuing congestion model 

(Vickrey (1969)) and compared a broad variety of private ownership regimes, including the Nash 
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and Stackelberg equilibria for a mixed duopoly. Yang and Meng (2000) examined both private 

sector profit and the total social welfare gain under either monopolistic (with a single private 

operator) or perfect competitive (among many private operators) markets of toll road services in a 

static framework. The third and final direction concerns the relationship between the 

self-financing of capacity investment and toll road revenue. Arnott and Kraus (1995) discussed 

the finance of capacity investments in the context of Vickrey’s bottleneck model and investigated 

the circumstances under which the time-varying pricing should be self-financing. Yang and Meng 

(2000) formulated a quantitative model as a network design problem in which the road toll and 

road capacity are jointly optimized. All the abovementioned studies consider either static 

frameworks or within-day dynamic frameworks with bottleneck congestion.  

The ENPV maximization from a private toll road project could be identified as a revenue 

management problem. In the field of revenue management, the daily (monthly, quarterly, yearly, 

or a considerably longer unit of time) dynamics of demand and its uncertainty play a prominent 

part, and the stochastic control approach has also been widely used (see e.g. Talluri and van 

Ryzin (2004)). However, nearly all the relevant studies that employ the stochastic control theory 

concentrate on a situation in which each control variable can take any value within a certain 

range at each moment of time. This continuity assumption could sometimes be unrealistic, 

particularly in the case where positive costs are required for adjusting the control variables. For 

instance, it is natural to assume that the private toll road manager can change the toll among a set 

of several discrete levels, and switching the toll each time entails a certain cost (e.g. 

advertisement costs to notify the users of the toll change). This kind of problem, in which the 

control variables can take only discrete values, is referred to as a class of singular stochastic 

control problem first introduced by Karatzas (1983). It is evident that the standard approach of 

optimal control with continuous control variables is no longer applicable to a singular control 
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problem, and thus, the characteristics of the singular control problem are fairly different from 

those of the standard control problem. Interested readers can refer to Kushner and Martins (1991), 

Kushner and Dupuis (1992) and Kumar and Muthuraman (2004). The stochastic singular control 

approach thus assumes importance and has a wide variety of potential applications; nevertheless, 

it has attracted little attention in the fields of both revenue management and transportation 

science. 

This paper proposes a prototype framework for analyzing the dynamic revenue management 

problems of a toll road, taking into account the long-term dynamics of the transportation demand. 

In our framework, the manager is assumed to intermittently switch the toll between a given set of 

discrete levels, depending on the transportation demand that is continuously observed at each 

moment of time. We formulate a stochastic singular control problem and show that its optimality 

condition can be rewritten as a sequence of GCP (generalized complementarity problem). Our 

analysis reveals that certain function transformation reduces the GCP to a standard LCP (linear 

complementarity problem). This enables us to develop an efficient algorithm for solving the 

problem in a successive manner, exploiting the recent advances in linear complementarity theory. 

These are our original contributions not only in the field of transportation science but also in 

those of revenue management and stochastic optimization. 

The remainder of this paper is organized as follows. Section 1 formulates the dynamic 

revenue management of a toll road as a stochastic singular control problem. Section 2 denotes the 

optimality condition as a sequence of GCPs. Section 3 shows the reduction of each GCP to a 

standard LCP in an appropriate discrete time-state framework. A numerical method is developed 

by using this result. Section 4 shows several numerical examples, and Section 5 provides some 

concluding remarks. 
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1 Model 

Suppose a toll road project and a manager who operates the road for a certain operating 

period, ],0[ T . The road will be transferred to the public sector at the end of the operation1. At 

each moment of time2, the manager is assumed to observe the transportation demand (number of 

vehicles per unit time), )(tq , and chooses the toll charge level, )(tc , as either Lc  (the lower 

toll) or Hc  (the higher toll). We denote the set of tolls as { }HL ccC ,≡  and assume HL cc < . 

We further assume that a fixed adjustment cost HLI ,  ( ),HLI  is incurred when the manager 

switches the toll level from Lc  to Hc  ( Hc  to Lc ). 

The transportation demand )(tq  is assumed to vary stochastically over time following a 

stochastic differential equation (SDE). In order to describe our basic concept intuitively, we begin 

with a discrete-time framework. Let Ttttt Ii == ,,,,,0 10 LL  be a discrete time grid with 

interval tΔ  (e.g. a day), and let Ii qqqq ,,,,, 10 LL  denote the demand at each point of time. 

Suppose that we observe the demand qqi =  and choose the toll level as cct =  at the i th date 

(here, the variables with bar represent a certain or observed value.) At that time, the demand at 

the 1+i th date, 1+iq , is uncertain; hence, the increment of the demand 

qqqqq iiii −=−≡Δ ++ 11  is a random variable. It is natural to assume that the increment iqΔ  

has a mean and variance, each of which is proportional to length of the interval, tΔ . We assume 

the increment to be 

iiiiii Wcqtcqq Δ+Δ=Δ ),(),( σα  , (1) 

where ic  is the toll charge level chosen at the i th date. The first term on the right-hand side of 

(1) is the deterministic part of the increment and the second represents the random part, which 
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captures the demand uncertainty. iWΔ  is assumed to be a normal random variable with mean 0 

and variance tΔ . Observe that [ ] tcqqE iii Δ=Δ ),(α  and { } tcqq iii Δ=Δ 2),(][Var σ .  

In equation (1), RR: →×+ Cα  is a known function, which might represent the trend of 

the transportation demand, the seasonal cyclic pattern, the relation between the transportation 

demand and the travel cost of the toll road and so on. For example, let us show how the travel 

time and its effect on the demand are involved. First, we assume that the generalized travel cost 

of the toll road comprises the travel time )( iqτ —an increasing function of the demand—and the 

toll charge level ic  at the i th date. It is natural to assume that the transportation demand will 

increase (decrease) when the current travel cost cq +)(τ  is sufficiently low (high). This can be 

implemented by letting ),( cqα  be a decreasing function with respect to cq +)(τ , that is, 

])([),( cqfcq +≡ τα . On the other hand, in equation (1), ++ →× RR: Cσ  is also assumed to 

be a known function, which represents the degree of uncertainty of the transportation demand; 

0→σ  implies that we can completely predict the future demand, and a large σ  implies that 

the demand fluctuates widely. Our framework is sufficiently generalized and the specifications of 

),( cqα  and ),( cqσ , which might be inevitable for the application of our method to the actual 

problems, is not essential (see Section 4 for an example of such a specification and Section 5 for 

further discussion).  

For the purpose of mathematical tractability, we consider the abovementioned dynamics in a 

continuous time framework. We first rewrite equation (1) as a stochastic differential equation:  

)(d)](),([d)](),([)(d tWtctqttctqtq σα += , const.given )0( 0 == qq , (2) 

where RR: →×+ Cα  and ++ →× RR: Cσ  are given functions. It is naturally assumed that 

+∈∀≥ R),(),( qcqcq HL αα , since a lower toll charge encourages transportation demand. We 
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further assume that =),0( cα ,0),0( =cσ Cc∈∀  in order to preclude negative transportation 

demand. In equation (2), )(d tW  is an increment of a standard Brownian motion defined on an 

appropriate probability space ),,( PFΩ , where F,Ω  represent the sample space and its 

σ -algebra, respectively, and P  is the probability measure3.  

Note that the manager chooses the toll charge level )(tc  at time t  corresponding to the 

observed demand )(tq  and the current toll level )(tc 4, both of which are not revealed until t . 

This implies that the toll strategy takes the form of a function CCTc →×× +R],0[: . In the 

following, we denote a toll strategy by { }CTcqtcqtcc ××∈≡⋅ +R],0[),,(|),,()( . 

The manager intends to maximize the ENPV of cash flow streams during the operating 

period ],0[ T , by choosing the toll strategy )(⋅c . This is formulated as the following stochastic 

singular control problem: 

 [P] [ ]),,0()),(,,0(max 00)(
cqcTJE

c
ω⋅

⋅
, 

where )],,(|[ cqtE ⋅  is an expectation conditional to the information set available at t , 

),())(),(( cqtctq = , and 0c  is the initial toll level. )),(,,( ω⋅cTtJ —the net present value of cash 

flow streams during ],[ Tt  under toll strategy )(⋅c  with respect to sample path Ω∈ω —is 

defined as 

∫ ∑
⎭
⎬
⎫

⎩
⎨
⎧

−≡⋅ −−T

t
mn

mnmn
ts ssIscsqecTtJ d)()](),([)),(,,(

,
,,

)( δπω ρ , (3) 

where ρ  is the discount rate. )()()](),([ tqtctctq ≡π  is the instantaneous revenue5 per unit 

time at time t . )(, tmnδ  is a delta function, which takes sd/1  if the toll is switched from nc  to 

mc  at t , and 0, otherwise. 
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2 Optimality condition 

This section derives the optimality condition of the dynamic revenue management problem 

[P] by using the DP (dynamic programming) principle. In our framework, the optimality 

condition is represented as a system of GCPs. First, we define the value function of the problem 

[P] when the transportation demand qtq =)(  is observed and toll level ctc =)(  is chosen at 

time t , as follows: 

[ ] CTcqtcqtcTtJEcqtV
c

××∈∀⋅≡ +⋅
R],0[),,(,),,()),(,,(max),,(

)(
ω , (4) 

where )),(,,( ω⋅cTtJ  is the net present value (evaluated at t ) of cash flow streams in the 

remaining duration ],[ Tt  defined in equation (3). Note that the value function 

++ →×× RR],0[: CTV  itself as well as the optimal strategy CCRTc →×× +],0[:*  are 

unknown functions. 

In order to derive the optimality condition, let us suppose that the transportation demand 

qtq =)(  is observed and the higher toll Hctc =)(  is chosen at time t . By applying the DP 

principle, we observe that the manager takes one of the following two actions: either switches the 

toll from the current to another, thereby incurring the adjustment cost or defers it for a certain 

time. When the manager does not change the toll level for a sufficiently small time Δ
Δ

, it must be 

true that 

[ ]),,(|)),(,,(max),(),,(
)( HcHH cqtcTtJEecqcqtV ωπ ρ ⋅Δ++Δ≥
⋅

Δ− . (5) 

Taking 0→Δ  and using Ito’s lemma, we have the following partial differential inequality. 

0),,(),( ≥−− HHH cqtVcq Lπ . (6) 



 

Page 10 

See Appendix A for more a detailed derivation. In equation (6), nL —an infinitesimal generator 

of the transportation dynamics described in (2) when the toll level is nc — is defined as a partial 

differential operator as follows: 

{ } ),,(),(
2
1),(),,( 2

2
2

nnnnnn cqtV
q

cq
q

cq
t

cqtV
⎭
⎬
⎫

⎩
⎨
⎧

−
∂
∂

+
∂
∂

+
∂
∂

≡ ρσαL . 

On the other hand, if the manager, chooses to switch the toll level from Hc  to Lc , the 

value function should satisfy 

LHLH IcqtVcqtV ,),,(),,( −≥  (7) 

or 

0),,(),,( , ≥+− LHLH IcqtVcqtV . (8) 

Since one of the two actions must be optimal, either equation (8) or (6) hold as equal. Hence, the 

optimality at the state ),,( Hcqt  is  

⎩
⎨
⎧

>+−=−−

=+−>−−

   ,0),,(),,(and0),(),,(
,0),,(),,(and0),(),,(

,

,

LHLHHHH

LHLHHHH

IcqtVcqtVcqcqtV
IcqtVcqtVcqcqtV

π
π

L
L

 

or  

{ } 0),,(),,(),,(),,(min , =+−−− LHLHHHH IcqtVcqtVcqcqtV πL . (9) 

Similarly, let us consider the case where the lower toll level— Lctc =)(  instead of Hc —is 

chosen. In this case too, the manager can take one of two actions, i.e. either switch to the toll 

level from Lc  to Hc , or do nothing during Δ . When the manager chooses to maintain the 

current toll level, it must be true that 

0),(),,( ≥−− LLL cqcqtV πL . 

Meanwhile, if the manager changes the toll level from the current to another, it must be true that 
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0),,(),,( , ≥+− HLHL IcqtVcqtV . 

Hence, the optimality condition at the state ),,( Lcqt  can be represented by 

{ } 0),,(),,(),,(),,(min , =+−−− HLHLLLL IcqtVcqtVcqcqtV πL . (10) 

It is noteworthy that, theoretically, the manager can change )(tc  any number of times. This 

implies that the value function for the higher toll level, ),,( HcqtV , cannot be determined without 

using the value function for the lower toll level, ),,( LcqtV , and vice versa, at any state 

+×∈ R],0[),( Tqt . Therefore, conditions (9) and (10) should hold simultaneously, and the value 

function V  should be obtained as a solution of the system of GCPs:  

[GCP-∞ ] Find { }CTcqtcqtVV ××∈≡ +R],0[),,(|),,(  such that 

{ }
{ }⎩

⎨
⎧

=+−−−

=+−−−

0),,(),,(),,(),,(min
0),,(),,(),,(),,(min

,

,

HLHLLLL

LHLHHHH

IcqtVcqtVcqcqtV
IcqtVcqtVcqcqtV

π
π

L
L

, +×∈∀ R),0[),( Tqt . 

Since the manager is assumed to transfer the road to the government at the end of operation, the 

terminal condition held at T  is denoted as 

CTcTqTcTqTV ×∈∀= +R)](),([,0)](),(,[ . (11) 

The optimal strategy eventually takes the following intuitively plausible form: the toll is 

switched to Lc  (or not switched if it is already Lctc =)( ) when the demand )(tq  falls below 

the threshold, )(* tqL , and is switched to Hc  (or maintained at Hctc =)( ) when the demand 

)(tq  exceeds another threshold, )(* tqH  at time t . The toll should not be changed as long as the 

demand remains )()()( ** tqtqtq HL ≤≤ , regardless of the toll level. 
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3 Reduction to a Linear Complementarity Problem 

(1) Discretization 

Since [GCP ∞ ] cannot be solved analytically, the solution of the dynamic revenue 

management problem [P] should be obtained numerically. Therefore, we first reformulate 

[GCP∞ ] in a discrete framework. Suppose a sufficiently large subspace ],[ maxmin qq  in the state 

(transportation demand) space +R . We then consider a discrete grid in the time-state space 

],0[],[ maxmin Tqq ×  with increments tΔ  and qΔ . Let ),(),( minqqjtiqt ji +ΔΔ≡  be each point 

of the grid, where the indices Ii L,1,0=  and 1,,,1,0 += JJj L  characterize the locations of 

the point with respect to time and state, respectively. We also denote the value function 

( )ncqtV ,,  and the instantaneous profit ),( ncqπ  at a grid point ),( ji qt  by ji
nV ,  and j

nπ , 

respectively. 

In this framework, nL  can be approximated by using an appropriate finite-difference 

scheme (e.g. that of Crank-Nicholson), as follows: 

1),,( ++≈ i
nn

i
nnn

i
n cqtV VMVLL ,  

where ,1 , T[ ]i i i J
n n n�V V≡V L  is a J -dimensional column vector with the j th element the value 

function corresponding to the toll nc  and the demand jq at time it , and nn ML and  are 

JJ ×  square matrices determined by the transportation demand process (2). See Appendix B for 

detailed definitions of nL  and nM . Then, each subproblem of [GCP∞ ] held at time it  can be 

given as 

[GCP i ] Find Ji
L

i
H

i 2R},{ ∈≡ VVV  such that 
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{ }
{ }⎪⎩

⎪
⎨
⎧

=+−−−−

=+−−−−
J

HL
Ji

H
i
LL

i
LL

i
LL

J
LH

Ji
L

i
HH

i
HH

i
HH

I

I

01VVπVMVL

01VVπVMVL

,

,

,min

,min
, 

where J0  and J1  denote n th column vectors with all elements equal to 0 and 1, respectively. 

Similarly, we can rewrite the terminal condition at time Tt I =  given by equation (11) as  

JI
L

I
H 0VV == . (12) 

Note that the subproblem [GCP i ] is independent from other subproblems [GCP j ] ji ≠  when 

1+iV  is known. This characteristic reveals that the series of subproblems 

},1,0|][GCP{ Iii L= can be solved in a successive manner as follows: i) using the terminal 

condition JI
L

I
H 0VV == , solve the subproblem [GCP 1−I ] and obtain the solution 1−IV ; ii) using 

1−IV  as a given constant, solve the subproblem [GCP 2−I ] and obtain 2−IV ; and iii) repeating the 

procedure recursively, obtain the entire value function },,1,0{ Iii L=V . Thus, we should focus 

on the methods to solve each [GCP i ] separately, rather than simultaneously. 

(2) Reduction to a Standard Linear Complementarity Problem 

The subproblem [GCP i ] is still difficult to solve, even numerically, because the problem is 

not in standard form. Therefore, this section shows the reduction of [GCP i ] to a standard LCP by 

using certain variable transformation techniques.  

Supposing that the value functions 11  and ++ i
L

i
H VV  are known when we solve [GLP i ], 

consider the following variable transformation. 

}1,1,0{},,{, −∈∀∈∀−−≡ IiLHni
n

i
nn

i
n LgVLX , (13) 

where n
i
nn

i
n πVMg +≡ +1  is a given constant. Assuming that the matrix nL  is nondegenerated, 

we can represent the value function i
nV  as a linear function of i

nX , that is, 
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( ) }1,,1,0{},,{,1 −∈∀∈∀−−≡= − IiLHni
n

i
nn

i
n

i
n

i
n LhXLXVV , (14) 

where i
nn

i
n gLh 1−−≡  is a given constant.  

Substituting equations (13) and (14) into [GCP i ], we obtain the following standard LCP, 

where the unknown variables are only i
HX  and i

LX . 

 [LCP i ] Find iX  such that 

( ) ( ) JiiJiiii 22 ,,0 0XH0XXHX ≥≥≡⋅ , 

where ⎥
⎦

⎤
⎢
⎣

⎡
≡ i

L

i
Hi

X
X

X , ( ) ⎥
⎦

⎤
⎢
⎣

⎡

++−
++−

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−

≡
−−

−−

HL
i
H

i
L

LH
i
L

i
H

i
L

i
H

LH

LHii

I
I

,

,
11

11

1hh
1hh

X
X

LL
LL

XH . 

Since [LCP i ] is in standard form, we can develop an efficient algorithm for solving the 

problem by exploiting the recent advances in the linear complementarity theory (see Ferris and 

Pang (1997)). Due to space constraints, we have omitted the proofs of existence and uniqueness 

of [LCP i ]. Interested readers can refer to Nagae and Akamatsu (2004). 

If iX —the solution of [LCP i ] iX —is obtained, we can easily calculate the original 

unknown variable (i.e. the solution of the subproblem [GLP i ])— iV — via reverse variable 

transformation, as shown in equation (14). We can now summarize the algorithm for solving 

dynamic revenue management [P] as follows: 

Step 0   Set I I
H L= =V V 0  and 1: −= Ii . 

Step 1   If 0<i , then STOP. 

Step 2   Obtain iX  as the solution of [LCP i ] by regarding 1+iV  as a given constant. 

Step 3   Calculate iV  via reverse variable transformation (equation (14)). 

Step 4   Set 1: −= ii  and return to Step 1. 
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4 Numerical Solution 

In this section, we report the numerical results. This section aims to provide an illustrative 

example of our framework and to examine whether the aforementioned algorithm functions 

appropriately. First, we specify the transportation demand process )(tq  as a mean-reverting 

process: 

{ } )(d)(d)()(d tWtqttqDtq n σμ +−= , LHn ,= . given.)0( 0 == qq  (15) 

The first term on the right-hand side of the equation indicates that the transportation demand 

reverts to the values LH DD  and  that correspond to the toll levels Hc  and Lc , respectively. In 

this case, HD  ( LD ) can be recognized as the long-term mean or the steady-state of the 

transportation demand when the manager set and maintained the toll level at Hc  ( Lc ). In 

equation (15), μ  is a given constant which represents the convergence speed of the 

transportation demands to the long-term means HD  and LD . The second term on the right-hand 

side of (15) represents the random part of the demand σ , precluding any possibilities of negative 

demand. A constant σ  implies the size of randomness. 

The parameters are set as 20=T , 2.0=μ , %20=σ , %10=ρ , 0=HD , 1=LD , 

5.1=Hc , 1=Lc , 1, =HLI  and 2.0, =LHI , and the dynamic revenue management problem [P] 

is then solved.  

Figure 1 plots the value functions ),( and ),( qtVqtV HL , for each },{)( HL cctc ∈  at the 

initial time 0=t , as functions of the initial transportation demand 0q . The thresholds 
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)(and)( ** tqtq HL , which yield an optimal toll strategy as discussed in Section 2, at the initial time 

0=t  are also illustrated in Figure 1.  

The evolution of )( and (t) ** tqq HL  is shown in Figure 2. Observe that both the thresholds 

decrease with time because as time passes, the manager prefers to yield instantaneous profits by 

choosing the higher toll, rather than increase the transportation demand by choosing the lower toll. 

This is due to a time lag between the toll changes and their effect on transportation demand. 

Figure 1 
 

Figure 2 

5 Conclusion 

We proposed a prototype framework for the quantitative analysis of dynamic revenue 

management of a toll road project involving transportation demand risk. We first formulated a 

dynamic revenue management problem as a stochastic singular control problem, the optimality 

condition for which is written as a set of GCPs. We then revealed that each GCP reduces to a 

standard LCP via certain variable transformation techniques in an appropriate discrete framework. 

Subsequently, we developed an efficient algorithm by exploiting recent advances in linear 

complementarity theory. Finally, several numerical examples were illustrated. 

It should be noted that this study is designed as an initial step towards developing a useful 

quantitative framework for managing private toll roads with dynamic uncertainty of the 

transportation demand. Our framework can be expanded and generalized into a more complex 

and realistic model (e.g. a model in which the network user equilibrium is achieved at each 

moment of time) without any severe difficulties and major modifications of its mathematical 

structure. Future work can focus on analyzing such an extended model.  
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Another important and interesting topic would pertain to the social welfare of the private toll 

road project as discussed in De Palma and Lindsey (2000, 2002). The present methodology 

provides us with a useful basis for examining the social welfare gain of the dynamic revenue 

management of private toll roads. 

Appendix A 

When the manager chooses to maintain the current toll level for Δ , it must be true that 

{ }

{ }

[ ] ,),,(),,()),(,,(max)),((

),,(),,()())(),((max

)),((

),,()())(),((

)),((max),,(

)(

)(

,,
)(

)(

)(

,,
)(

)(

)(

⎥⎦
⎤

⎢⎣
⎡ ⋅Δ++=

⎥⎦

⎤
⎥⎦
⎤

⎢⎣
⎡ ++

⎢⎣
⎡=

⎥⎦
⎤++

⎢⎣
⎡≥

⋅

Δ−Δ+ −−

Δ+

−−

⋅

Δ+ −−

Δ+

−−

Δ+ −−

⋅

∫

∫ ∑ ∑

∫

∫ ∑ ∑

∫

nnc

t

t n
ts

nn

T

t n m mnmn
ts

c

t

t n
ts

n

T

t n m mnmn
ts

t

t n
ts

cn

cqtcqtcTtJEedscsqeE

cqtcqtdsIsscsqeE

dscsqeE

cqtdsIsscsqe

dscsqeEcqtV

ωπ

δπ

π

δπ

π

ρρ

ρ

ρ

ρ

ρ

 

where we used the following nested structure of conditional expectation for the second 

arrangement: 

[ ] [ ][ ]),,(),,(),,( nnn cqtcqtEEcqtE ⋅=⋅ .  

When Δ  is sufficiently small, the last equation can be rewritten as 

[ ]),,(|],,[
1

1),(),,( nnnn cqtcqqtVEcqcqtV Δ+Δ+
Δ+

+Δ≥
ρ

π , 

where qΔ  is the increment of the demand duringΔ . We denote the last term on the right-hand 

side of equation (5) as [ ]),,(|],,[ nn cqtcqqtVE Δ+Δ+ )],,(|[),,( nn cqtVEcqtV Δ+≡ , where VΔ  

is the increment of the value function during Δ . A simple rearrangement yields 

Δ
Δ

+Δ+≥
)],,(|[

),()1(),,( n
nn

cqtVE
cqcqtV πρρ . 



 

Page 18 

Taking 0→Δ , we have 

Δ
Δ

+≥
→Δ

)],,(|[
lim),(),,(

0

n
nn

cqtVE
cqcqtV πρ  (16) 

According to Ito’s lemma, the last term on the right-hand side of (16) can be rewritten as 

{ } 2

2
2

0

),,(
),(

2
1),,(

),(
),,()],,([

lim
q

cqtV
cq

q
cqtV

cq
t

cqtVcqtVE n
n

n
n

nn

∂
∂

+
∂

∂
+

∂
∂

=
Δ

Δ
→Δ

σα . (17) 

Substituting (17) into (16), we obtain equation (6). 

Appendix B 

We first approximate each partial differential in [GCP∞ ] by the Crank-Nicholson scheme in 

the following discrete time-state framework: 

.
)(

2
)(

2
2
1),,(

,
222

1),,(
,

),,(

2

1,,1,

2

1,1,11,1

2

2

1,1,1,11,1,,1

⎭
⎬
⎫

⎩
⎨
⎧

Δ
+−

+
Δ

+−
≈

∂
∂

⎭
⎬
⎫

⎩
⎨
⎧

Δ
−

+
Δ
−

≈
∂

∂
Δ
−

≈
∂

∂

−+−++++

−+−++++

q
VVV

q
VVV

q
cqtV

q
VV

q
VV

q
cqtV

t
VV

t
cqtV

ji
n

ji
n

ji
n

ji
n

ji
n

ji
nn

ji

ji
n

ji
n

ji
n

ji
nn

jiji
n

ji
nn

ji

 

Substituting these approximations in the definition of nL , we have  

1),,( ++≈ i
nn

i
nnn

i
n cqtVL VMVL , 

where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

−−−

−−

JJ

JJJ

JJ
n
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cba

cb

ba
cba

cb

0000
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0000
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0000

111
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33

222

11

L

MOM

L

L , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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−−−

−−
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n
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L
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and ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
Δ

−≡
2

2
1

22
1

qq
a

j
n

j
nj σα

, 
2

2
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
Δ

−−≡
qt

b
j

nj σ
ρ , ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
Δ

≡
2

2
1

22
1

qq
c

j
n

j
nj σα

 and 

2

2
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
Δ

≡
qt

d
j

nj σ
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Notes 

 
1 This assumption is not essential. Certain terminal payoffs (that might be a function of the 

demand at the end of the operation, say, ))(( TqΠ ) can be involved in our framework without 

any difficulties. 

2 We use the terms “time” and “moment” in the standard stochastic control theory even though 

the length of unit time (e.g. day, week or month) appears rather long to be referred to as 

moment. 

3 For the fundamental terminology of probability theory, refer to the standard textbooks of either 

finance or stochastic process theory, for example, Duffie (1992) and Øksendal (1998). 

4 More precisely, it refers to the toll charge level just before time t , i.e. )(lim
0

δ
δ

−
→

tc  instead of 

the current toll charge level, )(tc . 

5 We omit the operating cost (e.g. maintenance costs) at this point for notation simplification. 

Our framework can be easily extended to a case with such an operating cost. 
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Figure 1. Value functions  
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Figure 2. Optimal toll switching strategy 
 

 

 


