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Abstract 
In Akamatsu and Heydecker (2003), we presented a necessary and sufficient condition for 
the occurrence of capacity paradoxes in general saturated networks, in which there is a 
queue on each link. The present paper extends that analysis to the more usual case of 
non-saturated networks, in which there are queues on some links but not on others. First we 
formulate dynamic user equilibrium (DUE) assignment in non-saturated networks. We then 
show how non-saturated networks can be reduced by direct network transformations to 
corresponding saturated ones in a way that will not affect occurrence of the capacity 
paradoxes: the reduced network, which is saturated, can then be tested for DUE assignment 
paradoxes to determine whether or not they will occur in the original one. This technique 
therefore yields a convenient method to examine whether or not the paradox occurs from 
information on the queuing patterns on the links of the network. Finally, as an application of 
the theory, we consider a range of example networks and associated applications, including 
investigation of a freeway ramp metering strategy. The analysis of these networks leads to 
an interesting finding: it is likely that in many situations metering or closing a freeway 
entrance ramp can play an effective role to reduce travel times not only on the freeway but 
also in the whole network including arterial streets. 
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In Akamatsu and Heydecker (2003), a theory of “capacity paradoxes” under dynamic user 

equilibrium (DUE) assignment was presented. Defining the paradox as the situation that increase 

(decrease) in capacity of a link leads to an increase (respectively decrease) in total travel time in a 

network, we established a necessary and sufficient condition for the paradox to occur in 

“saturated networks” with general structure, in which there is a queue present on each link. We 

then gave a graph theoretic interpretation of the condition, which enables us to identify network 

structures in which the paradox always occurs regardless of capacity and demand patterns. These 

results were derived under the seemingly restrictive assumption of “saturated networks”, in which 

all links have queues.  

In the present paper, we extend the theory to the more general case that includes a variety of 

“non-saturated networks” in which there are queues on some links but not on others. The key result 

of this analysis is to establish that in respect of the occurrence of DUE assignment capacity 

paradoxes, certain non-saturated networks can be reduced to equivalent saturated ones. This 

enables us to exploit the theory developed in the earlier paper (Akamatsu and Heydecker, 2003).  

Throughout the present paper, we adopt the assumptions and notation of the earlier paper, 

with the exception of the assumption that the network is saturated in the sense that every link is 

congested. The main assumptions are summarised as follows:   

(a) For a traffic assignment principle, we assume the dynamic user equilibrium (DUE) 

assignment: the DUE is defined as the state where at each time, no user can reduce his/her 

travel time by changing his/her route unilaterally;  

(b)  We consider only networks with a one-to-many travel pattern;  

(c)  For a link travel-time model, we employ a First-in-First-Out (FIFO) principle and the 

deterministic queue concept;  

(d)  We consider all links of the network that carry flow at some time in the DUE state: networks 

of this form can readily be extracted from arbitrary ones by excluding links to which no 

assignment is made.  
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 The organisation of the paper is as follows. In the next section, we identify conditions for 

DUE assignments in non-saturated networks, and then we introduce a procedure for network 

reduction that does not affect occurrence of capacity paradoxes; this forms the key to our analysis 

of the properties of DUE solutions in certain non-saturated networks. In Section 2, we derive a 

necessary and sufficient condition for the capacity paradoxes to occur in non-saturated networks. In 

Section 3 we analyse a range of example networks, whilst in Section 4, as an application of the 

theory, we consider a simple ramp metering problem. Finally, concluding remarks are presented in 

Section 5. 

 

1. DYNAMIC EQUILIBRIA ON NON-SATURATED NETWORKS 

 

1.1 Notation and Non-Saturated Networks 

We first summarise the main notation used in this paper; the notation is almost the same as 

that in the earlier paper (Akamatsu and Heydecker, 2003). Our model is defined on a transportation 

network G[N, L, W] consisting of the set L of directed links with L elements, and the set N of nodes 

with N elements. The structure of a network is represented by a reduced node-link incidence matrix 

A, which is an (N-1) × L matrix obtained by removing the row corresponding to the unique origin 

from a standard incidence matrix. Under the assumptions mentioned in Introduction above, the 

equilibrium states in a network can be described by two kinds of variables, s
ijy  and s

iτ , 

decomposed with respect to origin departure-time s: s
iτ  is the earliest arrival time at node i for a 

vehicle that departs from origin o at time s; s
ijy  is the link flow rate with respect to s. An N-1 

dimensional column vector with elements dsd s
i /τ , and an L dimensional column vector with 

elements s
ijy  are denoted as )(sτ& and )(sy , respectively. The DUE travel time to traverse link (i, j), 

for users who depart the origin at time s (and arrive at the entrance of the link at time s
iτ ), is denoted 

by s
ijc , and )(sc&  is an L dimensional column vector with elements dsdcs

ij / . The capacity of link 

(i, j), ijµ , is given constant, and M is an L by L diagonal matrix whose ath diagonal element 

represents the capacity of link a. The OD flow rate departing origin o at time s  for each destination 
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d, dssdQod /)( , is given, and )(sQ&  is defined as an (N-1) dimensional vector with elements 

dssdQod /)( . 

In this paper, we deal with “non-saturated networks” in which there are queues on some links 

but not on others. We partition the link set L into two subsets, LQ and LF , based on the queuing 

state of links corresponding to the assignment with origin departure-time s:  

 if { a non-zero queue exists on link (i, j)  or 

a queue starts to form when traffic that departs the origin at time s reaches it 

(ie, )()( ssy iijij τµ≥ & )}  

 then (i, j) QL∈ ;  otherwise (i, j) FL∈ .  

The number of links in the sets L, LQ and LF are denoted as L, LQ and LF, respectively. 

Corresponding to this partition of the link set, we also split the link variables y, c& , link capacity 

matrix M, and the node-link ((N-1) by L) incidence matrix A into two parts, respectively: 
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Throughout this paper, we analyse the DUE solution under the following assumptions:  

1) there is a single origin of all traffic, 

2) all links in L are used (ie y(s)>0 for any s),  

3) the sets LQ and LF are fixed (ie the queuing state of each link in L  does not change) during 

the period of our analyses, and 

4) the sets LQ and LF are given in advance.  

A network that satisfies these assumptions is called a non-saturated network in this paper. For 

non-saturated networks, first we present a formulation of the DUE assignment in Section 1.1, and 

then we show how in some cases a non-saturated network can be reduced by elimination of links on 

which no queueing takes place to form an equivalent saturated networks” in Section 1.2. 
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1.2 Formulation 

The DUE condition for non-saturated networks as defined above is formulated as follows. 

First, the shortest path condition and the flow constraints in the DUE state are the same as in the 

saturated networks. These can be stated, respectively, as: 

0Ac =+ )( )( ss T τ&&  s∀           (1a) 

)()( ss QyA &=−   s∀           (2a) 

As for link travel times, we should distinguish unsaturated links that carry some flow in the 

DUE state from saturated links; the change in travel time on link (i, j) FL∈  (ie an unsaturated 

link), dsdc s
ij / , is always zero because the travel time on link (i, j) FL∈  remains at the free-flow 

value: 
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where AQ+ is the matrix obtained by setting all negative elements of AQ to zero. Thus, we can 

formulate the DUE assignment in a non-saturated network as the simultaneous solution of 

equations of (1a), (2a) and (3). 

 To investigate the properties of the equilibrium solution, it is convenient to rewrite (1a) 

and (2a) in terms of the partitioned link sets LQ and LF:  


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=+

0Ac

0Ac

)( )( 

)( )( 

ss

ss
T
FF

T
QQ

τ
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          (1b) 

)()(  )( sss FFQQ QyAyA &=−−         (2b) 

For the links in LQ, as in saturated networks (see Section 2 of Akamatsu and Heydecker), we 

have the following equations from (3b) and (1b): 
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)()( ss T
QQQ τ &−−= AMy        (4) 

where AQ− is a matrix obtained by setting all positive elements of AQ to zero. 

For the links in LF , from (3b) and (1b), 

0A =)( sT
F τ &            (5a) 

Note here that 1=oτ&  always holds at the origin (from the definition of )(siτ& ) and that iτ&  for a 

node i that is connected to the origin by a single link has the same value as oτ&  (ie 1== oi ττ && ) 

whenever link (o, i) is not saturated. However, (5a) cannot reflect this because neither AF nor 

AQ contains a row corresponding to the origin. To overcome this limitation of (5a), we replace it 

with the following modified expression: 

δτ =)( sT
F &A            (5b) 

where δ is an LF dimensional vector with elements δa: 

    


 ∈−

=δ
otherwise    0  

nodeorigin   thefrom emanates   link   if    1 F
a

La
 

Note that δ =  0 holds when all links emanating from the origin are saturated. 

Substituting (4) into (2b), we get 

)()()( sss FF
T
QQQ QyAAMA && =−− τ .     (6) 

Thus, we can express the DUE conditions in a non-saturated network as a single system 

summarising the equations (5) and (6): 
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1.3 Equilibrium Solutions 

Existence of the DUE solution in non-saturated networks seems to be evident because (7) 

is a system of linear equations and the number of variables is equal to that of the equations. 
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However, the solution for (7) should be consistent with a given classification of links that 

indicates whether each link in L belongs to LQ or LF; more specifically, the solution for links in 

LF  should satisfy the definition of non-saturated state: 

     )( sy iijij τµ<  FLji ∈∀ ),( .     (8) 

Clearly, this condition is not necessarily satisfied by the solution of (7) for an arbitrary partition 

pattern of a link set, and hence non-existence of the DUE solution remains a possibility.  

In what follows, we shall examine the uniqueness of the DUE solution, assuming that LF 

is properly identified in advance (ie the set LF that is consistent with the DUE solution is given). 

Thus we concentrate our discussion on the uniqueness of the solution for (7). The discussion 

can be classified into two cases depending on whether or not the matrix T
QQQ −≡ AMAV  is 

invertible: 

Case (a): V is invertible. 

When V is invertible, the equation (7) is equivalent to 
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Furthermore, the matrix F
T
F AVAW 1−≡  is also invertible when V is invertible. Hence, we 

obtain the explicit solution for (9): 

})( {)(  
1

 
1 δ+−= −− ss T

FF QVAWy & ,         (10) 

})()({   )( 1 sss FF yAQV += − &&τ ,         (11) 

and the flows yQ on the links in LQ can be obtained by substituting (11) into (4). Thus, we see 

that the DUE assignment has a unique solution in this case. 

 Note that the solution in (11) when δ = 0 (ie when all the links incident from the origin are 

saturated) can be represented as 

     )(  ][  )( 1 ss QVPI && −−=τ ,         (12) 

where T
FF AWAVP 11 −−≡ .  Because the matrix P satisfies P =P 2, P is a projection matrix, and 
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hence, I −P is also a projection matrix; in terms of geometry, I −P projects any vector (with 

respect to metric V) onto the null space of AF
T, whilst P projects any vector onto the column 

space of AF. This also means that the vector )(1 sQV &−  can be decomposed into two orthogonal 

components [ ] τ&& =− − QVPI 1  and FF yAVQVP 11 −− =& , which shows that τ&  is normal to 

FF yAV 1−  and hence that τ& V  is normal to FF yA .  Thus, we see from (12) that whenever V is 

invertible, the solution in a non-saturated network can be obtained by projecting the solution in 

a saturated network, )(1 sQV &− , onto the null space of AF
T. 

Case (b): V is not invertible. 

This case occurs whenever a network contains a “non-saturated node” at which none of 

the incident links is saturated (eg node 8 of the network shown in Figure 1). Existence of 

non-saturated nodes will decrease the rank of the matrix V. The magnitude of this decrease is 

precisely the same as the number NN of non-saturated nodes: the reason for this is the same as 

the “pure origin” case in saturated networks with a many-to-one OD pattern discussed in 

Akamatsu (2000), and hence the explanation is omitted here. This means that the rank of V is 

N−1−NN. 

On the other hand, the rank of AF is NF −NP, where NF is the number of nodes in NF  , the 

set of initial and terminal nodes of links in LF, and NP is the number of connected sub-graphs 

included in a graph GF[NF , LF]. Therefore the rank of the coefficient matrix in the left-hand side 

of (7) is at most (N−1−NN) + (NF −NP). This suggests that the solution of (7) is not necessarily 

unique because the number of unknowns in (7), N−1+LF , can exceed the rank of the coefficient 

matrix, (N−1−NN)+(NF −NP). To illustrate this possibility, we show a simple example for 

indeterminacy of the solution with respect to yF(s). Consider the case where no links in L are 

saturated (ie L=LF and LQ is null), then the equilibrium conditions do not tell us anything about 

yF beyond flow conservation, )()( ssFF QyA &=− : this shows that the equilibrium solution yF is 

indeterminate. However, we can determine the equilibrium solution uniquely with respect to 

)(sτ&  even if we cannot obtain a unique yF(s). This fact can be established by a simple network 

transformation technique, which we will discuss in the following section. 
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1.4 Reduced Networks 

To discuss the uniqueness of the equilibrium solution )(sτ&  in non-saturated networks 

with non-invertible V, we introduce a new transformed network, which we call a “reduced 

network”. The transformation technique is also useful for connecting our earlier theory of 

capacity paradoxes in saturated network with one in non-saturated networks as well as in 

analysing the non-invertible case. 

A reduced network is constructed by unifying the initial and terminal nodes of each 

unsaturated link of an original network into a single node. For example, consider the network 

with both unsaturated and saturated links as shown in Figure 1(a). The links (6, 8), (7, 8) and (8,  

9), depicted by broken lines, are unsaturated, and the other links, depicted by solid lines, are 

saturated. Note here that there is no need to distinguish between the variables iτ&  for the initial 

and terminal nodes of each unsaturated link, say, 6τ&  and 8τ&  for link (6, 8), as different unknown 

variables because 86 ττ && =  holds for the unsaturated link ( 068 =c& ) under the DUE state 

( 6868 c&&& =−ττ ). Hence, it is natural to unify the two nodes 6 and 8 in respect of this analysis. 

Repeating such unification of nodes for each unsaturated link (6, 8), (7, 8) and (8, 9), we obtain 

the reduced network depicted in Figure 1(b), from which all the unsaturated links have been 

removed. 

 

Fig.1. Transformation of a non-saturated network to the corresponding reduced one 

 

Having constructed a reduced network, G[NR, LR, WR], from a non-saturated network, 

G[N, L, W], we consider the DUE assignment on G[NR, LR, WR]. Because the reduced network is 

saturated, the solution is governed by 

( ) )(  )( ss RRRRR QAMA && =− τ ,         (13) 

where the variables with subscript R denote that they are defined on a reduced network. Note 

that the uniqueness of the solution )(sRτ&  for (13) is guaranteed as shown in Akamatsu and 
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Heydecker (2003). The solution for the original network G[N, L, W] is readily found from (13) 

for the reduced network. To show this, we introduce an N)L(N F ×−  matrix R defined as 

follows: the element in the ith row and jth column is 1 if node i in NR corresponds to node j in N, 

0 otherwise; then )(siτ&  for each node in the set N is given by 

)( )( ss R
T ττ && R= ,          (14) 

and link flows yQ on the saturated links in G[N, L, W] are determined uniquely by using this in 

(4). 

As proved in Appendix A, the unique solution ( )(sτ& , yQ) obtained by (13), (14) and (4) is 

consistent with the DUE conditions in a non-saturated network G[N, L, W]. In particular, the 

solution satisfies (7) notwithstanding that the flows yF on non-saturated links may be 

indeterminate: we note that it is possible that substituting a value of yQ into (2b) does not 

determine the value of yF uniquely. Thus we can conclude that, by using the reduced network, 

the dynamic equilibrium solution ( )(sτ& , yQ) can be obtained even if V is not invertible and that 

)(sτ&  is uniquely determined though yF might not be in all cases. 

A few remarks are in order concerning reduced networks. First, the technique detailed 

above, reducing a network to a saturated one for which (13) is then solved, is valid not only for 

case (b) but also for case (a) of 1.3, in so far as we aim only to obtain )(sτ&  and yQ. This is 

evident because this technique can be applied whether or not the matrix V is invertible. 

Second, if the sets L and LQ do not change during the period of analysis, then no saturated 

link of the original network is deleted in constructing the reduced network.  

However, it is possible to identify cases in which saturated links are eliminated in the 

procedure of unifying nodes. Consider a saturated link whose initial and terminal nodes are the 

terminal nodes of two non-saturated links that have the same initial node (see Figure 2); these 

nodes would be unified into a single node, and therefore, the saturated link may be removed (or 

forms a loop at the single node that results from this). Networks with combinations of saturated 

and non-saturated links such as this cannot arise in the DUE state unless the sets L and LQ 

change during the analysis period. We illustrate this by considering the network example in 
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Figure 2. Suppose that both routes (1, 3) and (1, 2,  3) are used in the DUE state; then for the 

users of route (1, 3), )()( 13 ss ττ && =  )(13 sc&+ = 1 + 0 = 1 because link (1, 3) is not saturated. On 

the other hand, for the users of route (1, 2, 3), 

 )(3 sτ& += )(1 sτ& )(12 sc& )(23 sc&+ 1)(01 23 ≠++= sc&  because link (2, 3) is saturated; these 

contradict each other unless the particular case arises that link (2, 3) is saturated with 

( ) 2323 µλ =s  so that 0)(23 =sc& . Furthermore, as shown in the third remark below, this particular 

case (link (2, 3) is saturated and 0)(23 =sc& ) can occur only when the set LQ changes.  

 

Fig.2. An example of a queuing pattern that causes deletion of a saturated link 

 

 Third, our theory in the present paper can be applied directly to intervals throughout which 

the the sets  L and LQ remain unchanged.  We can extend the application of this analysis by 

decomposing an analysis period into intervals of this kind, which are delimited by instants at which 

the sets  L and LQ do change. Contrary to the assertion in the second remark above, this allows a 

class of queuing patterns that leads to deletion of saturated links in constructing the reduced 

network to occur. We now present a simple example depicted in Figure 2 to show how this can 

occur. Suppose that the free-flow travel time on link 2 exceeds the sum of those on links 1 and 3, 

whilst the capacity of link 3 is less than the demand for travel to node 3 and the capacities on 

links 1 and 2 are sufficiently large that they will not be congested. In the DUE state of this 

network, link 2 is not used at all until the travel time of the route using links 1 and 3 (c12 + c23) 

grows to the free-flow travel time of link 3 (c13); link 2 starts to be used at the first instant, s, 

when c12 + c23 reaches c13; thus, the set L must change at time s in order for the queuing pattern 

in Figure 2 to occur. To include this particular class of queuing patterns into our analysis, we 

unify the initial and terminal nodes of each unsaturated link even if the two nodes are also the 

initial and terminal nodes of a saturated link, and repeat such procedure until all unsaturated 

links have been deleted. In this extended construction of a reduced network, some saturated 

links of an original network may be deleted, but only those for which the cost is constant over 
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time because it is stabilised by the assignment in equilibrium to an alternative set of links, each 

of which is unsaturated. An example of this is the reduction of the network in Figure 2 to a 

single node by deletion not only of unsaturated links (1,2) and (1,3) but also of the saturated 

link (2,3) to which they provide an alternative.  

 However, in so far as our concern is the analysis of the capacity paradox, this deletion of 

saturated links will cause no problem; for example, we see immediately that change in the 

capacity of the saturated link (2,3) causes no paradox, because 3τ&  is not at all affected by the 

change in the capacity due to the requirement of 321 τττ &&& == ; that is, we can ignore any deleted 

links, regardless of whether they are saturated or unsaturated, in detecting capacity paradoxes. 

Furthermore, we can also obtain equilibrium flow yij on each deleted link in LQ by the following 

formula: 

),(   jiUijiijjijijy τµτµτµ &&& === ,      

where U(i, j) denotes the node (in the reduced network) that is obtained by unifying nodes i and 

j of the original network, and ),( jiUτ& is the time-derivative of equilibrium arrival time to node 

U(i, j) in the reduced network. The validity of this formula is apparent: ),( jiUji τττ &&& ==  always 

holds since the deleted link in LQ connects the two nodes that are also connected by an 

unsaturated link. 

Finally, we should note that the DUE flow pattern on a reduced network can contain loops 

(consisting of several links) although the corresponding flow pattern on the original 

non-saturated network cannot. This implies that we cannot apply the procedure DUE_SN 

described in Akamatsu and Heydecker (2003) to solve equations (13) because DUE_SN is 

designed for saturated acyclic networks; instead, to solve (13) we can use a standard procedure a 

system of linear equations. 
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2. CONDITIONS FOR OCCURRENCE OF CAPACITY PARADOXES 

 

 As in Akamatsu and Heydecker (2003), we define the paradox to be the situation where 

increasing (decreasing) capacity of a certain link causes the increase (respectively decrease) of total 

travel time C in the whole of a network. That is, the paradox occurs if and only if 
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A formula for calculating aC µ∂∂   /  can be obtained from the sensitivity of the DUE solution )(sτ&  

with respect to the change in capacity of link a, classifying the problem into two cases depending 

on whether or not the matrix V is invertible: 

 

2.1 Invertible Case 

Let us first consider the two equilibrium solutions, )(µτ&  and )( µµτ ∆+&  respectively, for the 

capacity patterns µ  and µµ ∆+ . From (7), the respective solutions are governed by the following 

equations: 
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We then compare the solutions; subtracting (16a) from (16b), we have 

)(  )()}()({)}()(){( µµτµµµµµτµµτµ ∆+∆−=−∆+−−∆+ &&& VyyAV FFF ,   (17a) 

0A =−∆+ )}()({ µτµµτ &&T
F .         (17b) 

Consider the case that µ∆  = ]0...,0,,0,...,0[ aµ  (ie only the capacity of link a changes, and is 

increased by aµ∆ ). Dividing both sides of equations (17) by aµ∆ , considering the identity 

T
aa −=∆∆ AIAV  /)( µµ , where Ia is an L × L matrix whose ath diagonal element is 1 and all other 

elements are 0, and taking the limit of 0→∆ aµ , we obtain 
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)(   
)()(

)(
 

 

 

 
µτ

µµτ
µ &

& T
QaQ

a

F
F

a
−−=

∂
∂

−
∂

∂
AIA

y
AV

µµ
,       (18a) 

0A =
∂

∂

a

T
F µ 

 )(µτ&
.             (18b) 

Note here that the coefficient matrix of the left hand side of (18) is the same as (7). Hence, it follows 

immediately that the solution as µ  /)( ∂∂τ&  of (18a) can be obtained by projecting 

)}(   {1 µτ&T
QaQ −

− − AIAV  onto null space of AF as in (12): 

)()( ][  )( ][

)}(   {)( ][)(

11

1

 

 

sT
QaQ

T
QaQ

a

QVPIAIAVPI

AIAVPI

&

&&

−
−

−

−
−

−−−=

−−=
∂

∂

µµ

µτµµτ
µ        (19) 

From this sensitivity formula for the DUE solution and the definition of TC, we have the 

following proposition: 

Proposition 1(a). The capacity paradox in a non-saturated network with an invertible matrix V 

occurs if and only if  

0 )( ][ ][)(
 

0 
 

1
 

1 ≥−−−=
∂
∂

∫ −
−

−T T
QaQ

T

a

dsssC QVPIAIAVPIQ&
µ

.       (20) 

Note that the paradox cannot occur on a link in LF (ie a non-saturated link) whilst the link sets 

LQ and LF remain fixed (ie the queuing pattern does not change) because aT µ  / ∂∂  for link  a ∈  

LF  is always zero. Thus it can never occur on a link in LF in respect of capacity increase, and 

could only occur on one if capacity is reduced to below the flow that is currently assigned. 

 

2.2 Non-Invertible Case 

 We now consider the case in which the matrix V is not invertible. In this case, the flow 

pattern yF  on links in LF is not necessarily determined uniquely. However, this does not cause any 

problems in deriving the condition for occurrence of capacity paradoxes. The reason for this is as 

follows:  

1) aC µ  / ∂∂  can be calculated using information only on as µ  /)( ∂∂τ&  as can be seen from 

(15) which include no explicit information on yF; 
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2) as µ  /)( ∂∂τ&  is affected by neither yF nor MF because )(sτ& is independent of both yF and MF 

as we have seen in Section 1;  

3) from 1) and 2), we conclude that aC µ  / ∂∂  is independent of both yF and MF . 

 In the light of the fact that the paradox occurrence is independent of both yF and MF, it is 

convenient to consider the problem defined in a reduced network. Because the DUE assignments in 

a reduced network have the same form as that in a saturated network, it is evident that the necessary 

and sufficient condition for the paradox to occur corresponds to (16) of Akamatsu and Heydecker 

(2003) when applied to the reduced network: 

Proposition 1(b). The capacity paradox occurs in a non-saturated network if and only if 

0 )()(
 

0 
 

1
 

1 ≥−=
∂
∂

∫ −
−

−T

RR
T
RaRR

T
R

a

dsss
C

QVAIAVQ&
µ

,         (21) 

where T
RRRR −≡ AMAV . 

 

Remarks:  

(1) For the reason why the right end term in the integral in (20) and (21) is not )(sQ& but 

)(sQ , see Appendix B.  

(2)  The result in Akamatsu and Heydecker (2003) enables us to be sure that the matrix 

VR is invertible even when V is not. 
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3.  ANALYSIS OF EXAMPLE NETWORKS  

 

We now explore the application of these analyses of non-saturated networks. We consider 

separately the case of a network in which the matrix V is invertible and that in which it is not. 

 

3.1 Invertible Case 

Example (1). Consider the network shown in Figure 3(a), where node 1 is the only origin; nodes 

2 and 3 are destinations; the maximum exit flow rate (capacity) of link a is given by aµ (a = 1, 2, 3); 

links 1 and 2 are saturated but link 3 is not saturated. 

 

Fig.3(a). An example network in which the matrix V is invertible 

 

The reduced incidence matrix A and the matrix −QA  for this network are given by 

   [ ]FQ AAA =







−−

−
=

110
101

,  







−

−
=− 10

01
QA ,  0δ = . 

Direct calculation yields 

  







=≡ −

2

1

0
0

µ
µT

QQQ AMAV , 







=−

2

11

/10
0/1
µ

µ
V , 

21

1 11
µµ

+=≡ −
F

T
F AVAW , [ ],1

12
21

11 µµ
µµ

−
+

=−− VAW T
F    (22a) 









−

−
+

=≡ −−

11

22

21

11 1
 

µµ
µµ

µµ
T
FF AWAVP ,  








+

=− −

11
111

 ][
21

1

µµ
VPI .    (22b) 

Substituting (22b) into (12), we find 

{ } )()()(
1

)( 3 1312 

21
2 ssQsQs τ

µµ
τ &&&& =+

+
= .          (23) 

Reference to the original network shown in Figure 3(a) shows that this arises because link (2, 3) is 

used in the DUE assignment but is not saturated. From (23) and (4), we have that in the DUE state, 

the flows y1 and y2 on the saturated links are given by 
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 { } ( ) { } 1312 

21

2
2 1312 

21

1
1 )()(,)()()( sQsQsysQsQsy &&&& +

µ+µ
µ

=+
µ+µ

µ
=  .  (24a) 

The DUE flow y3 on the non-saturated link (2, 3) is given by substituting (22a) into (10): 

    ( ))( )( 
1

)( 131122
21

3 sQsQsy && µµ
µµ

+−







+

=  .    (24b) 

We note that the same solution can be obtained by using the reduced network shown in Figure 3(b). 

We now proceed to verify the requirement for the existence of the DUE solution; the 

solution should satisfy )()(0 233 ssy τµ &≤≤  because we have treated link 3 as being 

non-saturated. This requirement is equivalent to 

   )()()( 13
2

1
 1213

32

31 sQsQsQ &&&
µ
µ

µµ
µµ

<<





+
−

.    (25) 

If this condition is not satisfied, then the DUE solution for this network will not have the queuing 

pattern that is shown in Figure 3(a). 

 

Fig.3(b). The reduced network for the one in Fig.3(a) 

 

Next, let us examine whether or not the paradox occurs in this network. Because link 3 is 

not saturated, we see immediately that marginal changes in the capacity of link 3 will not affect 

the DUE assignment and hence cannot cause the paradox. As for links 1 and 2, substituting the 

expressions in (22) for V-1 and P into (20), we have 

dssQsQsQsQCC T
 )}()( {)}()( {

)(
1  

0 131213122
212 1 

 

∫ ++
+

−=
∂
∂=

∂
∂ &&

µµµµ
.  (26) 

Because (26) is always negative, this shows that the paradox can never occur in this network. 
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Example (2). We now consider a second example network in which the matrix V is invertible. 

The network shown in Figure 4(a) has the same topology as that in Figure 3(a) and differs only in 

the queuing pattern: in this case links 1 and 3 are saturated but link 2 is not saturated. 

 

Fig.4(a). A second example network in which the matrix V is invertible 

 

The matrices AF , AQ and −QA  for this network are given by 

   







−

=
1

0
FA , 








−

−
=

10
11

QA ,  







−

−
=− 10

01
QA , 1−=δ . 

Direct calculation yields 








 −
=≡ −

3

31

0 µ
µµT

QQQ AMAV , 







=−

3

111

/10
/1/1
µ
µµ

V ,         (27a) 

3

1 1
µ

=≡ −
F

T
F AVAW ,  [ ]1011 −=−− VAW T

F ,         (27b) 









=≡ −−

1

3

1

11

0
01

µ
µ

µ
T
FF AWAVP ,   








=− −

00
011

  ][
1

1

µ
VPI .     (27c) 

The DUE flow y2 on the non-saturated link 2 is given by substituting (27b) into (10): 

3132 )()( µ−= sQsy & .          (28) 

Substituting (27a) and (28) into (11) yields 

))((
1

)( 312
1

2 µ
µ

τ += sQs && , ( ) 13 =sτ& .       (29) 

From (28) and (4), we obtain the DUE flows y1 and y3 on the saturated links 1 and 3 as: 

3121 )()( µ+= sQsy & ,  3333 )()( µτµ == ssy & .     (30) 

It is also possible to obtain the same solution by using the reduced network shown in Figure 4(b). 

We note that the reduced network for this case contains a loop, unlike the saturated networks 

considered in Akamatsu and Heydecker (2003). However, this does not prevent us from applying 

the desired analysis. 
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Because we supposed link 2 to be non-saturated, the DUE solution should satisfy 

122 )(0 τµ &<< sy . This requirement reduces to 32133  )( µµµ +<≤ sQ& . 

 

Fig.4(b). The reduced network for the one in Fig.4(a)  

 

Next, we investigate occurrence of the capacity paradox in this network, and show that in 

this case it can occur. Because link 2 is not saturated, we see immediately that marginal changes 

in the capacity of link 2 cannot cause the paradox. As for links 1 and 3, substituting V-1 and P 

calculated in (27) into (20), we have 

dssQsQC T
 )( )(1  

0 1212
11 

 

∫−=
∂
∂ &

µµ
,           (31a) 

dssQC T
 )( 1  

0 12
13 

 

∫=
∂
∂

µµ
.             (31b) 

This means that changing the capacity of link 3 always causes the paradox whilst marginal 

changes to the capacity of link 1 will not do so.  

We can understand this by direct reference to the network shown in Figure 4(a) as follows. 

In this network, because link 2 is used in the DUE assignment, the cost incurred by all travellers 

from the origin node 1 to destination node 3 is equal to the cost of using link 2.  Because link 2 

is not saturated, the cost of using it remains constant at the free-flow value, so that the cost of 

travel from the origin node 1 to destination 3 also remains constant. Because link 3 is used in 

the DUE assignment, the route (1, 3) carries some flow, so from the equilibrium condition, at 

each time s  we have  )()()( 231 scscsc =+ . Now an increase in the capacity of link 1 will reduce 

the cost of travel if the flow remains constant. Any reduction in cost of using link 1 will cause a 

complementary increase in the cost of using link 3 in order to achieve constancy of their sum as 

is required for equilibrium: this will be achieved by an increase in the assignment to the route 

(1, 3) which will moderate, but not nullify, the reduction in cost on link 1. Thus the increase in 

capacity of link 1 leads to a reduction in the equilibrium cost of travel to destination 2 and an 
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increase in assignment to route (1, 3), but does not change the equilibrium cost of travel to 

destination 3. Changes to the capacity of link 1 therefore cause variation in costs of the sign that 

would be expected from naïve consideration. On the other hand, an increase in capacity of link 

3 will reduce the cost of travel on that link at constant flow. Any reduction in the cost of using 

link 3 will cause a complementary increase in that on link 1 in order to achieve constancy of 

their sum as is required for equilibrium: as before, this will be achieved by an increase in the 

assignme nt to route (1, 3). In this case, the resulting increase in cost on link 1 will affect all 

travellers from the origin to destination 2. Accordingly, changes to the capacity of link 3 will 

not affect the equilibrium cost of travel to destination 3 but, because of their effect on 

assignments to destination 3, will influence the cost of travel to destination 2 in a way that 

causes paradoxical effects. 

 

3.2 Non-Invertible Case 

Example (3). We consider an example network in which the matrix V is not invertible but in 

which the reduced matrix VR is. The network shown in Figure 5 (a) has the same topology as 

those in Figures 3(a) and 4(a) but differs in the queuing pattern: in this case, links 2 and 3 are 

saturated but link 1 is not. 

 

Fig.5 (a). An example network in which the matrix V is non-invertible 

 

The matrices AF, AQ and −QA  for this network are given by 

   [ ]QF AAA =







−−

−
=

110
101

, 







−−

=− 11
00

QA . 

Hence 









+

−
=≡ −

32

3

0
0

µµ
µT

QQQ AMAV  .     (32) 

This matrix V is clearly non-invertible, although the topology of the original network is the same as 
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in Examples (1) and (2) with an invertible V.  Despite this singularity, we can obtain the equilibrium 

solution as follows. First, note that we do not have to regard 2τ  as an unknown variable to be 

solved from (6). Because in this case link 1 is not saturated, 0/)(1 =dssdc  holds and it follows 

that 

1)()( 21 == ss ττ && .        (33a) 

Considering equation (6) applied at node 3, we get 

32

13
3

)()(
µµ

τ
+

= sQs
&

& ,        (33b) 

and substituting this into (4), we obtain 

)()( 13
32

2
2 sQsy &

µµ
µ
+

= ,  )()( 13
32

3
3 sQsy &

µµ
µ
+

= .   (34a) 

The DUE flow  y1 on the non-saturated link 1  can then be calculated from (2b) as: 

)()()( 3121 sysQsy += & .       (34b) 

This flow should satisfy )( )(0 111 ssy τµ &≤≤ , which leads to the requirement on the problem 

specification 

113
32

3
12 )()( µ

µµ
µ

<
+

+ sQsQ &&       (35) 

in order for the DUE solution to give rise to this queueing pattern. Note that the same solution 

can be obtained by using the reduced network shown in Figure 5 (b).  

 

Fig.5 (b). The reduced network for the one in Fig.5(a) 

 

We now examine occurrence of the capacity paradox in this case. Because link 1 is not 

saturated, marginal changes in the capacity of link 1 will not affect costs and hence cannot 

cause paradoxical behaviour. As for links 2 and 3, substituting ( ) 1
32

1 −− += µµRV  into (21), we 

have  

( )
0 )( )(

)(
1

2

32

13 

0 13132
323 

 

2 

 
<





µ+µ

−=
µ+µ

−=
µ∂

∂
=

µ∂
∂

∫
TdQ

dssQsQ
CC T & .    (36) 
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This means that the paradox can never occur in this network with this queueing pattern. 

 

Example (4). Finally, we consider a second example network in which the matrix V is not 

invertible. The network is shown in Figure 6 (a), which has the same topology as the famous 

Braess’ (1968) network with a single OD pair (1, 4); as for the queuing pattern, we assume that 

links (1,2), (2,3) and (3,4) are saturated but links (1,3) and (2,4) are not. 

 

Fig.6 (a). A second example network in which the matrix V is non-invertible 

 

The matrices AF, AQ and −QA  for this network are given by 

[ ]FQ AAA =



















−−
−−

−
=

10100
01110
10011
01001

, 



















−
−

−
=

100
110
011
001

QA .    

Hence, we have 

T
QQQ −≡ AMAV



















−
−

−

=

34

3423

2312

12

000
00

00
000

µ
µµ

µµ
µ

.     (37) 

Although this matrix is singular, we can obtain the equilibrium solution by using the reduced 

network shown in Figure 6 (b).  

 

Fig.6 (b). The reduced network for the one in Fig.6(a) 

 

In the reduced network, nodes 1 and 3 in the original network are unified into a single node A 

because link (1,3) in the original network is not saturated (ie 0/)(13 =dssdc ), which implies 

131 ==ττ && .        (38a) 

Similarly, nodes 2 and 4 in the original network are unified into a single node B, and it follows 
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42 ττ && = .        (38b) 

The flow conservation at node B of the reduced network yields 

3231443412   )( τµτµµ &&& +=+ Q       (39) 

Hence, the equilibrium solution is given by 

42 ττ && =
3412

32314  
µµ

τµ
+

+=
&&Q ,       (40) 

Substituting this into (4), we obtain 

21212  τµ &=y )( 2314
3412

12 µ
µµ

µ
+

+
= Q& ,  43434  τµ &=y )( 2314

3412

34 µ
µµ

µ
+

+
= Q& ,  (41a) 

32323  τµ &=y 23µ= .       (41b) 

The DUE flows on non-saturated links can then be calculated from (2b) as: 

121413 yQy −= &
3412

23123414

µµ
µµµ

+
−= Q& , 341424 yQy −= &

3412

23341214

µµ
µµµ

+
−= Q& .   (41c) 

These flows in non-saturated links should satisfy 31313 τµ &<y  and 42424 τµ &<y in the DUE state. 

These requirement reduce to 

)( 2313
34

12
1314 µµ

µ
µ

µ ++<Q&  and )( 3424
2412

23
14 µµ

µµ
µ

+
−

<Q& .     

The solution (40) clearly shows occurrence of the capacity paradox in this case: OD travel 

time 4τ  increases with the increase in 23µ , which implies that changes in the capacity of link 

(2,3) always causes the dynamic capacity paradox corresponding to Braess’ static one. 

From these examples, we can see a simple but useful rule that paradox always occurs if a 

controlled link (in which we are changing the capacity) forms a part of loops (cycles) in a 

reduced network. Recall that we have seen the occurrence of the capacity paradox in Examples 

(2) and (4). In Example (2), links 1 and 3 of the reduced network (Fig.4(b)) indeed form a loop; 

and in Example (4), links (1,2) (or (3,4)) and (2,3) of the reduced network (see Fig.6(b)) form a 

loop. We shall discuss this point again in the next section, where ramp metering applications in 

more complicated networks are presented. 
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4. APPLICATIONS - Examination of Ramp Metering Operations in a Ladder Network 

 

In this section, we consider a simple ramp metering/closing problem as an application of the 

theory developed so far. Note that ramp metering/closing in freeway entrance/exit ramps can be 

represented in our dynamic assignment model as decreasing the capacity of certain links, and that 

any occurrence of the capacity paradox in the links would have important implications for the 

effectiveness of ramp metering in managing congestion. We note that the usual intention of these 

strategies is to reduce the cost of travel in some or all of a road network by making appropriate 

temporary reductions in the capacity on the freeway entry ramps. When we allow for consequent 

reassignment, as might occur in response to a recurrent strategy operating to a fixed-time schedule, 

this traffic management strategy relies for its success on behaviour that in other contexts might be 

regarded as paradoxical: the reduction in capacity on the freeway entry ramps is required to result 

in a reduction in total cost of travel. A more local view would be that the beneficiaries should be 

travellers who join the freeway upstream of the entry ramps that are controlled in this way, but that 

is clearly inequitable. This observation means that the theory developed in Sections 1 and 2 can be 

used to analyse whether or not ramp metering/closing operations in a network will be effective 

when the total cost of travel in the network is considered. 

 

4.1 Example Network and Possible Queuing Patterns 

As an example application of this analysis, we consider here the network shown in Figure 7: 

links 1, 2 and 3 represent freeway sections, links 7 and 8 represent arterial streets, and links 5, 4 and 

6 represent entrance/exit ramps to/from the freeway. Each link a (a=1,2,...,8) has capacity aµ ; 

node o is the origin, and nodes c, d, e and f are destinations. We assume that queuing pattern and 

OD flow rate (measured at the origin) for each OD pair (o, d), )(sQd
& , are given for all s during the 

study period. We will analyse the effect of entry ramp metering, which in this case is represented by 

modifying the capacity of link 5. 
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Fig. 7. A simple ladder network 

 

We begin with enumerating all the possible queuing patterns in this network, and then 

examine whether or not the paradox occurs in link 5 for each of the queuing patterns. Note that we 

do not have to consider all combinations of queuing states (ie 28=256 queuing patterns). First, we 

can exclude the queuing patterns in which link 5 is not saturated because we have already observed 

that the paradox never occurs if the link is not saturated. Second, we assume link 1 to be saturated 

because the queuing state of link 1 is independent of the occurrence of the paradox in link 5. Thus, 

we analyse the possible 64 (=26) queuing patterns listed in Table 1, where queuing state in each 

links is denoted by 1 (saturated) or 0 (non-saturated), and each queuing pattern is designated by one 

of a consecutive numbers from 0 to 63. [For example, if links 2 and 6 (as well as links 1 and 5) are 

saturated and the remaining links 3,4,7 and 8 are not saturated, the queuing pattern is coded as 

“001001” and the pattern number is “9” (=1+23).] 

 

Table 1: Queuing patterns for examining the paradox in link 5 

 

4.2 Classifying Queuing Patterns – Effectiveness of Ramp metering 

 The DUE solution for each of the queuing patterns can be easily obtained by applying the 

theory developed in Chapters 1 and 2. The detailed solutions are described in Akamatsu (1999). By 

inspecting the solution, we can classify each queuing pattern into one of four cases according as 

whether the metering on link 5 

(1) always increase total travel time, or 

(2) has no influence on total travel time, or 

(3) can reduce total travel time depending on M and Q(s), or 

(4) always reduces total travel time regardless of M and Q(s).  

The resulting classification is shown in the “Class.” column of Table 1, and the number of 

queueing patterns for each classification is summarised in Table 2. Somewhat surprisingly, this 
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reveals that the ramp metering is likely to have positive effect in considerably many states: the 

queuing patterns falling into case (4) account for slightly over half (33) out of the possible (64) 

patterns, whilst those falling into case (1) are only 3 in number. 

 

Table 2: Classification of queuing patterns 

 

4.3 Characterisation of Queuing Patterns 

We shall make some remarks on the features of each case classified in 4.2. For case (1), the 

classification reveals the following facts. First, the ramp metering for this case does not reduce 

travel time for any of the OD pairs. Second, this case arises when links 4 and 7 are both 

non-saturated as shown in Figure 8(a). The reason why the metering in this case increase travel 

time can be seen by considering the reduced networks for these queuing patterns depicted in Figure 

8(b): nodes a and b are connected by links 2 and 5 in the reduced networks; this means that the 

capacity of link 5 cannot affect the travel time for destinations d and e, and that introduction of 

metering on link 5 necessarily decreases total capacity between nodes a and b, which can only lead 

to an increase in travel time for destinations c and f.  

 

Fig.8(a). Queuing patterns where metering on link 5 never reduces congestion 

Fig.8(b). The reduced networks for the queueing patterns in Fig.8(a) 

 

For case (2), four queuing patterns (3, 11, 35 and 43) shown in Figure 9(a) are similar to 

those of case (1) in that links 4 and 7 are both non-saturated. The essential difference between the 

four patterns and those in case (1) is seen from the reduced networks in Figure 9(b): nodes b and c 

are unified in the former queuing patterns (9, 33 and 41, whilst nodes b and c are not unified in the 

latter patterns (3, 11, 35 and 43). Recall that the value of iτ&  in a reduced network without loops can 

be determined by proceeding backwards from pure destinations towards an origin. This implies that 
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cτ&  in these four queuing patterns is independent of the capacity of link 5. Therefore, metering on 

link 5 cannot affect the travel time for destination c as well as other all destinations in these four 

queuing patterns, while the metering increases the travel time for destination c in case (1). 

 

Fig. 9(a). Queuing patterns where metering on link 5 does not influence the total travel time 

Fig.9(b). The reduced networks for the queueing patterns in Fig.9(a) 

 

The remaining 15 queuing patterns in case (2) share certain similarities in that link 5 is deleted in 

the reduced networks. As we have seen in section 2.2, paradox occurrence is independent of the 

capacity of any links that are deleted to form a reduced network. It follows from this fact that 

metering on link 5 can have no influence on equilibrium travel time for these queuing patterns. 

For case (3), we note that link 2 is saturated and link 3 is non-saturated in all the queueing 

patterns (Figure 10 shows this fact in the reduced networks, where nodes b and c are unified into a 

single node while node a is not unified with b). Since this feature also applies to the queuing 

patterns that fall into case (1), we see that metering of link 5 increases the travel time for destination 

c. However, unlike the queuing patterns of case (1), the travel time for other destinations in case (3) 

can be reduced by the metering. For example, consider the queuing pattern 13 whose reduced 

network is shown at the top of Figure 10. Equating inflows and outflows at each node of the 

reduced network, we see that equilibrium travel time for destinations c, d, e, and f  is governed by 

,    , fedcb τττττ &&&&& ===  




=+
+=+

db

bd Q
τµτµµ

τµτµµ
&&

&&&

 652

 564

 )(
 )(

, 

where fedc qqqqQ &&&&& +++≡ . Simple calculation yields the following solution: 

Qfed
&&&&

1

6
52

5
64

−









+

−+=== µ
µµ

µµµτττ  

We immediately see from this solution that decrease in 5µ  always reduces the value of 

fed τττ &&& == . Therefore, the metering indeed reduces travel time for each destination except c, but 

always increases it for c; in other words, not every OD pair enjoys the reduction in travel time. This 
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is the reason why we cannot definitely conclude whether the ramp metering reduces total travel 

time for queuing patterns in case (3); it depends on the particular values of )(tq& and M that obtain. 

 

Fig. 10. The reduced networks for queueing patterns that fall into case (3) 

 

For case (4), we note the following facts, First, the ramp metering in this network always lead 

to Pareto improvement for the OD pairs (ie the travel time for each OD pair is no worse after 

introduction of metering). Second, this case arises in all 21 queueing patterns in which link 2 is 

non-saturated as well as in 12 others. The reason why the metering when link 2 is non-saturated 

always reduces travel time can be explained as follows: metering on link 5 necessarily increases the 

travel time on path (a, d, e, b) provided the demand for this path remains fixed; on the other hand, in 

the DUE state, bτ&  should remain unchanged regardless of the metering on link 5 because 02 =c&  if 

link 2 remains non-saturated; together, these imply a decrease in flows on this path due to the 

metering, and this always reduces the travel time on links 4 and 7. This then causes a reduction in 

the travel time to nodes d and e, which cannot have negative effect to the travel time for nodes c and 

f. Thus, we see that the ramp metering in this case always leads to a Pareto improvement. 

This mechanism can also be understood from the reduced networks. Figure 11(a) shows 

the reduced networks for queuing patterns 6, 14, 22 and 30, which are typical examples of the 

queueing patterns classified into case (4) in which link 2 is not saturated. Note here that, in all 

these networks, controlled link 5 forms a part of a particular type of loops that include all 

destinations and node a; this is almost the same as saying that link 5 leaves destinations and arrive 

at node a (ie flow on link 5 proceeds “backward” from destinations to an origin), which leads to 

emergence of the loop(s) because each destination should have entering links (ie the links with the 

direction opposite to link 5). For example, in queueing pattern 14, link 5 emanates from 

destinations d, e and f, and enters node a; this “backward link” gives rise to two loops (4, 5) and (3, 

6, 5) that cover all the destinations and node a. This example also clearly shows the reason why this 

type of loops implies the effectiveness of the ramp metering on link 5. Considering flow 
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conservation at a unified node (d, e, f) of the reduced network, we see that fed τττ &&& ==  decreases 

with the decrease in sum of outflows, XOUT, from node (d, e, f), because sum of inflows, XIN , to the 

node (which is identical to XOUT) is determined as dτµµ & )( 64 +  at equilibrium. On the other hand, 

the fact that link 5 emanates from destinations and enters node a implies that XOUT is decreased by 

the metering on link 5 (ie a decrease in 5µ ), because XOUT is given by )( fed qqq &&& ++ bτµ & 5+  and, 

ba ττ && =  is constant regardless of the metering for this queuing pattern. Hence, metering on link 

5 always leads to the decrease in fed τττ &&& == . Similarly, flow conservation at node c (ie. 

dcc q τµτµ &&&  63 += ) reveals that cτ& decreases with the decrease in dτ& , which is accomplished by 

the metering on link 5. These observations have shown that travel time for every destination is 

reduced by the ramp metering when this type of loop emerges. 

 

Fig. 11 (a). The reduced networks for typical queueing patterns that fall into case (4) 

in which link 2 is not saturated. 

 

In the remaining 12 queuing patterns in case (4), link 2 is saturated. The reason why the 

metering is always effective for these patterns (even if link 2 is saturated) can be understood by 

comparing the reduced networks for these patterns and those for case (3). Figure 11(b) shows the 

typical examples: we see that slight modifications of patterns 7, 23, 47 and 63 in case (4) would 

yields patterns 13, 29, 45 and 61 in case (3), respectively; the difference is that destination c is 

unified into node bin the latter (case (3)) whilst it is not unified (or unified into other destinations) in 

the former (case (4)). As we have shown in the remarks for case (3), the metering on link 5 

increases travel time for destination cfor the queuing patterns in case (3). By the same argument, 

travel time for node b (that is just a traversal node) in the queuing patterns of case (4) would be 

worsened by the metering. But, unlike the queuing patterns of case (3), destination c is separated 

from node b in the queuing patterns of case (4), which prevents the metering from increasing the 

travel time for destination c. 
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Fig.11(b). The reduced networks for typical queueing patterns  fallen into case (4) 

in which link 2 is saturated. 

 

4.4 Example Network and Possible Queuing Patterns 

We now consider briefly the ramp-metering in a variant of the simple ladder network 

example that is shown in Figure 7 and analysed above. In this case, we consider the case where the 

direction of link 5 is reversed. Here, links 1, 2 and 3 could be taken to represent freeway sections 

with links 7 and 8 representing arterial streets, and links 4, 5, and 6 representing exit ramps from the 

freeway. Conversely, links 7 and 8 could be taken to represent freeway sections with links 1, 2 and 

3 representing arterial streets, and links 4, 5, and 6 representing entrance ramps from to freeway. In 

either case, travellers to node  f  and beyond would be presented with a choice between the ramps 

represented by links 4, 5 and 6. 

As before, we can classify each queuing pattern in this modified network into one of four 

cases according to the effect that metering on link 5 has on the total travel time. The resulting 

classification corresponds exactly to that in Table 2 except that classes 1 and 4 are interchanged. 

Thus the use of metering in this modified example most often leads to an increase in cost (33 

cases out of 64). Furthermore, in all cases where link 2 is uncongested, metering on link 5 either 

always increases travel times (case 1) or at best has no influence on them (case 2). The same 9 

queueing patterns can give rise to an improvement and so fall into case 3 as with the original 

network. That leaves just 3 queueing patterns (9, 33 and 41) for which metering on link 5 always 

results in a decrease in travel time (case 4). 

The indeterminate case (3) in which metering on link 5 can reduce travel times, depending on 

demand, can be characterised as follows. In all of these queueing patterns, link 2 has a queue whilst 

link 3 does not, and two or more of links 4, 6, 7, and 8 has a queue. The two queueing patterns that 

conform to this specification that do not fall into case (3) are queueing pattern number 21, in which 

only links 2, 4 and 7 have queues and falls into case (2) (no influence), and queueing pattern 
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number 41, in which only links 2, 6 and 8 have queues and falls into case (4) (always improves 

travel time). 

Inspection of the three queueing patterns (9, 33 and 41) in case (4) for this network is 

illuminating. These are exactly the queueing patterns in which queues are present on both of links 2 

and 5, and on at least one of links 6 and 8. In each of these cases, reducing the capacity of link 5 will 

cause traffic to transfer to the uncongested alternative route to node e that uses links 4 and 7, which 

provide unchanged travel time to node e: this will reduce the travel time on link 2 to the benefit of 

travellers to other destinations. We note with interest that the queueing pattern number 33 in this 

network corresponds closely to the Braess-like example shown in Figure 6 above, where in this 

network links 3 and 6 together correspond to link (2, 4) of the Braess example, whilst links 4 and 7 

together correspond to link (1, 3). 

 

 

5. CONCLUDING REMARKS 

 

 This paper has extended the theory presented in Akamatsu and Heydecker (2003) on the 

analysis and detection of “capacity paradoxes” under dynamic user equilibrium (DUE) 

assignment in networks that have a one-to-many OD pattern. The original theory was applicable 

directly only to saturated networks in which every link that carries any flow is overloaded. In 

the present paper, we have shown how networks in a broader class in which there are queues on 

some links but not on others can be reduced to an equivalent problem in a corresponding saturated 

network. This technique has been illustrated by constructing a “reduced network”, which consists 

of only saturated (queuing) links of an original network. This technique implies that essential 

properties of a DUE flow pattern in a non-saturated network are fully expressed in the topological 

structure of the reduced network (ie spatial queuing pattern), and that we can detect the occurrence 

of capacity paradoxes using information from this alone.  

As an application of this theory, we examined the effectiveness of a ramp metering/closing 
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operation in two variants of a small ladder network. This application provides some interesting 

insights. First, it seems likely that metering or closing a freeway entrance ramp can be effective to 

reduce travel times not only on the freeway itself but also in the whole network including arterial 

streets. Second, effective metering operations can be implemented without information on detailed 

OD demands: this is because in many cases, the queuing pattern on the links provides sufficient 

information to judge the effectiveness of metering operations. 

We note that these deductions depend on certain features of the analysis. First, we assumed 

flow patterns in a network to be a DUE state. An important topic for future research is to examine 

whether or not the implication obtained here holds in other route choice principles such as the 

reactive user optimal assignment analysed in Kuwahara and Akamatsu (2001). Second, the theory 

in this paper applies directly only for intervals throughout which the spatial queuing pattern (ie the 

set of queuing links) remains unchanged. For practical applications, we should take into account 

the evolution of spatial queuing patterns, which can be achieved by considering a series of intervals 

of the required kind. One of the simplest metering strategies considering this point would be to 

change the metering operation according to the current queuing pattern. Of course, such strategy is 

just a “myopic” control (with respect to the time horizon), and hence cannot be guaranteed to 

achieve global (ex post fact) optimality for the whole of a study period. The strategy, however, 

would be both practical and effective, and would be optimal among strategies that do not require 

information on future OD demand patterns. Exploring more detailed properties of such control 

strategy would be an interesting research topic. 
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APPENDIX A 

We will prove that the solution )(sτ&  obtained by (13), (14) satisfies (5) and (6) for any 

patterns of yF . By the definition of the matrix R, we have the following identities: 

(a) )()( ss R
T ττ && R= , (b) )()( ss RQQR && = , (c) RQ AAR = , (d) −− = RQ AAR , (e) 0AR =F . 

From (a) and (e), )(sτ&  obtained by (14) always satisfies (5). Note here that ][  RRT  

and ] [  TRR  are invertible. Hence, it follows from the identities that 

 )( ] [)( 1 ss T
R ττ && RRR −= ,      (A1a) 

 )( ] [)( 1 ss R
TT QRRRQ && −= ,      (A1b) 

R
TT

Q ARRRA 1
 ][  −= ,          (A1c) 

1
 ][ −

−− = RRRAA TT
R

T
Q .       (A1d) 

Since ][  RRT  is a one-to-one mapping from N dimensional Euclid space to itself, the equation 

(6) is equivalent to the following equation: 

)( ][})(]{[ ss T
FF

T
QQQ

T QRRyAAMARR && =−− τ .    (A2) 

From the identity (e), this reduces to 

)( ][)}(]{[ ss TT
QQQ

T QRRAMARR && =− τ .     (A3) 

Thus, it is enough for us to prove that (A3) holds if )(sτ&  satisfies (13) and (14). Substitution of 

(A1c), (14) and the identity (d) into the L.H.S. of (A3) yields 

)}({ }]]{[[)}(]{[  
1 ss R

TT
QQR

TTTT
QQQ

T ττ && RAMARRRRRAMARR −
−

− =     

)( sR
T
RRR

T τ&−= AMAR .      (A4) 

For the )(sRτ&  satisfying (13), this further reduces to 

)()( ][ ss R
TT

QQQ
T QRAMARR && =− τ .            (A5) 

From (A1b), we see that )(sR
T QR &  is equal to )( ][ sT QRR & , which is precisely the same as the 

R.H.S of (A3). QED. 
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APPENDIX B 

 The final variables in the equations should be )(sQ rather than )(sQ&  because the final 
variable )(sQ corresponds to a part of the bracket term (the integral term) of (20), 

∫ ∂∂
s

a dtt
 

0 
  }/)({ µτ& . To see this fact in a simpler form, let us consider the definitional equation of 

total travel time in the network during time period [0,T] : 

dsssC
T

 )( )( 
 

0 ∫ ′= τQ& { }dsdtts
T s

 )(  )0(  )( 
 

0 

 

0 ∫ ∫+′= ττ &&Q     (B1) 

where superscript ’ denotes transpose of vectors/ matrices. This can be represented by the 
variables defined in “time t (instantaneous) reduced network”, which is constructed at each 
instant t in [0,T] by the same manner as “reduced networks” described in section 1.4: 

{ }dsdtttsC
T s

R  )( )(  )0(  )( 
 

0 

 

0 
 ∫ ∫ ′+′= ττ && RQ        

 { }dsdttttsT
T s

RR  )( )( )(    )( )( )(0
 

0 

 

0 
 

1∫ ∫ −′′+′= QVRQQ &&τ    (B2) 

where )()()()( tttt RRRR −′≡ AMAV , and )(tRA  is an incidence matrix that represents the 

structure of the time t reduced network. Note that we can regard the first term of eq.(B2) a given 
constant in so far as we only aim to analyse the dynamic capacity paradox, and therefore, we 
omit the first term in the discussion below. 
 Let t(n) be the time when new queuing pattern n emerges in the network, where n = 
0,1,2,... is the number allocated to such events sequentially in the order of the event occurrence 
time from time 0. Then, the total travel time experienced by users during queuing pattern n is 

{ }dsdttttsnC
nt

nt

s

RR  )( )( )(    )( )(
)1( 

)( 

 

0 
 

1∫ ∫
+ −′′≡ QVRQ && .    (B3) 

By definition of t(n), queuing pattern n does not change during [t(n), t(n+1)), and 
))1(),([      ))(( ))(()( )( 11 +∈∀′=′ −− ntnttforntnttt RR VRVR . Hence, C(n) reduces to 

{ }
dssntnts

dsdttntntsnC

nt

nt RR

nt

nt

s

RR

 )( ))(( ))(( )( 

 )(   ))(( ))((  )( )(

)1( 

)( 

1

)1( 

)( 

 

0 
 

1

∫

∫ ∫
+ −

+ −

′′=

′′=

QVRQ

QVRQ

&

&&
   (B4) 

This paper discusses the increase/decrease of only C(n) (not C) with changes in some link 
capacities, given queuing pattern n (ie.  ))(( ntR and  ))(( ntRA are given constant matrices). 
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Table 1: Queuing patterns for examining the paradox in link 5 

 

Table 2: Classification of queuing patterns 

 

Pattern Class. Pattern Class. Pattern Class.
Number 8 7 6 4 3 2 Number 8 7 6 4 3 2 Number 8 7 6 4 3 2

0 0 0 0 0 0 0 (2) 22 0 1 0 1 1 0 (4) 44 1 0 1 1 0 0 (4)
1 0 0 0 0 0 1 (2) 23 0 1 0 1 1 1 (4) 45 1 0 1 1 0 1 (3)
2 0 0 0 0 1 0 (2) 24 0 1 1 0 0 0 (4) 46 1 0 1 1 1 0 (4)
3 0 0 0 0 1 1 (2) 25 0 1 1 0 0 1 (3) 47 1 0 1 1 1 1 (4)
4 0 0 0 1 0 0 (2) 26 0 1 1 0 1 0 (4) 48 1 1 0 0 0 0 (4)
5 0 0 0 1 0 1 (2) 27 0 1 1 0 1 1 (4) 49 1 1 0 0 0 1 (3)
6 0 0 0 1 1 0 (4) 28 0 1 1 1 0 0 (4) 50 1 1 0 0 1 0 (4)
7 0 0 0 1 1 1 (4) 29 0 1 1 1 0 1 (3) 51 1 1 0 0 1 1 (4)
8 0 0 1 0 0 0 (2) 30 0 1 1 1 1 0 (4) 52 1 1 0 1 0 0 (4)
9 0 0 1 0 0 1 (1) 31 0 1 1 1 1 1 (4) 53 1 1 0 1 0 1 (3)

10 0 0 1 0 1 0 (2) 32 1 0 0 0 0 0 (2) 54 1 1 0 1 1 0 (4)
11 0 0 1 0 1 1 (2) 33 1 0 0 0 0 1 (1) 55 1 1 0 1 1 1 (4)
12 0 0 1 1 0 0 (4) 34 1 0 0 0 1 0 (2) 56 1 1 1 0 0 0 (4)
13 0 0 1 1 0 1 (3) 35 1 0 0 0 1 1 (2) 57 1 1 1 0 0 1 (3)
14 0 0 1 1 1 0 (4) 36 1 0 0 1 0 0 (4) 58 1 1 1 0 1 0 (4)
15 0 0 1 1 1 1 (4) 37 1 0 0 1 0 1 (3) 59 1 1 1 0 1 1 (4)
16 0 1 0 0 0 0 (2) 38 1 0 0 1 1 0 (4) 60 1 1 1 1 0 0 (4)
17 0 1 0 0 0 1 (2) 39 1 0 0 1 1 1 (4) 61 1 1 1 1 0 1 (3)
18 0 1 0 0 1 0 (4) 40 1 0 1 0 0 0 (2) 62 1 1 1 1 1 0 (4)
19 0 1 0 0 1 1 (4) 41 1 0 1 0 0 1 (1) 63 1 1 1 1 1 1 (4)
20 0 1 0 1 0 0 (2) 42 1 0 1 0 1 0 (2)
21 0 1 0 1 0 1 (2) 43 1 0 1 0 1 1 (2)

Link Link Link

Classification
Number of

patterns
Pattern numbers

(1) always worsen 3 9, 33, 41

(2) no influence 19
0, 1, 2, 3, 4, 5, 8, 10, 11, 16, 17, 20,
21, 32, 34, 35, 40, 42, 43

(3) can improve 9 13, 25, 29, 37, 45, 49, 53, 57, 61

(4) always improve 33
6,7,12,14,15,18,19,22,23,24,26,27,2
8,30,31,36,38,38,39,44,46,47,48,50,
51,52,54,55,56,58,59,60,62,63
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Figure 10. The reduced networks for the queueing patterns that fall into case 3. 

ed

a bo

6

1

5

f

c

4

2

[#13]

ed

a bo 21

5

f

c

8

4[#37]

ao 1

5 8[#53]

d

4

e
7

b fc2

a bo

6

1

5

c

8

2

[#61]

d

4

e f
7

d

a bo

6

1

54

7
e f

c
2

[#29]

e

da bo 31

5

fc

8
7[#49]

e

da bo 21

6

f

c

8

7[#57] 5

e

d
a bo

6

1

5

f

c

7

2

[#25]

ed

a bo 21

5

f

c

64

8

[#45]



TUTKIE working paper #990501 
Revised  17 April 2003 
 

 

 

 

(a) An example network          (b) The reduced network    

Fig.1. Transformation of a non-saturated network to the corresponding reduced one 
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Fig. 2. An example of a queuing pattern that causes deletion of a saturated link 
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Fig. 3(a). An example network in which the matrix V is invertable 

 

Fig. 3(b). The reduced network for the one in Fig. 3(a) 
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Fig. 4(a). A second example network in which the matrix V is invertable  

 

Fig. 4(b). The reduced network for the one in Fig. 4(a) 
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Fig. 5 (a). An example network in which the matrix V is non-invertable 

 

Fig. 5 (b). The reduced network for the one in Fig. 5(a) 
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Fig. 6 (a). A second example network in which the matrix V is non-invertable 

 

 

 

 

 

Fig. 6(b). The reduced network for the one in Fig. 6(a) 
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Figure 7. A simple ladder network 
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Fig. 8(a). Queueing patterns where metering on link 5 never reduces congestion. 
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Figure 8(b). The reduced networks for the queueing patterns in Figure 8(a). 
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Figure 9(a). Queueing patterns where metering on link 5 dose not influence the total travel time. 
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Figure 9(b). The reduced networks for the queueing patterns in Figure 9(a). 
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Figure 11(a). The reduced networks for typical queueing patterns that fall into case 4 in which link 2 is not saturated. 
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Figure 11(b). The reduced networks for the queueing patterns that fall into case 4 in which link 2 is saturated. 
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