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Abstract 
 

Creation of a new link or increase in capacity of an existing link can reduce the 

efficiency of a congested network as measured by the total travel cost. This 

phenomenon, of which an extreme example is given by Braess’s paradox, has been 

examined in conventional studies within the framework of static assignment. For 

dynamic traffic assignment, which makes account of the effect of congestion through 

explicit representation of queues, Akamatsu (2000) gave a simple example of the 

occurrence of this paradox. The present paper extends that result to a more general 

network. We first present a necessary and sufficient condition for the paradox to occur 

in a general network in which there is a queue on each link. We then give a 

graph-theoretic interpretation of the condition, which gives us a convenient method to 

test whether or not the paradox will occur by performing certain tests on information 

that describes the network structure. Finally, as an application of this theory, we 

examine several example networks and queueing patterns where occurrence of this 

paradox is inevitable. 
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Creation of a new link or increase in capacity of an existing link in a congested network can 

worsen the efficiency and increase the total cost of travel. This phenomenon, which is known as 

“Braess’ paradox” (Braess, 1968) or “Smith’s paradox”(Smith,1978), has been studied intensively 

under static equilibrium traffic assignment framework in conventional studies (for example, 

Murchland (1970), Fisk (1979), Frank (1981), Steinberg and Zangwill (1983), Dafermos and 

Nagurney (1984), Harker (1988), Catoni and Pallottino (1991), Alperovich (1993), Pas and 

Principio (1997), Yang and Bell (1998)).  

However, many matters concerning the paradox in non-stationary settings are yet to be 

investigated because the properties of dynamic flows with queues are significantly different from 

those of static flows. Recently, some attempts have been made to study the possibility of the 

paradox under the dynamic traffic flows with queues: Arnott et al (1993) showed that users’ 

departure time choice behaviour also can cause the paradox; Daganzo (1998) conceptually 

discussed the paradox as well as a “hyper sensitivity” problem arising from combination of 

queue spillover phenomena and users’ route choice behaviour; Akamatsu (2000) gave an 

explicit example for the paradox under dynamic user equilibrium (DUE) traffic assignment, 

which is a natural generalisation of the well-known static user equilibrium assignment. 

 The purpose of this paper is to explore the general properties of the capacity paradox 

shown in Akamatsu (2000). More specifically, we first establish a necessary and sufficient 

condition for the paradox to occur in “saturated networks” with general structure, in which there 

is a queue on each link. We then give a graph theoretic interpretation of the condition, which 

gives us a convenient method to test whether or not the paradox occurs from certain information 

on network structure. Finally, as an application of this theory, we examine several typical 

networks where the paradox occurrence is inevitable. 

The organisation of the paper is as follows. In the next section, we briefly review the DUE 

assignment, restricting ourselves to the minimum knowledge required for considering our 

problem. In Section 2, we establish a necessary and sufficient condition for occurrence of the 

paradox in saturated networks. In Section 3, we identify a graph theoretic interpretation of the 

condition, and finally, concluding remarks are made in Section 4. 
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1. PRELIMINARIES - Dynamic User Equilibrium Assignment 

 

1.1 Networks and Notation 

Our model is defined on a transportation network G[N, L, W] consisting of the set L of 

directed links with L elements, the set N of nodes with N elements, and the set W of 

origin-destination (OD) nodes pairs. The origins and destinations are subsets of N, and we denote 

them by R and S, respectively. An origin/destination node with no arriving/leaving link is called 

“pure origin/destination”. Throughout this paper, we consider only networks with a one-to-many 

OD pattern (ie R has a single element). Sequential integers from 1 to N are allocated to the nodes 

in N. A link from node i to node j is denoted as link (i, j). For link (i, j), node i is called the initial 

(or upstream) node, and node j is called the terminal (or downstream) node. We also indicate a 

link by the sequential numbers from 1 to L allocated to all the links in the set L. If a link has node i 

as its initial node, we say that the link is incident from node i; whereas if a link has node i as its 

terminal node, we say that the link is incident to node i . The set of links incident from node i is 

denoted by O(i), and the set of links incident to node i is denoted by I(i). 

The structure of a network is represented by a reduced node-link incidence matrix A, which 

is an (N-1) × L matrix which is achieved by removing the row corresponding to the unique origin 

from a standard incidence matrix whose (n, a) element is 1 if link a is incident from node n, −1 if 

link a is incident to node n, zero otherwise [The reason why we should use this particular type of 

reduced incidence matrix is discussed in Akamatsu (2000)]. It is convenient to “split” the matrix 

A into a pair of matrices, −A  and +A , which are defined as follows: −A  is a matrix obtained 

by letting all the +1 elements of A be zero (ie the (n, a) element is −1 if node n is the downstream 

node of link a, zero otherwise); similarly, +A  is a matrix obtained by letting all the −1 elements 

of A be zero (ie the (n, a) element is +1 if node n is the upstream node of link a, zero otherwise); 

it is obvious that A = −A + +A  holds. Thus ),0(Min AA =−  and ),0(Max AA =+ . 
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1.2. Dynamic User Equilibrium Assignment 

In this paper, we deal with the dynamic user equilibrium (DUE) assignment. The DUE is 

defined as the state where at each time, no user can reduce his/her travel time by changing 

his/her route unilaterally (see Smith (1993), Kuwahara and Akamatsu (1993), Heydecker and 

Addison (1996)). For a link model in our dynamic assignment, we employ a First-in-First-Out 

(FIFO) principle and the deterministic point (vertical) queue concept in which a vehicle has no 

physical length: we assume that the arrival flow on each link leaves that link after the 

free-flow travel time if no queue is present on the link, otherwise it leave the link at the 

capacity flow rate after incurring some delay in the queue. This has the advantage of 

supporting clear-cut analysis whilst leading to results that are typical of those for all models 

with well-defined link flow capacities. 

Previous studies on DUE assignment have shown that assignment with any plausible link 

model can be decomposed with respect to the departure time from a single origin provided that 

the OD pattern is one-to-many: we can consider the assignments sequentially in the order of 

departure from the single origin. The reason why the decomposition is valid for the DUE 

assignment can be seen from the following facts that hold for the DUE state with any link traffic 

model that respects the FIFO discipline and has satisfactory causality (for details, see Kuwahara 

and Akamatsu (1993), Akamatsu and Kuwahara (1994), Heydecker and Addison (1996), 

Heydecker and Addison (1998)): (1) the users who depart their origin at the same time, regardless 

of their routes, have the same arrival time at any node that they pass through in common on the 

way to their destinations; (2) the order of departure from the origin must be maintained at any 

intermediate node; (3) [from the properties (1) and (2)] we can define the unique equilibrium 

arrival time at each node for each departure time from the origin; (4) [from (1) and (2) together 

with the FIFO and the causality properties of the link traffic model] the travel time experienced by 

the vehicle that departs from an origin at time s is independent of the flows of the vehicles that 

depart from the origin after time s. 
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2. DETECTION OF CAPACITY PARADOXES 

 

Under the assumptions described in the previous section, we will establish a condition for 

occurrence of the capacity paradox (ie we will present the method for detecting the links whose 

increase (decrease) in capacity can worsen (respectively, improve) the total travel cost of a 

network). In the present paper, we confine our analysis to “saturated networks” which satisfy the 

following two conditions: (a) there are inflows on all links of the network, and (b) there are 

queues on all links of the network.  The first condition (a) is not very restrictive, because we can 

constitute the networks satisfying this condition after knowing the set of links with strictly 

positive flows.  Furthermore, if a link carries flow during some but not all of the study period, 

then we can apply the present analysis separately to intervals during which the set of links that do 

carry flow is constant. The second condition (b) seemingly restricts direct applications of the 

theory; nevertheless, we employ this condition here  because the analysis identifies the essential 

properties of the paradox (and the DUE assignment). Elsewhere, (Akamatsu and Heydecker, 

2001), we show how the theory based on the present assumption of “saturated networks” provides 

a valuable stepping-stone for the analysis of “non-saturated networks” where the condition (b) is 

relaxed. 

We first show the formulation, solutions, and an algorithm for the DUE assignment in 

section 2.1; and then derive the necessary and sufficient condition for the capacity paradox to 

occur in section 2.2. 

 

2.1. Dynamic Equilibrium Patterns on Saturated Networks 

(1) Formulation 

The DUE assignment on a network with a one-to-many OD pattern can be decomposed 

with respect to the origin departure-time as mentioned in Section 1. In the decomposed 

formulation with origin departure time s, two kinds of variables, ( s
i

s
ijy τ, ), play a central role: s

iτ  

is the earliest arrival time at node i for a vehicle that departs from origin o at time s; s
ijy  is the 
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link flow rate with respect to s, that is,  

    
ds

d
ds

d
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dF
ds

dF
y

s
is

iij

s
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s
i

s
iij

s
iijs

ij
τ

τλ
τ

τ
ττ

⋅==≡ )(
)()(

, 

where Fij(t) denotes the cumulative number of vehicles that have entered link (i, j) at time t, and 
)(tijλ  is the flow rate of link (i, j) at time t defined as dttdFij /)( . In addition, we denote by 

Qod(s) the number of vehicles with destination d that have departed from origin o at time s: this is 

the cumulative OD demand by departure-time. 

 In the DUE state, each user chooses the route that has minimum (ex post) travel time over 

the network.  In other words, links with positive inflows should be on the minimum cost paths.  

In our saturated networks, all the links have positive inflows, and therefore the minimum cost path 

condition for users with origin departure-time s is written as 

     *** s
ij

s
i

s
j c=−ττ     Lji ∈∀ ),(    (1) 

where *s
ijc  denotes the travel time in equilibrium for users who depart the origin at time s (and 

arrive at the entrance of the link at time *s
iτ ) to traverse link (i, j); ie )( ** s

iij
s
ij cc τ≡ .  Because 

equation (1) holds for any departure time s, taking the derivative with respect to s, we have 

     0)( )( ** =+ ss T τ&& Ac    s∀     (2) 

where )(* sc&  is an L dimensional column vector with elements dsdc s
ij /* , and )(* sτ&  is an N-1 

dimensional column vector with elements dsd s
i /*τ . 

 The deterministic queueing link model that we use in the present analysis has the 

following characteristics. The free-flow travel time for each link (i, j) is mij , and the capacity 

(maximum outflow rate) is µij . In this case, the cost of travel on the link is given by 

     
ij

ijij
ijij

mtX
mtc

µ
)(

)(
+

+= , 

where )(tX ij  is the amount of traffic in the queue at time t and satisfies 

   
⎩
⎨
⎧ >−>+−

=
+

otherwise

tormtXift
dt

mtdX ijijijijijijijij

            0       

0)(    0)(     )( )( µλµλ
. 
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Thus, the rate of change in travel time of link (i, j) at time t, when there is a queue, is given by 

     1
)()(

−=
ij

ijij t
dt

tdc
µ

λ
, 

and therefore, the rate of change in the travel time for users with origin departure time s, dsdc s
ij / , 

can be represented as a function of s
ijy  and s

iτ : 

    
ds

dc s
ij

*

ds
d

d
dc s

i
s
i

s
iij

*

*

* )( τ
τ
τ

=
ds

dy s
i

ij

s
ij

** τ
µ

−=   ),( ji∀        (3a) 

or equivalently 

     )()( )( **1* sss T τ && +
− −= AyMc  s∀        (3b) 

where M is an L by L diagonal matrix whose a th diagonal element represents the capacity of link 
a, )(sy  is an L dimensional column vector with elements s

ijy .  

 Substituting (3) into (2), and rearranging yields the DUE condition for this travel-time 

model 

     )()( *
  

* ss T τ&−−= AMy    s∀     (4) 

where y* is a DUE assignment. Thus we can characterise a dynamic equilibrium assignment 

equivalently by specifying either flows y*(s) or rate of change of travel time )(* sτ& . 

In addition to this condition above, we have the flow constraints that consist of the FIFO 

condition for each link and the flow conservation at each node over a network, which reduce to 

the following equations (for the derivation, see Kuwahara and Akamatsu (1993), Akamatsu and 

Kuwahara (1994)):  

     )()( ss QyA &=−     s∀ ,    (5) 

where )(sQ&  is defined as an (N-1) dimensional vector with elements dssdQod /)(  (given). 

Combining (5) with (4), we see that the DUE solution (ie )(* sτ& ) is governed by 

     ( ) )()( *
 ssT QAMA && =− τ    s∀ .    (6) 

It is worth mentioning that the equation (6) expressing the DUE condition in a saturated 
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network is almost the same as the fundamental equation for an electrical circuit with a certain kind 

of devices called “unistar” (see, for example, Dodd(1967)). In light of the fact that a large 

number of studies have been made on the electrical circuit theory over a century, it may be 

useful to investigate the correspondence between the circuit theory and the dynamic traffic 

assignment. Some exploration is made in this direction in Section 3. 

 

(2) Solutions 

Equation (6) shows that the DUE assignment has a unique solution if the rank of the matrix 
T
−≡ AMAV  is N-1.  As shown in Akamatsu (2000), the rank is always N-1 in our reduced 

incidence matrix in which an origin is employed as a reference node and the corresponding row is 

eliminated from a standard incidence matrix. [Note that the value of 1/)( =dssd oτ  for an origin 

node o from the definition of )(siτ , although the equation (6) does not include the corresponding 

variable.]  Thus, the equilibrium solution )(* sτ&  is given by the following formula: 

     )( )( 1* ss QV && −=τ .       (7a) 

Finally, the equilibrium link flows )(* sy  can be obtained by substituting (7a) into (4): thus 

     ( ) )()(  
1* ss TT QAAMAMy &−

−−−=      (7b) 

(3) An Efficient Algorithm 

Equation (6) or (7) can be solved numerically by an appropriate algorithm for solving a 

system of linear equations even in large-scale networks. However, it is worth mentioning that the 

equilibrium solution can also be obtained by simple manual calculations, which give us insights 

into the solution. The method is also far more efficient than applying standard algorithms for 

solving linear equations directly. In what follows, we first explain the basic idea, and then show 

the formalised procedure. [For notational brevity, we suppress dependence on departure time s]. 
Suppose we know the value of *

jτ& . Then we can obtain the equilibrium flow yij
* on link 

(i, j) from (4). Summing (4) with respect to the links incident to node j, we have that n
jf , the 

sum of in-flows into node j, is given by 
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       ∑
∈

=
)(),(

* 
jIji

jij
n
jf τµ & ,       (8) 

On the other hand, equation (5) shows that the sum of in-flows n
jf  equals to sum of 

out-flows x
jf  from node j. Together with (8), this yields 

      ∑
∈

=
)(),(

* 
jIji

jij
x
jf τµ & .       (9) 

This implies that conversely we can get the value of *
jτ&  by knowing the sum of out-flows 

from node j : 
      *

jτ&  ∑
∈

=
)(),(

/
jIji

ij
x
jf µ .      (10) 

Note here that sum of out-flows from a pure destination d, x
df , is known in advance as the OD 

flow rate qod(s). Hence, we first get the value of *
dτ&  at the pure destination: 

      *
dτ&  ∑

∈

=
)(),(

/
dIdi

idodq µ  

Substituting this into (4) then gives flow on each link (i, d) incident to the pure destination: 

      **
dididy τµ=   for all (i, d) )(dI∈  

We repeat the same procedure if there are several pure destinations. These, in turn, give sum 
of out-flows x

jf  from an appropriate node j (where all the emanating links are incident to 

pure destinations), and substituting it into (10) yields the value of *
jτ&  at the node. Thus we 

repeat the procedure tracking from an arbitrary pure destination node in a “backward” manner 

until an origin node have been reached. This backward tracking procedure works through the 
nodes whose out-flows have been computed, and yields the equilibrium solution ( ** , iji yτ& ) for 

all nodes and links in a network. 

Example: Consider the network shown in Figure 1, where node 1 is the unique origin, nodes 2 

and 3 are destinations, and the maximum outflow rate (capacity) of link a (a = 1, 2, 3) is given 

by aµ . First we consider conservation of flow at a pure destination, node 3. The outflow from 

node 3 is given by 

  )(133 sQf x &= . 

On the other hand, the sum of inflows into node 3 is 
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  332323  )( τµµ &+=+= yyf n . 

By conservation of traffic, the inflow nf3  is equal to the outflow xf3 , so we have 

  )/()()/()/( 3213323323
*
3 µµµµµµτ +=+=+= sQff xn && . 

Substituting this into (4), we can determine the flows on each of the links incident to node 3: 

  )( 13
32

2*
32

*
2 sQy &&

µµ
µ

τµ
+

== ,  )( 13
32

3*
33

*
3 sQy &&

µµ
µ

τµ
+

==  

Having obtained each outflow from node 2 (ie the flow on each link exiting node 2), we then 

proceed backward by applying the corresponding argument to node 2. The sum of outflows 

from node 2 is 

  =+= )(12
*
32 sQyf x & )()( 1213

32

3 sQsQ && +
+ µµ

µ
, 

which is equal to the sum of inflows: 

  *
21

*
12  τµ &== yf n . 

Hence, 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=== )()(1// 1213

32

3

1
1212

*
2 sQsQff xn &&&

µµ
µ

µ
µµτ , 

and   )()( 1213
32

3*
211 sQsQy &&& +

+
==

µµ
µ

τµ . 

Tracking further backward to node 1, we can examine that the link flows y1 and y2 obtained 

above are indeed consistent with the flow conservation at node 1: 

  =+= *
2

*
11 yyf x +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
)()( 1213

32

3 sQsQ &&
µµ

µ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

)(13
32

2 sQ&
µµ

µ  

        )()( 1213 sQsQ && += nf1= . 

In order for the procedure above to give a consistent solution, it is required that each 

node is treated only when all those downstream have been, which can be achieved only if the 

network contains no loops. Fortunately, the condition is guaranteed for the DUE flow pattern 

because we consider only links that have non-zero flows. Thus, the formalised procedure for 

solving the DUE assignment under a saturated network can be summarised as follows: 
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Procedure DUE_SN(A,µ ,Q& , τ& , y) 

Initialization: 

LIST := a list where all pure destination nodes are placed in an arbitrary order; 

for each node i in N  do begin 

Lout (i) := |O(i)|;  

If  node i S∈  then oii Qz &=:   else  zi:=0 

end 

Calculation of τ& * and y*: 

while LIST is not null do begin 

  j := the first element of LIST; 
 ∑

∈

=
)(),(

* /:
jIji

ijjj z µτ& ; 

 Remove node j from LIST; 

 for each link (i, j) in I(j)  do begin 

  **  : jijijy τµ &= ; 

  *: ijii yzz += ; 

  Lout(i) := Lout(i) − 1; 

  If  Lout(i) = 0  then  place node i on the bottom of LIST 

 end 

end. 

 

2.2. Paradox Occurrence Conditions 

 To consider the “capacity paradox”, we employ the total travel time C for the users 

departing from an origin from time 0 to T as an index to measure the efficiency of the network 

flow pattern: 

    dssssdsssC
T TT T  ))(()(  )()(  
 

0 
 

 

0 ∫∫ −=≡ 1Qcy τ&     (11) 
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We then refer to the situation as a “paradox” if increasing (decreasing) the capacity of a certain 

link causes the increase (decrease) of C (ie the paradox occurs if and only if aC µ    ∂∂ > 0). 

From the definition of C in (11), aC µ    ∂∂  can be represented as 

     ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

∂
∂ T s

a

T

a

dsdttsC
0

 

0  

*
 

 

   )( )(
µµ

τ&&Q .     (12) 

That is, deriving the sensitivity of the DUE solution )(* sτ&  with respect to the change in capacity 

of link a leads to an explicit formula for aC µ    ∂∂ . In the derivation of the sensitivity formula 

below, we denote by )(µM  a diagonal matrix whose diagonal elements are link capacity vector 

µ ],,[ LL aµ= , and by )(µV  a matrix T
−AAM )(µ . For notational brevity, we suppress 

dependence on departure time s because all equations used here take the same form regardless of 

departure times. 

Let us first consider the two equilibrium solutions, )(* µτ&  and )(* µµτ ∆+& , where here the 

dependence of *τ&  on the capacity patterns µ  and µµ ∆+  is shown explicitly. From (6), the 

two solutions are governed by the following equations: 

     )()( )( * sQV && =µτµ ,       (13a) 

     )()( )]()([ * sQVV && =∆+∆+ µµτµµ ,     (13b) 

where we used the fact that )()()( µµµµ ∆∆ +=+ VVV  holds for any capacity increase patterns 

µµ ∆+  because )(µV = T
−AAM )(µ  is linear in µ .We then compare the solutions: subtracting 

(13a) from (13b), we have 

   
).( )]()([ )( )(

)( )( )()()(
11

*1**

sQVVVV

VV
&

&&&
−−

−

∆+∆−=

∆+∆−=−∆+

µµµµ

µµτµµµτµµτ
  (14) 

Consider the case where µ∆  = ]0...,0,,0,...,0[ aµ∆ . Dividing both sides of equation (14) by 

aµ∆ , using the identity T
aa −=∆∆ AIAV  /)( µµ , and taking the limit as 0→∆ aµ , we obtain 

    )( )(   )()( 11

 

*
 sT

a
a

QVAIAV &&
µµ

µτ −
−

−−=
∂

∂
µ

,       (15a) 
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where aµ *
 /)( ∂∂ µτ&  is an N-1 dimensional column vector with elements ai µτ ∂∂ /)(* µ& , and Ia 

is an L by L matrix whose a th diagonal element is 1 and all other elements are 0. 

We can obtain a simple expression for the typical element of (15a), by noticing that 
T

a −AIA  has at most two non-zero elements: denote the upstream node and the downstream node 

of link a by ia and ja, respectively, then the element in row ia and column ja is −1, and the element 

in row ja and column ia is 1. This means that element k in (15a) is given by 

     )( )(
)( *11

*

svv
s

jkikj
ij

k τ
µ

τ
&

& −− −−=
∂

∂
,        (15b) 

where 1−
ijv  is (i, j) element of V−1. We note that although (15a) might appear to be complicated, 

the sensitivity of )(* sτ&  can be calculated easily by an appropriate procedure exploiting 

DUE_SN in section 2.1. 

We are now in a position to present the necessary and sufficient condition for the paradox to 

occur: substituting the sensitivity formula (15) into (12), we have the following proposition. 

Proposition 1. The capacity paradox in a saturated network occurs if and only if 

    0 )}0()({)(
0

 
1

 
1 

≥−−=
∂
∂

∫ −
−

−T T
a

T

a

dsssC QQVAIAVQ&
µ

,    (16a) 

or equivalently 

    0))0()(()( )( 
 

0 

**11 
≥−−−=

∂
∂

∫ ∑ −−T

k
jj kikj ok

ij

 dss vvsQC
  ττ

µ
& .    (16b) 

Example: Consider the network shown in Figure 1, where node 1 is the unique origin; nodes 2 

and 3 are destinations; the maximum departure rate (capacity) of link a (a = 1, 2, 3) is given 

by aµ . 

 

Fig. 1. An Example Network with a Single Origin and Two Destinations 

 

The reduced incidence matrix A and the matrix −A  for this network are given by 
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    ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

110
101

A ,  ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=− 110

001
A . 

Hence,  

  ⎥
⎦

⎤
⎢
⎣

⎡
+

−
=≡ −

32

31

0 µµ
µµTAMAV ,  ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+=−

32

321

3

11

10

1

µµ

µµµ
µ

µV , 

  ⎥
⎦

⎤
⎢
⎣

⎡
=− 00

01
  1

TAIA , ⎥
⎦

⎤
⎢
⎣

⎡
=− 10

00
  2

TAIA ,  ⎥
⎦

⎤
⎢
⎣

⎡ −
=− 10

10
  3

TAIA . 

Substituting these into (16) yields 

  dssQsQsQC T
 )( )()(1

0 1213
32

3
122

11 

 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=
∂
∂ &

µµ
µ

µµ
       (17a) 

  
( ) ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−=

∂
∂ T

dssQsQsQC
0 131312

1

3
2

322

  )( )()(1 &&
µ
µ

µµµ
      (17b) 

  
( ) ∫ ⎟⎟

⎠

⎞
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µ
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From these, we see that the paradox does not occur when we change the capacity of either of 

links 1 or 2 because both (17a) and (17b) always have negative values; however, it is seen 

from (17c) that the paradox will certainly occur in respect of capacity variations for link 3 if 

)( )/()( 121213 sQsQ && µµ≥  holds for all s. 

 We can understand this as follows. If the capacity of link 3 is increased, then it will 

attract from link 2 to link 3 and hence to link 1 some traffic that is destined for node 3. This 

reduction in flow on link 2 will reduce the cost of travel to node 3, which in equilibrium is 

identical on the two routes {2} and {1, 3}. However, the increase in flow on link 1 will 

increase the cost of travel to node 2. Whether or not these changes in cost of opposite sign 

result in an increase in total travel cost C for a marginal increase in capacity of link 3 is 
determined by the sign of  ∫

T 

0 
[ )( )/()( 121213 sQsQ && µµ− ] Q13(s) ds . 

This example can be contrasted with Braess’ paradoxical network for static equilibrium 
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assignment. In Braess’ network, a marginal increase in capacity of a link causes a marginal 

increase in the total cost of travel at equilibrium: because there is a single origin-destination 

pair, the cost of travel is the same for all travellers, so a capacity increase leaves all travellers 

worse off. However, in the present example, the increase in the total cost of travel arises in 

cases where an increase in travel cost for one zone outweighs the decrease in cost enjoyed by 

travellers to another one who benefit from use of the link that is improved. 

 

3. GRAPH THEORETIC INTERPRETATIONS 

 

In the previous section, we established a necessary and sufficient condition for a capacity 

paradox to occur in a saturated network. This section identifies a connection between the 

condition and structural properties of networks. For this purpose, we interpret the condition from 

a graph-theoretic point of view: we first show graph theoretic expressions of the DUE solution 

in 3.1, and then derive another expression for the paradox occurrence condition in 3.2. 

 

3.1 Graph Theoretic Representation of Equilibrium Solutions 

Consider a directed graph Γ(N, L) where each directed link (i, j) in link set L has link 

weight bij. We represent the structure of Γ(N, L) by an N by N matrix B in the following 
manner: the entry in the i th row and j th column is ijb−  if link (i, j) exists in Γ(N, L), the i th 

diagonal entry (ie the entry in row i and column i) is ∑ ∈ )(),( iIik kib ,  and all other elements 

are zero. Note that this matrix is very similar to the (N-1) by (N-1) matrix T
−≡ AMAV  in the 

previous section. 

It is known in graph theory that several properties of this particular matrix are related to 

directed spanning trees in Γ(N, L). [A directed spanning tree with a root node i in Γ(N, L) is 

defined as the set of directed links in L such that node i has only links incident from it (ie 

node i has no link incident to it), and every node in N excluding of node i has just one link 

incident to it.]  In particular, the following lemma is useful for our analyses: 
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Lemma 3.1. Suppose that a directed graph Γ(N, L) has no self-loop link of the form a = (i, i), 

and let S(i) be the set of directed spanning trees in Γ(N, L) with root node i. Then the cofactor 

Bii of B  for Γ(N, L) is represented by 

     ∑ ∏
∈ ∈

=
)( ),(

   
iST Tqp

pqii bB .       (18) 

Proof : see Tutte (1948), and Kajitani et al (1982). 

 

 For the convenience of applying this lemma to our present study, we represent the DUE 

condition (6) in the following form: 

      0xB =)( s         (19) 

where ⎥
⎦

⎤
⎢
⎣

⎡
≡

1
)( 

)( 
s

s
τ&

x , ⎥
⎦

⎤
⎢
⎣

⎡ −
≡

αβ
)(    sQV

B
&

, β  is an N-1 dimensional row vector whose j th  

element is ∑
−

=

−≡
1N

1i
ijj vβ , and ∑

−

=

≡
1N

1
)(

k
ok sQ&α . The last equation in (19) thus corresponds to the 

DUE condition at the origin node o that we deleted because of its redundancy in Section 2. 

Note that the graph Γ(N, L) corresponding to the matrix B of this structure is formed by 

adding “return links” for each destination node to the original network; the return link (d, o) 

returns directly from destination node d to the origin node o, and has link weight )(sQod
& . 

From Cramer’s rule, the solution of the linear equation (19) is given by 

     NNN
* /)( BBs ii =τ&   for  i=1,2,...N.    (20) 

Note here that iii BB =N  (i=1,2,...N) holds for the matrix B defined in (19), because B satisfies 

     ij

n

ikk
kj bb −=∑

≠=  ,1
   for  i, j=1,2,...N.     (21) 

From these results and Lemma 3.1, we have the following theorem: 

Theorem 3.1. The DUE solution )(* siτ&  at node i in a saturated network can be expressed in 

terms of directed spanning trees in Γ(N,L): 
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    NN
* /)( BBs iii =τ&

∑ ∏
∑ ∏

∈ ∈

∈ ∈=

)N( ),(

)( ),(

   

  

   

   

ST Tqp
pq

iST Tqp
pq

µ

µ
   for  i=1,2,...N.  (22) 

In order to explore the properties of the DUE solution, it is convenient to represent the 

solution in terms of directed paths rather than directed spanning trees. Applying appropriate 

decompositions to the directed spanning trees in (22), the formula can be further transformed 

into the expression in terms of paths: 

Theorem 3.2. The DUE solution )(* siτ&  at node i in a saturated network can be represented 

in terms of directed paths in P(i, k) for all k N∈ : 

    ∑ ∏∑
∈ ∈

≠
∈

+=
),(   ),(

 

*     )( )()(
kiPr rqp

pq

ik
Nk

kii sss ααατ&     (23) 

where P(i, k) is the set of directed paths from node i to node k; )(skα and pqα  are, 

respectively, defined as 

     ∑
∈

≡
)(),(   

   /)()(
kIk

kokk sQs
l

l
& µα ,      (24a) 

     ∑
∈

≡
)(),(   

   /
pIpm

mppqpq µµα .      (24b) 

Proof: see Appendix A. 

Although the proof of the equation (23) is somewhat lengthy, the equation tell us a 

simple fact: the DUE solution )(* siτ&  at node i can be decomposed into two terms, the first 

term reflecting the effect of flow destined to node i, and the second term consisting of the 

summation with respect to destinations that are reachable from node i. This leads immediately 

to the following result: 

Corollary. The DUE solution )(* siτ&  at node i in a saturated network is affected only by flows 

to destinations that are reachable from node i (ie the destinations that are downstream of node 

i). Thus variations in flows to destinations that are upstream of node i do not affect )(* siτ& . 
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 This result is remarkable and might be considered to be counterintuitive from a 

phenomenological point of view: traffic arriving at a certain destination will have shared 

capacity of links in the network with other traffic travelling to destinations upstream of it, so 

that variations in traffic destined to those upstream nodes might be expected to affect the cost 

of travel. However, this corollary shows that this is not the case and that rather the 

inter-dependence of costs on demands is strictly the other way round. That this result holds 

exactly depends on the deterministic queuing model that is used in the present analysis, but 

similar effects can be expected when other traffic models that respect capacity limitations are 

adopted. 

 The nature of this effect can be understood from a mechanistic point of view as follows. 

In the present analysis we suppose that queues are present on all links of the network. 

Because of use of the deterministic queueing traffic model, this means that the link outflows 

are each determined exactly as the corresponding capacity. As a direct consequence of this, 

variations in demand for travel to the different destinations in the network will result in 

variations in the composition of the link outflows but not in their total flow rate. Accordingly, 

variations in flows to destinations upstream of a node i can affect the onwards flows that pass 

those destinations and hence enter links (l, i) ∈ I(i) . However, because by supposition there 

are queues on the links of I(i) , the outflows from these links will be unaffected by marginal 

variations in the flows upstream.  Thus the location at which delays are incurred by traffic 

that passes through node i can be affected by variations in flows destined to nodes upstream, 

but the total delay that is incurred will not be. 

 On the other hand, because the outflow from each link remains equal to its capacity, 

variations in flows that are destined to nodes downstream of a node  i  will cause 

complementary variations in the flows destined to node  i  itself. Variations in the flow 

destined to nodes that are downstream of  i  will then cause variations in the cost of travel 

to node  i  itself. This can be seen from a computational point of view in the example 

application of the algorithm that was presented in Section 2.1 where analysis of the flows and 
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travel costs proceeds backwards from the destination towards the origin. 

More detailed inspection of each term in (23) reveals several quantitative implications. 

The first term is proportional to the OD flow to node i, and it vanishes if node i is not a 

destination node. The second term consists of (a) a summation with respect to destinations, 

(b) summations with respect to paths from node i to each destination k, and (c) multiplications 

with respect to links (nodes) in each path from node i to each destination. The summation (a) 

implies that the second term vanishes if node i is a “pure destination”, and that it has larger 

value as the number (or the OD flows) of destinations reachable from node i increases. 

Similarly, the summation (b) implies that the second term has larger value as the number of 

paths from node i to each destination increases. The term (c) is the multiplication of “out/in 
ratio”, pqα , which is the ratio of a link capacity to the (possible) maximum inflow to the link. 

Hence, the second term grows as the capacity of the links in each path from node i to 

destinations increases. 

 

3.2 Another Representation of Paradox Occurrence Condition 

We have seen in Section 2 that the necessary and sufficient condition for the capacity 

paradox to occur in a saturated network is given by 

   0))0()(()( )( 
 

0 

**11 
≥−−−=

∂
∂

∫ ∑ −−T

jj 
k

 kikj ok
ij

 dss vvsQC
 ττ

µ
& .     (16b) 

where 1−
ijv  is (i, j) element of V−1. We note here that 1−

ijv  is equal to Zj(i) / Zo , as implied by 

equation (A-2) in Appendix A. Furthermore, we see from (A-13) that Zi(k) / Zo is expressed in 

terms of paths in P(k, i): 
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where pqα  is defined in (24), and pqβ  is defined as 

      ∑
∈

≡
)(),(   

   /
qIqm

mqpqpq µµβ .      (26) 

Combining these, we have the paradox occurrence condition expressed in terms of directed paths: 

Proposition 2. The capacity paradox occurs in a saturated network if and only if 

   0 ))0()(( ))()((
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**
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jjji
ij

dssssC ττλλ
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&&              (27) 

where 
              ∑ ∏∑

∈ ∈∈

≡
),(   ),(

    )( )(
ikPr rqp

pq
Nik

ki ss βαλ&          (28) 

   ∑ ∑ ∏∫
∈ ∈ ∈

=−
Nk kiPr rqp

pq

s

kii dtts
),(   ),(

 

0 

**    ])([ )0()( ααττ      (29) 

Example: Consider the saturated network shown in Figure 2 (a). Node o is the origin, and 

nodes b and d are destinations with OD flow rates for the origin departure-time s, )(sQob
&   

and )(sQod
& , respectively. For the expositional brevity, we assume that )0(obQ 0)0( == odQ . 

Each link (i, j) in the network has capacity ijµ . The graph Γ(N,L) for this network is depicted 

in Figure 2 (b).  

We first calculate the DUE solution by the procedure based on Theorem 3.1, and then 

show that the procedure can be simplified by using Theorem 3.2. 

 

Fig. 2. An Example Network and the Corresponding Graph Γ 

 

 Figure 3 shows all the directed spanning trees in S(o). Hence, the denominator of (22) for 

this network is 
    ∑ ∏

∈ ∈

+++=
)(  

32754 6 1
  ),(

))((     
oST Tqp

pq µµµµµµµµ .       (30) 

 

Fig. 3. Directed Spanning Trees in S(o) 
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Let us first calculate *
dτ& . All the directed spanning trees in S(d) are enumerated in Figure 4, and 

the numerator of (22) for node d is given by 

    ∑ ∏
∈ ∈

+=
)(  

32 6 1 

  ),(

)(    
dST

od
Tqp

pq Q µµµµµ & .         (31) 

 

Fig. 4. Directed Spanning Trees in S(d) 

 

Substituting (30) and (31) into (22) yields 

      
754

* )(
)(

µµµ
τ

++
=

sQ
s od

d

&
& .      (32) 

Expressions for *
cτ&  and *

bτ&  are calculated in a similar manner: all the directed spanning trees in 

S(c) and S(b) are listed in Figure 5 and Figure 6, respectively; hence, the numerators of (22) for 

node c and b are given by 

    ∑ ∏
∈ ∈

+=
)(  

32 7 1 

  ),(

)(    
cST
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pq Q µµµµµ & ,          (33) 
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respectively. Substituting these and (30) into (22), we have  
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Fig. 5. Directed Spanning Trees in S(c) 

 

Fig. 6. Directed Spanning Trees in S(b) 
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It is also possible to obtain the same solution by the method based on Theorem 3.2. We 

immediately see from (23) that )(* sdτ&  is given as in (32) because node d has no path to any other 

destinations (ie node d is a “pure destination”), and hence the second term of (23) has no effect to 

the value of )(* sdτ& . Node c has only a single path to destination d, {7}, and no path to destination 

b. The sets of links in I(c) and I(d) are {6} and {4, 5, 7}, respectively. Hence, applying (23) yields 

(35). Node b has two paths to destination d, {5} and {6,7}. The set of links in I(b) is {2,3}. 

Applying (23), we get 
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  (37) 

By using Proposition 2, we can easily examine whether or not the paradox occurs in this 

network. Let us first calculate )(saλ& , )(sbλ& , )(scλ& and )(sdλ& . Because neither node a nor node b 

has any path from destinations, and node b itself is a destination, it immediately follows from (28) 

that 

     0)( =saλ& ,  
32

)()( µµ
λ

+
=

sQs ob
b

&
& .     (38) 

Node c has a single path from destination b, {6}; node d is itself a destination, and has two paths 

from destination b, {5} and {6,7}, and a single path from destination c, {7}; applying (28), we 

get: 
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In investigating whether or not the paradox occurs in link (i, j), we should examine the 
sign of )()(   ss ji λλ && −  because )0()( **

jj s ττ −  in (29) is always positive. From (38), (39) and 

(40), we find that )()(   ss ba λλ && −  and )()(   ss da λλ && −  always have negative value so that the 

paradox cannot occur in either of links (a, b) and (a, d). Furthermore, )()(   ss cb λλ && −  is always 

zero so that total travel time is independent of change in capacity of link (b, c). However, 

)()(   ss db λλ && −  and )()(  ss dc λλ && −  can be positive if )(sQob
&  is relatively large in comparison 

with )(sQod
& : 

  =−=− )()()()(     ssss dcdb λλλλ &&&& ⎥
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⎤
⎢
⎣
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+++
)()(1

32
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sQsQ odob
&&

µµ
µ
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 (41) 

Therefore, we see that the capacity paradox can occur in links (b, d) and (c, d) if the following 

condition holds: 

       0    )( )()( 
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&&
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This condition is identical for both of these links, so if the capacity paradox occurs in either one it 

will occur in both of them. 

 

3.3. Networks where Paradox Occurrence is Inevitable 

Given a capacity pattern M, OD flow patterns Q(s) for all s in [0,T], and a network 

structure A, we can detect the paradox occurrence in the network by applying the theory 

developed so far. However, Proposition 2 in section 3.2, tells us that knowledge of the 

network structure A is sufficient to detect the paradox occurrence in some cases (ie neither M 
nor Q(s) is needed): the sign of )()( ss ji λλ && −  in Proposition 2, which determines the sign of 

ijC µ∂∂ / , depends only on path patterns of the network regardless of M and Q(s). The 

following proposition identifies some networks in which we can guarantee no occurrence of 

the paradox without the information on M and Q(s): 
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Proposition 3.1. Suppose that we change the capacity of link (i, j) on a saturated network with a 

one-to-many OD demand pattern, and let S be the set of destination nodes in this network. Then 

the capacity paradox never occurs in respect of this link if the network structure satisfies the 

following conditions: 

(a) neither of nodes i and j is a destination,  

(b) for each destination node d ∈ S, there is no path from node d to node i ,  

(c) for at least one destination node d ∈ S, there exists a path from node d to node j . 

Proof: see Appendix B. 

Figure 7 shows a simple example of a network that satisfies the conditions (a), (b) and (c) 

of Proposition 3.1 in respect of link (i, j): neither destination 1 nor 2 has a path to node i, and 

destination 1 has a path to node j. From the theorem we know that changing the capacity of link  

(i, j) never causes the paradox regardless of the OD demand pattern and the capacity pattern in the 

network. 

Figure 7. An Example Network for Proposition 3.1 (Capacity Paradox Never Occurs) 

 

Similarly, the following proposition identifies some networks where the paradox 

occurrence is inevitable for all patterns of M and Q(s): 

Proposition 3.2. Suppose that we change the capacity of link (i, j) in a saturated network with a 

one-to-many OD demand pattern, and let S be the set of destination nodes in this network. Then 

the capacity paradox always occurs in respect of this link if the network structure satisfies the 

following conditions:  

(a) neither of nodes i nor j is a destination , 

(b) for at least one of the destination nodes d ∈ S, there exists path(s) from node d to node i , 

(c) for each destination node d ∈ S, there is no path from node d to node j other than those 

that traverses node i. 

Proof: see Appendix C. 
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Figure 8 shows a simple example of a network that satisfies conditions (a), (b) and (c) of 

Proposition 3.2: destination 1 has a path to node i, and neither of destinations 1 and 2 has a path 

that reaches node j without traversing node i.  The theorem says that change in the capacity of 

link (i, j) necessarily causes the paradox regardless of the OD demand pattern and the capacity 

pattern in the network. 

Figure 8. An Example Network for Proposition 3.2 (Capacity Paradox Always Occurs) 

 

4. CONCLUDING REMARKS 

 

 This paper presents a theory to detect the occurrence of a “capacity paradox” under 

dynamic user equilibrium (DUE) assignment in a general network with a one-to-many OD 

demand pattern. Defining the paradox as the situation that increase (decrease) in capacity of a 

link leads to an increase (decrease) in total travel time over a network, we first derive a necessary 

and sufficient condition for the paradox to occur in “saturated networks” in which there is a 

queue on each link. We then give a graph theoretic interpretation of the condition, which enables 

us to identify network structures in which the paradox always occurs regardless of capacity and 

demand patterns. 

 The models that have been used in developing this theory are specific cases of those used in 

dynamic traffic assignment, so the results will not necessarily hold exactly for other combinations 

(for example, stochastic assignment principles or other traffic models). However, similar effects 

will no doubt arise so that in cases where the results presented here indicate a strong occurrence of 

the cost increasing paradox, one could reasonably expect it to occur to some extent whatever 

combination of assignment and traffic models is adopted. 

 The theory presented in this paper is based upon the strong assumption of saturated 

networks in which congestion is present on every link. We would emphasise, however, that 

this theory has wider implications and forms the basis of analyses that are applicable to more 
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general networks in which some but not all links are saturated. In analysing dynamic traffic 

assignments in non-saturated networks, we can develop ways of reducing them to related 

saturated ones from which relevant deductions can be made. By this means, we can analyse 

the properties of non-saturated networks and identify circumstances in which capacity 

paradoxes will arise. Thus we can establish the more general relevance of the present results. 

Detailed development and discussion of techniques for this and example applications of the 

results are the subject of further research that will be reported in due course. 
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APPENDIX A: Derivation of Theorem 3.2 

In the followings, we suppress dependence on the departure time s, and denote the N th 

node by subscript o to indicate explicitly that it is the origin node in the original network. Let us 

begin with a simple observation that each tree in the numerator of (22) includes exactly one 

return link because only a single link should be incident to the origin node in the tree. From 

this fact, the numerator of (22) can be decomposed with respect to OD pair: 

  ∑ ∏∑∑ ∏
∈

≠
∈∈∈ ∈

=
),;(

),().(
),()( ),(  

 

      
okiST

okqp
Tqp

pq
Nk

ok
iST Tqp

pq Q µµ &  

       ∑ ∏∑∑ ∏
∈

≠
∈

≠
∈∈

≠
∈

+=
), ;(

),().(
),(), ;(

),().(
),(  

 
 

 

      
okiST

okqp
Tqp

pq

ik
Nk

ok
oiiST

oiqp
Tqp

pqoi QQ µµ && ,    (A-1a) 

where S( i; k, o) is the subset of S(i) whose element (each tree) includes link (k, o). Introducing the 

set of “pseudo-trees”, S( i; (k, o)), whose element (pseudo-tree) is formed by deleting link (k, o) 

from the tree in S( i; k, o), we rewrite (A-1a) as the following expression:  
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Substituting this into (22), we have 
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where Zk(i) and Zo are defined as 
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Next, we transform Zi(i), Zk(i) and Zo into more convenient representation. We first take 

notice of the fact that the summation over elements of S(o) in (A-4) can be transformed to a 

summation with respect to nodes in N. To see this, suppose there are several links (l , i) 

incident to node i, then S(o) can be decomposed into corresponding subsets, S(o; l , i) for each 

)(),( iIi ∈l . This decomposition means that (A-4) is represented by 
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The decomposition approach can be further applied to S(o; l , i) at any other node j in N: the 

set S(o; l , i) can be decomposed into several subsets, S(o; l , i; m, j), by links incident to node 

j, )(),( jIjm ∈ , where S(o; l , i; m, j) is the subset of S(o; l , i) whose element includes both 

links (l , i) and (m, j). Hence, (A-5) is transformed to 
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where S(o; (l , i); (m, j)) is the set whose element is formed by deleting two links (l , i) and (m, j) 

from the tree in S(o; l , i; m, j). Because every tree in S(o) has precisely N-1 links (that are 

incident to the N-1 distinct nodes), we can repeatedly apply the decomposition scheme over 

all nodes in N excluding node o. Consequently, we obtain 
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 Similarly, S(i; (i, o)) in the definition of Zi(i) can be decomposed with respect to nodes: 

taking notice that each tree in S( i; (i, o)) does not include links in I(i) as well as links in I(o), 

we have 
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From (A-7) and (A-8), Zi(i)/ Zo in the first term of (A-2) reduces to 
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We then compare Zk(i) and Zo in the second term of (A-2). Note here that Zk(i) can be 

decomposed with respect to directed paths from node i to node k: 
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where P(i, k) is the set of directed paths from node i to node k, and S( i; (k, o); r) is the set of 
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links whose element is formed by deleting the links in r th path in P(i, k) from each pseudo-tree 

in S( i; (k, o)). The validity of this decomposition is based on the fact that each tree in S(i; (k, 

o)) has precisely a single path from node i to node k. [The reason why this fact holds is as 

follows: for each tree in S(i; k, o), it follows immediately from the definition of S(i; k, o) that 

there is only one path from node i to node o, and that the path should consists of the path from 

node i to node k and “return link” (k, o); it in turn implies that each tree in S(i; (k, o)) has the 

same single path from node i to node k because any pseudo-trees in S(i; (k, o)) are formed by 

simply deleting link (k, o) from the trees in S(i; k, o).] 

Furthermore, a logic similar to that in deriving the expression (A-8) can be applied to 

the set S(i; (k, o); r) in (A-10); we split the node set N into two subsets: the set of nodes in rth 

path in P(i, k), N(r[i, k]), and the set of the other nodes, NC(r[i, k]); then the summation with 

respect to S(i; (k, o); r) in (A-10) can be decomposed with respect to nodes in NC(r[i, k]): 
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Accordingly, (A-10) can be written as 
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It follows, in calculating Zk(i)/ Zo, that the term in the second bracket in (A-12) and the 

corresponding term in (A-7) mutually cancel out; that is, Zk(i)/ Zo reduces to 
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Substituting (A-9) and (A-13) into (A-2), we obtain (23) in Theorem 3.2. 
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APPENDIX B: Proof of Proposition 3.1 

From the definition of )(siλ&  in (28), )(siλ&  is always zero if conditions (a) and (b) are 

satisfied. It also follows that the sign of )(sjλ&  is always positive if conditions (a) and (c) are 

satisfied. Hence, )()( ss ji λλ && −  in (27) is always negative if conditions (a), (b) and (c) hold. On 

the other hand, )0()( jj s ττ −  in (27) is always positive because the users who depart at time 0 

from the origin should arrive at node j earlier than any users who depart at time s > 0 under the 
DUE state. Therefore, ijC µ∂∂ /  is always negative (i.e., the paradox can not occur) for the 

network satisfying the conditions (a), (b) and (c). QED. 

 

APPENDIX C: Proof of Proposition 3.2 

 Conditions (b) and (c) means that the paths from node d to node j necessarily pass through 

node i, and hence, each path in P(d, j) can be obtained by adding an appropriate path in P(i, j) to a 

path in P(d, i). Therefore, from the definition of )(siλ& in (28) and condition (a), we have 

      )(  )(   ss ij λαλ && = ,       (C-1) 
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The coefficient α  in (C-1) always takes the value less than one. This fact can be proved by 

using the concept of Markov chain networks (see, for example, Akamatsu(1996)). Consider a 

“reversed network” that is obtained by reversing the direction of all links in the original network 

G(N, L), and suppose that vehicles move subject to the Markov chain rule on the reversed 

network with the transition probability from node i to node j defined as  
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where I(i) is the set of links incident to node i, and ijµ  is the capacity of link (j, i) in the original 

network (i.e., I(i) and ijµ  are the set of links incident from node i, and the capacity of link (i, j) 
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in the reversed network, respectively). Then α  defined by (C-2) is interpreted as the probability 

that vehicles that was at node j at an initial time will visit node i. Markov chain theory guarantees 

that the probability converges and is less than unity if the network contain no loop. Because the 

DUE flow pattern in a saturated network does not form loops, we can conclude that α  is indeed 

less than unity, which means that )()( ss ji λλ && −  is always positive. Therefore, ijC µ∂∂ / is 

always positive (i.e., the paradox always occurs) for networks that satisfy the conditions (a), 

(b) and (c). QED. 

 



 

 

 

 

 

 

 

 

 

Figure 1. A Network example with a single origin and two destinations 
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(a) Network G 

Figure 2. An example network and the corresponding graph Γ 
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(b) Graph Γ 

Figure 2. An example network and the corresponding graph Γ 
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Figure 3. Directed spanning trees in S(o) 
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Figure 4. Directed spanning trees in S(d) 

o

aµ1

µ3

b c

d

µ6

Qod

・

o

aµ1

µ2 b c

d

µ6

Qod

・



 

 

 

 

 

 

 

Figure 5. Directed spanning trees in S(c) 
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Figure 6. Directed spanning trees in S(b) 
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Figure 7. A network example for Proposition 3.1 (the capacity paradox never occurs) 
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Figure 8. A network example for Proposition 3.2 (the capacity paradox always occurs) 
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