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Akamatsu et al.(2006) proposed a new transportation demand management scheme 
called “tradable bottleneck permits” (TBP), and proved its efficiency properties for a 
single bottleneck model. This paper explores the properties of a TBP system for general 
networks. An equilibrium model is first constructed to describe the states under the TBP 
system. It is proved that equilibrium resource allocation is efficient in the sense that the 
total transportation cost in a network is minimized. Theoretical relationships between 
TBP and congestion pricing (CP) are also discussed. It is demonstrated that TBP has 
definite advantages over CP when demand information is not perfect, whereas both TBP 
and CP are equivalent for the perfect information case. Finally, it is shown that the 
“self-financing principle” also holds for the TBP system. 
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 Recent advances in information and communication technology (ICT) have led to rapid 
changes in the “virtual” world represented by the Internet. The increasing capabilities and 
decreasing cost of ICT is now becoming the impetus for changing the “real” world. The effects of 
ICT on transportation systems are no exception. The broadly defined “Intelligent Transportation 
Systems (ITS)” that exploits ICT has a large potential for dramatically improving efficiency of road 
transportation systems if the systems are implemented together with appropriate transportation 
demand management (TDM) schemes. 
 
 As an example of such futuristic TDM schemes making the most of ICT/ITS, Akamatsu, 
Sato and Nguyen (2006), and Akamatsu (2007a) proposed the “tradable bottleneck permit system.” 
Their proposed scheme is designed for resolving the problem of congestion during the morning rush 
hour at a single bottleneck, and consists of the following two parts:  

a) the road manager issues a right that allows a permit holder to pass through the 
bottleneck at a pre-specified time period (“bottleneck permits”), 

b) a new trading market is established for bottleneck permits differentiated by a 
pre-specified time 

Note here that both parts a) and b) of this scheme are feasible for implementation from a technical 
point of view, even at the present time. The system for handling part a) may be constructed as an 
application of the dedicated short range communication (DSRC) system that is used in the current 
electric toll collection (ETC) system; the trading markets in part b) also can be realized 
inexpensively by using Internet auction markets. It is, therefore, reasonable to assume that 
implementing this scheme will become technically easier when we take into account the future 
advances of  ICT/ITS. 
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 Part a) of this scheme is almost the same as the concept of “advance highway booking” 
(reservations or quotas)that has been previously proposed by several authors (e.g., Akahane and 
Kuwahara (1996), Wong (1997), Teodorovic and Edara (2005)). Under this scheme, the arrival flow 
rate at a bottleneck at any time period is, from the definition of the scheme, equal to the number of 
permits issued for that time period. This implies that we can completely eliminate the occurrence of 
queuing congestion by setting the number of permits issued per unit time to be less than or equal to 
the bottleneck capacity. However, there may be cases in which road users cannot choose their 
desired time for using the road if the permits are assigned according to some unrefined rule (e.g., a 
simple “quota” scheme). Such an infringement on freedom of choice necessarily causes economic 
losses and should not be socially acceptable. In order to circumvent this problem that arises in 
employing only part a) of the scheme, we need to add an appropriate mechanism in which each user 
can choose his or her desired permit. It is part b) of the scheme that gives the foundation for this 
“choice mechanism” by a market system for buying and selling permits. 
 
 With the complementary properties of parts a) and b) in the combined scheme above, we 
can expect that this is the most efficient scheme of using the limited resource of road capacity. 
Indeed, for a departure-time choice equilibrium problem with a single bottleneck a la Vickrey 
(1969), Akamatsu (2007a) showed that the proposed system has the following desirable properties: 
(1) Comparing equilibrium states with and without the proposed system, we can achieve Pareto 
improvement for both the road manager and all road users, (2) the equilibrium with the proposed 
system achieves the most efficient  (i.e., Pareto optimal) resource allocation, (3) the “self-financing 
principle” holds for the equilibrium with the proposed system—that is, the total revenue (market 
value) of selling the permits is equal to the investment cost required for increasing the bottleneck 
capacity to a socially optimal level. 
 
 These properties of the tradable permit system are proved only for a road with a single 
bottleneck. Specifically, the proof is based on the isomorphism between the commuters’ departure-
time equilibrium in a single bottleneck model and an equilibrium model of an urban residential 
location (see, for example, Fujita (1989)). Since such isomorphism cannot be extended to a case 
with multiple bottlenecks, the properties of the tradable permit system for general networks are 
largely unknown. Furthermore, we should note here that there are no studies dealing with tradable 
permits in the transportation field, other than Verhoef, Nijkamp and Rietveld (1997), Akamatsu et 
al. (2006) and Akamatsu (2007a). Although Verhoef et al. (1997) give an excellent discussion on 
the possibilities of tradable permits in road transportation, they do not mention time-dependent 
tradable permits for eliminating bottleneck congestion. Thus, whether or not the above desirable 
properties hold for general networks is a problem yet to be studied. 
 
 The purpose of this paper is to explore some of the properties of a system of tradable 
bottleneck permits for general networks (we call this a system of “tradable network permits.”). 
Specifically, after defining the system of a tradable network permit, we present a mathematical 
model that describes the equilibrium that arises under the tradable permit system. We then prove 
that the equilibrium resource allocation under the system is efficient in the sense that the total 
transportation cost in a network is minimized: formulating a dynamic system optimal assignment, 
we show that the equilibrium assignment coincides with the optimal assignment; we also show that 
the feasibility of the optimal assignment can be easily confirmed by constructing a “time-space 
network.” We further show the theoretical relationship between the tradable permit system and 
congestion pricing: we demonstrate the definite advantages of the tradable permit system over 
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congestion pricing when the demand information is not perfect, whereas they are equivalent for the 
perfect information case. Finally, we prove that the “self-financing principle” holds not only for the 
single bottleneck case but also for the general network case. 
 The organization of this paper is as follows. In Section 1, we outline the framework of  the 
tradable permits system analyzed in this paper. In Section 2, we present a model of the equilibrium 
under the tradable network permit system. In Section 3, we analyze the efficiency of the equilibrium 
allocation. In Section 4, we discuss the theoretical relationship between the tradable permit system 
and congestion pricing. Section 5 shows that the self-financing principle holds for tradable network 
permits. Finally, Section 6 concludes the paper. 
 
 
1. A System of Tradable Bottleneck Permits in Transportation Networks 
 

1.1. Networks 
 In this paper, we consider dynamic traffic flows on a general network G (i.e., a 
transportation network with general topology). The network consists of a set N of nodes, and a set L 
of directed links. The node set N includes an origin node from which users start their trips, and a 
destination node at which users terminate their trips. To avoid notational complexity and to outline 
essential aspects of the theory, we deal with networks with a single origin-destination (OD) pair. 
Each element of N (i.e., each node) is identified by a sequential natural number i, and each element 
of L (i.e., each link) is denoted by a pair (i, j) of the upstream node i and the downstream node j. 
The time interval I = [0, T] for which we assign the dynamic traffic flow is fixed. We assume that 
the travel demand Q that makes trips for the time interval I is a given constant. 
 
 We also assume, without any loss of generality, that each link in a network consists of a 
free flow segment and a single bottleneck segment. The travel time to pass through the free flow 
segment of link (i, j) is a constant  tij (i.e., tij is independent of time and flow). The bottleneck of 
each link is represented by a point queue model with constant capacity μ ij. Note that this modeling 
approach can deal with any number of bottlenecks in a road segment. When we wish to consider a 
segment without a bottleneck, we set the capacity as infinity; when we consider a segment with 
multiple bottlenecks, we just set up multiple links corresponding to each bottleneck. 
 
1.2. Agents 
 The model presented in this paper has two types of agents: a road network manager and 
road network users. The road manager aims to restrain traffic congestion on the network and 
minimize the “social transportation cost.” To achieve this, the manager regulates the traffic flow 
rates entering into each bottleneck in the network by using “time-dependent bottleneck permits.” 
The precise definition and setup of the bottleneck permit system are described in Subsection 1.3 
below. 
 
 Each user makes a single trip (for the time interval I) from an origin (e.g., residential zone) 
to a destination (e.g., central business district (CBD)) in the network. The user chooses a destination 
arrival time and a path between the origin and the destination so as to minimize his or her disutility 
(or “generalized transportation cost”). The detailed definition of disutility is mentioned in Section 
2. Under the bottleneck permits system, each user must purchase a set of permits corresponding to a 
set of links included in the user’s chosen path. This implies that choosing a destination arrival time 
and a path directly links to purchasing time-dependent bottleneck permits in the “permits markets.” 
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More detailed explanations on the purchase scheme and the permit markets are given in 
Subsections 1.3 and 1.4. 
 

1.3. Bottleneck Permits 
 “Time-dependent bottleneck permits” is a right that allows the permit holder to pass 
through a pre-specified bottleneck at a pre-specified time. In this paper, we assume that the road 
manager can issue time-dependent bottleneck permits for all bottlenecks (i.e., links) in the network. 
This implies that the traffic flow entering into link (i, j) at time t consists of only users who have a 
“time t permit for link (i, j),” and users without this permit cannot pass through this link at this time. 
 
 Throughout this paper, we assume that the number of permits issued for each link for each 
unit time is equal to or less than the traffic capacity of each link in the network. This means that 
queuing congestion never occurs in the network under this permits-issue scheme. This may be 
easily seen from this explanation of permits: the inflow rate of each link is equal to (or less than) the 
number of permits issued, and hence the inflow rate cannot exceed the traffic capacity of each link, 
which implies that queuing congestion at each link can never occur. 
 
1.4. Trading Markets of Bottleneck Permits 
 For assigning the bottleneck permits to users, we can consider two representative schemes: 
“market selling scheme” and “free distribution scheme” (Akamatsu (2007a)). In the “market 
selling” scheme, the road manager sells all the bottleneck permits to users in “bottleneck permits 
markets.” All sales from selling the permits result in revenue for the road manager in this scheme. 
In the “free distribution” scheme, the road manager distributes all the permits to users for free 
according to methods that consider the equity among users. In this scheme, the time designated by 
the permits assigned for each user does not necessarily match one’s own desired arrival  time. For 
that case, users can mutually trade a wide variety of permits in the bottleneck permits markets: each 
user can buy the necessary permits while selling the unnecessary permits. As a result of such 
trading activities, permits are re-distributed among users through a system of prices emerging in the 
market. Thus, all income transfers take place only among the users in this scheme. 
 
 This paper deals with only the former scheme (“market selling scheme”) to make the 
exposition as simple as possible. The permits issued for each link (bottleneck) are put on sale by the 
road manager. There are as many markets for trading permits as there are links, and each market is 
dedicated for trading the permits for each link. The permits for each link are further distinguished 
by a specified time allowable to use the link. Under the bottleneck permits system, each user who 
would like to use a path must have a set of permits corresponding to a set of links included in the 
path before making a trip. To fulfill this requirement, each user is assumed to purchase the needed 
set of permits in the trading markets. The price of each permit is determined by an auction system, 
which implies that the price is adjusted so as to clear the excess demand for each type of permit. We 
also assume that the markets are perfectly competitive; that is, neither a monopoly nor oligopoly 
occurs. 
 
 
2. Equilibrium under a System of Tradable Network Permits 
 

 This section provides a model of equilibrium that takes place after introducing the tradable 
network permits system. We first describe the conditions that should be satisfied by several 
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dynamic transportation cost variables, and a model of users’ behaviors for choosing permits is 
shown. We then formulate the equilibrium under the tradable permits system. 
 
2.1. Dynamic Travel Costs in General Networks 
 The transportation cost for a single trip of a network user consists of the following three 
types of costs: a) “schedule cost,”  b) “travel cost,”c) “permit purchase cost.” 
 
 a) The “schedule cost” for a user is the cost due to the difference between the user’s 
desired arrival time and the actual arrival time t. The desired arrival time is assumed to be the same 
for all users and is equal to s. The schedule cost is represented by the function w (t) of destination 
arrival time t, which is common to all users, and is assumed to be a strictly convex function with a 
minimum at  s = t, following previous studies on the departure time equilibrium (e.g., Smith (1984), 
Daganzo (1985), Kuwahara (1990)). 
 
 b) The “travel cost” is the monetary equivalent of the travel time needed for a trip from the 
origin to the destination. The travel times are different among paths. The travel time of a path 
between the origin-destination pair is defined as the sum of travel times of the links included in the 
path. Note that the travel time of each link (i, j) is a constant t ij at equilibrium under the permits 
system, in which no queuing occurs. Hence, at equilibrium, the travel time Tr of path r between the 
origin-destination pair arrival  time is also constant: 

∑
∈

=
Lij

dorijijr tT ),(,δ ,    (1) 

where δ ij, r (o,d) is a typical element of the path-link incidence matrix for node pair (o, d): it is 1 if 
link (i, j) is on path r connecting OD pair (o, d); otherwise, it is zero. 
 
 c) The “permit purchase cost” is the total payment for purchasing a set of link permits 
required for going through a path from the origin to the destination. To put it another way, the 
permit purchase cost of a user is defined as the sum of permit prices of the links included in the path 
used. This cost varies depending on what path is taken and at what time because the permits for 
each link are further differentiated by the specified time and each permit is priced depending on the 
time and the link. 
 
 To see this cost more precisely, consider a user who uses path r and arrives at the 
destination at time t. Suppose here that he or she uses a path r that contains link (i, j) and T ij, r is the 
travel time required for arriving at the destination from node i: 

∑
∈

=
Lk

dirkkrij tT
l

ll ),(,, δ      (2) 

where δ kl, r (i, d) is a typical element of the path-link incidence matrix for node-pair (i,d): it is 1 if link 
(k, l) is on path r from node i to the destination d; otherwise, it is zero. Then, the user should enter 
into the link at time t − T ij, r, which implies that this user has to obtain the time t − T ij, r permit for 
link (i, j), whose price is p ij (t −T ij, r). It follows from this that the permit purchase cost (i.e., the 
total payment for purchasing the set of link permits required for going through path r and arriving at 
the destination at time t) is given by 

∑
∈

−=
Lij

dorijrijijr TtptP ),(,,  )()( δ     (3) 
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We call the sum of the travel cost and permit purchase cost as the path transportation cost; that is, 
the transportation cost Cr (t) of path r for a user arriving at the destination at time t is given by 

rrr TtPtC  )()( α+= ,     (4) 

where α is a coefficient that converts travel time to the monetary equivalent. 
 
2.2. Users’ Behaviors 
 Each user chooses an arrival time t at the destination and a path r between the origin and 
the destination so as to minimize the generalized transportation cost, defined as the sum of the 
schedule cost and transportation cost. That is, the user solves the following problem: 

)()( .min
 ,

tCtw rrt
+       (5) 

This optimization problem can be solved by “backward induction.” That is, the optimal choice pair 
(t*, r*) can be obtained by solving a two-stage (hierarchical) choice problem, in which one chooses 
separately the destination arrival time t (the upper-level choice) and the optimal path r (the lower-
level choice). More specifically, we first solve the lower-level problem of the path choice for a 
given arrival time t; we then obtain the optimal route choice r*(t) and the optimal value π(t) 
conditional on  arrival time t: 

)( .min)( tCt rr
=π                (6a) 

)( .min.arg)(* tCtr rr
=           (6b) 

By using this optimal choice function, we can reduce the upper-level problem of the arrival time 
choice to  

)()( .min ttw
t

π+      (7a) 

)()( .min.arg* ttwt
t

π+=      (7b) 

2.3. Equilibrium Conditions 
 For the settings above, we construct a model that describes the equilibrium that arises in 
the presence of the proposed system. At equilibrium, the following six conditions as well as the 
definitional equations (1)-(4) for time-dependent cost variables should hold. 
 
1) Flow conservation for path flows and OD flows: 
 OD flow rate q (t) for a user arriving at the destination at time t should be the sum of the 
path flow rates: 

)()( tqtf
Rr

r =∑
∈

,     It ∈∀    (8) 

where fr (t) is the flow rate of path r arriving at the destination at time t; R is the set of paths 
connecting the origin-destination pair. 

2) Equilibrium  conditions for the path choice: 
 As mentioned in Subsection 2.2, the user’s optimal choice problem can be solved by 
“backward induction.” By first obtaining the solution of the path choice problem as a function of 
arrival time t, we then solve the arrival time choice problem. To obtain the equilibrium condition 
for the first problem, consider a user arriving at the destination at time t. At equilibrium, no user can 
improve his or her own cost by changing the path choice unilaterally (i.e., no user has the incentive 
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to deviate from his or her strategy). That is, transportation cost Cr (t) of path r (from the origin to 
the destination) that is chosen at equilibrium is equal to the minimum path travel cost π (t), and the 
costs of other (unused) paths are greater than π (t): 

⎩
⎨
⎧

=≤
>=

0)(    )()(
0)(    )()(

tfiftCt
tfiftCt

rr

rr

π
π

  It ∈∀ , Rr ∈∀    (9) 

3) Flow conservation for OD flow rates and OD travel demands: 
 All OD travel demands Q have to be assigned to each time point (in terms of the arrival 
time at the destination) in the interval [0, T]; that is, the time-dependent OD flow rates {q(t)} should 
satisfy 

Qduuq
T

=∫
 

0 
 )( .      (10) 

4) Equilibrium  conditions for destination arrival time choice: 
 At equilibrium, no one can improve his or her own generalized transportation cost by 
changing the destination arrival time unilaterally. It follows from the path choice equilibrium 
condition in 2) that the generalized transportation cost for a user arriving at time t is w (t) + π (t), 
where w (t) is the schedule cost for a user arriving at the destination at time t. Therefore, the 
equilibrium condition for the user’s arrival time choice can be expressed as 

⎩
⎨
⎧

=+≤
>+=

0)(    )()(
0)(    )()(

tqiftwt
tqiftwt

πρ
πρ

   It ∈∀    (11) 

where ρ represents the minimum (equilibrium) generalized transportation cost. 

5) Demand-supply equilibrium (market clearing) conditions in each link permit market: 
 As mentioned in Section 1, the permits for each link are distinguished by a specified time 
at which each permit makes it allowable to use the link. Let pij(t) denote the price of the permit for 
link (i, j) with a specified allowance time t. Since the trading markets are assumed to be perfectly 
competitive (i.e., neither a monopoly nor oligopoly occurs), the price pij(t) of each permit type is 
adjusted to clear the excess demand for each type of permit. More precisely, at equilibrium, if the 
price of a certain type of permit is positive, the quantities supplied and the quantities demanded for 
the permit are equal; for the permit whose supply quantity exceeds the quantity demanded, the price 
is zero. Note here that, for each link (i, j) and each allowance time t, the demand of the time t  
permit of the link is equal to the inflow rate yij (t). On the other hand, the maximum supply (upper 
bound) of the time t  permit of link (i, j) is given by the link capacity μ ij. Therefore, the demand-
supply equilibrium condition for the permits market is represented as 

⎪⎩

⎪
⎨
⎧

=≤

>=

0)(    )(

0)(    )(
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tpifty
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μ

μ
   It ∈∀ , Lij ∈∀    (12) 

6) Flow conservation for link flows and path flows: 
 The inflow rate on each link at each time point should be consistent with the time-
dependent path flows. A user going through path r and entering into link (i, j) at time t arrives at the 
destination at time  t + T ij, r. Therefore, the inflow rate yij (t)  entering into link (i, j) at time t is the 
sum of the flows on all paths going through that link and arriving at the destination at t + T ij, r: 

∑
∈

+=
Rr

dorijrijrij Ttfty ),(,, )()( δ   It ∈∀ , Lij ∈∀    (13) 
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2.4. Arc-Node Formulation 
 The path-based formulation presented above is convenient for presenting the user’s route 
choice behavior in a straightforward manner; however, this formulation is not necessarily 
convenient for analyzing the demand-supply equilibrium condition (12) at each link due to the 
complexity of the relationship (13) between time-dependent path flows and link flows. In order to 
alleviate this complexity, we transform the model above into a formulation expressed in terms of 
link-node variables, which enables us to analyze the efficiency of the equilibrium, as is presented in 
later sections. The arc-node formulation of the model can be summarized by the following five 
conditions. 
1a) Flow conservation at each node: 
 Conservation of the dynamic traffic flow in a network is represented as the equality of 
inflow and outflow at each node at each time point. To formalize this, let yij (t) be the flow rate 
arriving at link (i, j) at time t , and zij (t) be the flow rate departing from link (i, j) at time t. Then the 
flow conservation is represented as 

id
iNIk

ki
iNOk

ik tqtzty δ 
)()(

)()()( −=− ∑∑
∈∈

,   It ∈∀ , Ni∈∀    (14) 

where δ id is Kronecker’s delta (i.e., 1 if  i = d, zero otherwise ); NO (i) is a set of downstream nodes 
of the links incident from node i; NI (i) is a set of upstream nodes of the links incident to node  i. 

1b) First-In-First-Out conditions on each link： 
 We assume that the dynamic traffic flow in our model should satisfy the First-In-First-Out 
(FIFO) property on each link (i.e., we assume that passing can be neglected). As shown in the 
literature (see, for example, Kuwahara and Akamatsu (1993), Akamatsu and Kuwahara (1994)), the 
FIFO condition for each link can be written as 

))(()( tttDtA ijijij += ,     (15) 

where Aij (t) and Dij (t) are the cumulative numbers of vehicles entering into and leaving from link 
(i, j) at time t，respectively. Using the flow rate variables, we can equivalently rewrite this as 

)/)(1())(()( dttdttttzty ijijijij +⋅+= ,   (16) 

where tij (t) is the travel time of link (i, j) for a user entering into the link at time t.  Note here that   
tij (t) is a constant regardless of the arrival time when there is no queue. Hence, at equilibrium under 
the permits system (i.e., when there is no queue in the network), the FIFO condition (16) reduces to 
the following simpler representation: 

)()( ijijij ttzty +=    It ∈∀ , Lij ∈∀    (17) 

2) Equilibrium conditions for path choice: 
 Consider a user arriving at node i at time t. If the user chooses link (i, j), the arrival time at 
node j is t + tij. Hence, at equilibrium, link (i, j) should be on the minimum path for a user arriving 
at node j at time  t + tij if there exists a user entering into link (i, j) at time t. Denoting π i (t) as the 
minimum path cost from the origin to node i for a user arriving at the node at time t, we can 
represent this condition as 

⎪⎩

⎪
⎨
⎧

=+≤+

>+=+

0)(    )()()(

0)(    )()()(

tyifttctt

tyifttctt

ijiijijj

ijiijijj

ππ

ππ
    It ∈∀ , Lij ∈∀    (18) 

where cij (t) is the transportation cost for a user who enters into link ( i, j) at time t :  
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ijijij ttptc  )()( α+≡      (19) 

The condition (18) is equivalent to the minimum cost path choice condition (9) represented by the 
path variables since (18) can be derived by applying the dynamic programming principle to (9). 
 

3) Flow conservation for OD flow rates and OD travel demands: 
 This is the same as the conditions in 3) in Subsection 2.3, that is, 

Qduuq
T

=∫
 

0 
 )(       (20) 

4) Equilibrium  conditions for destination arrival time choice: 
 Minimum path cost π (t) defined in Subsection 2.3 is the same as π d (t) defined in (18) 
above. Hence, in a similar manner to the conditions in 4) in Subsection 2.3, the equilibrium 
conditions for the user’s choice of destination arrival times is given by 

⎩
⎨
⎧
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0)(    )()(
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5) Demand-supply equilibrium (market clearing) conditions in each link permit market: 
 This is the same as the conditions in 3) in Subsection 2.3, that is, 

⎪⎩

⎪
⎨
⎧
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3. Efficiency of the Equilibrium with Tradable Network Permits 
 

3.1. Dynamic System Optimal Assignment without Queuing 
 In order to examine the efficiency of the equilibrium allocation patterns defined in (14)-
(22), consider the following optimization problem [P-1]: 
 

∫≡
≥

T
P dttwtqF

 

0 
  

),(
)()(),(  .min yq

0yq
∑ ∫
∈

+
Lij

T
ijij dttty

 

0 
  )(   α                (23) 

  subject to 

Qduuq
T
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0 
 )(                  (24) 

ijij ty μ≤)(                It ∈∀ , Lij ∈∀    (25) 
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−=−− ∑∑
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  It ∈∀ ,  Ni ∈∀    (26) 

 
This is the problem of finding a dynamic traffic flow pattern that minimizes the total generalized 
transportation cost in the network, subject to the physical constraints of flows representing the 
network performance. Specifically, the first term of the objective function FP  is the total schedule 
cost expensed by all users, and the second term is the monetary equivalent of the total travel time 
paid by all users. The first constraint (24) is conservation of the OD demand, the second constraint 
(25) is the traffic capacity constraints on each link. The final constraint (26) is the conservation of 
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dynamic link flows at each node (14) combined with the FIFO condition on each link (17). 
 
 This problem does not necessarily have a feasible solution (satisfying constraints (24), (25) 
and (26)) due to the capacity constraint (25) on each link. The most extreme case for the non-
existence of a solution is when the time interval I for the assignment is limited to an extremely short 
interval Δt. In this case, the OD travel demand Q cannot be distributed into a time space and is 
forced to be distributed into only a network space (i.e., paths) while satisfying all the link capacity 
constraints. This implies that no feasible solution exists if Q /Δt, which can take an extremely large 
value, exceeds the maximum network capacity. 
 
 As shown later in Subsection 3.2, however, we can easily examine whether or not the 
problem [P-1] has a feasible solution for any network. Also, [P-1] always has feasible solutions 
(and an optimal solution) if the assignment time interval I is large enough that we can make OD 
flow rates smaller than the maximum capacity of the underlying network. Thus, we concentrate our 
discussions on the relation between the optimal assignment and the equilibrium assignment. For the 
discussions in later sections, we note that any feasible solutions of [P-1] imply traffic flow patterns 
with no queuing congestion on the network. 
 
 Under this assumption, the most important property that characterizes the equilibrium 
assignment is that [P-1] is an equivalent optimization problem to the equilibrium conditions (14)-
(22). That is, 
 
 Proposition 1: For any networks with a single OD pair in which [P-1] has feasible solutions, 

the equilibrium assignment under the system of time-dependent tradable link permits minimizes 
the “social transportation cost” defined by (23). 

(Proof: see Appendix) 
 
 On the surface, this proposition states that the equilibrium traffic patterns always coincide 
with the optimal traffic patterns for [P-1]. We should note, however, that problem [P-1] further 
provides information on the equilibrium prices/costs as well as the equilibrium flow patterns. 
Specifically, it is clear from the proof of Proposition 1 that a) the optimal Lagrange multipliers 
{p*(t)} for constraint (25) coincide with the time-dependent link permit prices at equilibrium, b) the 
optimal Lagrange multiplier ρ* for constraint (24) gives the generalized transportation cost at 
equilibrium, and c) the optimal Lagrange multipliers {π*(t)} for (26) yield the transportation cost 
from the origin to each node at equilibrium. 
 
 In order to see more directly the fact that these Lagrange multipliers (ρ*, π*(t), p*(t)) 
represent the equilibrium prices under the system of tradable permits, consider the dual problem, 
[D-1], of the optimal assignment problem [P-1]: 

∑ ∫
∈≥

−≡
Lij

T
ijijD dttpQF
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 )(  ),,( .max μρpπρ
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From the duality theorem, the optimal value of the objective function of [D-1], FD
*, coincides with 

the optimal value of the objective function of [P-1], FP
* , that is, 

∑ ∫∫
∈

+
Lij

T
ijij

T
dtttydttwtq
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**  )(  μρ .  (30) 

The right-hand side of this equation, FP
*, is the social transportation cost at the equilibrium under 

the system of tradable permits: 

[total schedule cost] + [total travel time cost]              (31a) 

On the other hand, from the identity relation of transportation costs defined in Subsection 1.1, this 
should coincide with the value of  

[total generalized transportation cost]  -  [total permits payments]            (31b) 

at equilibrium. Therefore, the right-hand side of (30), FD
*, should be the value of (31b) at 

equilibrium. Indeed, we can easily verify that FD
* represents the social transportation cost at 

equilibrium with the form of (31b) if we interpret the optimal solution (ρ*, π*(t), p*(t)) of [D-1] as 
the equilibrium prices under the tradable permits system. More specifically, the first term of FD

* on 
the right-hand side of (30) denotes the equilibrium generalized transportation cost multiplied by the 
number of users, which is the total generalized transportation cost paid by users in the network. 
Note that this “cost” includes users’ payments to the road manager to purchase permits, but these 
payments should not be counted as the “social cost” because they are just income transfers between 
the users and road manager. The total amount of these income transfers is given by the total market 
values of all the permits (i.e., the sum of the number of each permit μij multiplied by its price pij(t) 
for all links and times), which is given by the second term of FD

*. Thus, we see that FD
* represents 

exactly the social transportation cost at the equilibrium with the form of (31b). 
 
3.2. Feasibility of the Assignment without Queuing 
 We can examine whether or not the problem [P-1] has a feasible solution for any networks 
by simply constructing “time-space networks.” The concept of “time-space network” may be best 
explained by the example of a train diagram. Denoting xi as the position of the i-th train in a 1-
dimensional guideway as a function of time t, we can depict the trajectories of trains, {xi(t)}, in a 2-
dimensional (time, space) plane. For a set of appropriate time points {tk}, the trajectories provide a 
set of points {(tk, xi(tk))} in the plane; regarding these points as a set N of “nodes,” we can define a 
set L of “links” by treating each segment of trajectories as a link connecting two nodes in N. The 
two sets N and L thus obtained constitute a time-space network G(N, L) for the train diagram. 
 
 By applying a procedure similar to that for the train diagram above, we can construct the 
time-space network for analyzing dynamic flows in a general network. This is a powerful approach 
for solving a range of network problems with constant link travel times (for more detailed examples 
of this approach, see Ieda and Akamatsu (1988), Cascetta (2001)), although it is difficult to apply 
this to the problems with state-dependent link travel times. We can take advantage of this approach 
to check the feasibility of [P-1] since we do not need to consider queuing for the feasible solution of 
[P-1], which implies that the link travel times in [P-1] are constant. 
 
 Before describing the precise procedure for constructing the time-space network for [P-1], 
we first discretize time into small intervals of length Δt : each time point is represented by t = m Δt, 
where m = 0,1,2,…, M. We then assume that travel time tij of each link is represented by a natural 
multiple of Δt (i.e., an integer nij satisfying tij = nij Δt is given for each link). Under this setting, the 
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“time-space network” is constructed by the following procedure: 
 

Step 1-a. Replicates M copies of each node in the original network G(N, L). 

Step 1-b. For the expanded node set, add a single dummy node for the origin in G, and 
similarly, add a single new dummy node for the destination in G.  

The set of nodes created by Step 1-a and Step 1-b is the node set N* of the time-space network. 
To identify each node in N *, we denote by i (m) the node in N* that represents node i at time m 

Δt. We denote by o* the dummy node in N* for the origin o, and denote by o* in N* the dummy 
node for the destination d 

Step 2-a. For every m, create a link going from node i (m) toward node j (m + nij ) if there 
exists a link with travel time tij = nij Δt in the original network G(N, L). The 
attributes (i.e., travel cost and capacity) of each link created above is the same as 
those of the corresponding original link in L. Repeat this procedure for all links in L. 

Step 2-b. For every m, create a link going from dummy node o* toward origin copy node o(m) 
in N *. For these new links, the travel cost is set to zero, and the capacity is infinity. 
For every time point m, create a link incident from destination copy node d(m) 
toward dummy node d 

*. For these new links, the travel cost is set to wd (m), and the 
capacity is infinity. 

A set of links created by Step 2-a and Step 2-b is the link set L * of the time-space network. 
 
 The dynamic system optimal assignment problem [P-1] (or its equivalent of the 
equilibrium problem (14)-(22)) reduces to a “static” minimum cost flow problem defined on the 
time-space network G* (N* , L* ) constructed by the procedure above. More specifically, consider a 
static minimum cost flow problem defined on G*, in which the origin node is given by the dummy 
node o*, the destination node is the dummy node d*, and the OD travel demand is given as Q. We 
then regard the flow on link (i (m), j (m + n ij )) in G* as the dynamic link flow rate y ij (mΔt) in the 
original network G, and the flow on link ( d(m), d* ) in G* as the dynamic OD flow rate q(mΔt) in 
G. For this setting, the optimal solution of [P-1] is given by the link flow pattern in G* obtained as 
the solution of the minimum cost flow problem above. 
 
 To understand this fact, it is sufficient to check that all conditions of [P-1] are represented 
as the conditions for the minimum cost flow problem defined on G*. We first see that conservation 
of the dynamic flow in [P-1] is automatically represented by conservation of the static flow at each 
node on G*. Constraint (26) is satisfied by the flow conservation at each node i (m) on G*; constraint 
(24) is satisfied by the flow conservation at each dummy node d in Step 2-a of the procedure to 
construct G*. We also see that the capacity constraint of each link (25) for each time period 
corresponds to the capacity constraint of each link on G*. Furthermore, the objective function of [P-
1] is consistently represented by the total travel cost in the minimum cost flow problem defined for 
G*: the first term of the objective function is represented by the sum of travel costs for the set of 
links (d (m), d* ) constructed in Step 2-b, and the second term is the sum of travel costs for the set of 
links constructed in Step 2-a. 
 
 Thus, the dynamic optimal assignment problem [P-1] is reduced to solving a static 
minimum cost flow problem on G*. The static minimum cost flow problem has been well studied in 
computer science (see, for example, Kennington and Helgason (1980), Ahuja, Magnanti and Orlin 
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(1993)), and very efficient (polynomial order) algorithms are available for solving this problem. 
Therefore, we see that the feasibility of [P-1] can be easily verified by using these algorithms. 
 
 
4. Congestion Pricing vs. Tradable Permits 
 

4.1. Perfect Information Case 
 The equilibrium permit prices formulated in Section 2 can be interpreted as the optimal toll 
levels for a congestion pricing scheme. To see this, consider a “dynamic congestion pricing 
scheme” in which the road manager imposes a time-dependent toll (congestion tax) for each link in 
the network. Denoting by pij (t) the toll of link (i, j) for a user arriving at the link at time t, we easily 
see that all transportation costs required for a user to make a trip have precisely the same form as 
the transportation costs under the permit system in Section 2. Consequently, it is obvious that the 
equilibrium states for the dynamic congestion pricing with a toll pattern {p(t)} satisfy the 
conditions (14)-(21). In other words, we can interpret the conditions (14)-(21) as those for defining 
the equilibrium flow pattern {y(t)} that arises when the road manager sets a dynamic toll pattern 
{p(t)}. With this in mind, suppose that the road manager wishes to prevent the occurrence of 
queuing congestion in the network by setting an appropriate toll pattern {p*(t)} such that the 
equilibrium inflow rate yij (t) of each link never exceeds the capacity μ ij.( i.e., queuing congestion 
never occurs). Then, it follows that the conditions for achieving this goal are given by the same 
form as (22). That is, condition (22), which represents the market clearing (demand-supply 
equilibrium) condition for the tradable permit scheme, is now the condition for the road manager to 
achieve the optimal flow pattern under the congestion pricing scheme. Thus, the system of 
equations (14)-(22) can be viewed as the conditions for obtaining the optimal toll pattern when the 
equilibrium flow pattern does not cause queuing congestion. 
 
 As we have seen in Proposition 1, the system of equations (14)-(22) are also equivalent to 
the optimal assignment problem [P-1], and therefore, the pair {p*(t), y*(t)} of the optimal toll 
pattern and the resulting equilibrium flow pattern exist if [P-1] has feasible solutions. Therefore, we 
obtain the following proposition on the equivalence of the tradable permit scheme and the 
congestion pricing scheme: 
 

 Proposition 2: Consider any networks with a single OD pair in which [P-1] has feasible 
solutions, and further suppose that the road manager has perfect information about the 
transportation demands. Then, the equilibrium assignment under the system of time-dependent 
tradable link permits coincides with the equilibrium assignment under the system of optimal 
dynamic congestion pricing. 

 

4.2. Imperfect Information Cases: Economic Losses due to Congestion Pricing 
 The proposition above states that a congestion pricing scheme under a certain condition 
attains the same ideal state as does the tradable permit scheme. However, we should pay attention to 
the fact that the required conditions for attaining the ideal state in the tradable permit scheme are 
largely different from those in the congestion pricing scheme. The differences lie in the amount and 
accuracy of the information needed for the authority (i.e., the road manager) to implement the 
regulation. In the tradable permit scheme, what the road manager should know is just the traffic 
capacity of each link (and queuing congestion can be eliminated just by issuing the number of 
permits for each link that is equal to or less than the link capacity). In the congestion pricing scheme, 



14 

on the other hand, it is not just traffic capacity that the road manager is required to know; it is 
obvious from the discussion above that the road manager cannot calculate an appropriate toll 
pattern that prevents congestion without having accurate information on the users’ behaviors (i.e., 
precise demands). 
 
 Considering the differences between the two schemes, the desirable transportation demand 
management scheme must be found. In generalized terms, this becomes the problem of comparing 
between “quantity-based regulation” and “price-based regulation.” In the field of economics, there 
have been many studies concerning the comparison of the two regulation schemes. According to the 
standard theory (see, for example, Weizman (1974), Laffont (1977)), quantity-based regulation 
produces more efficient outcomes than price-based regulation if a regulation authority has only 
imperfect information on the demand side conditions (i.e., demand functions) while having perfect 
information on the supply side conditions (i.e., supply functions). For the problem in this paper, we 
obtain a similar conclusion, although the underlying assumptions of our problem are different from 
those in conventional economic theory. 
 
 We show this fact below in more concrete terms. In our problem, what corresponds to 
“supply side conditions” is the network performance (traffic capacity of each link), for which 
information can be obtained accurately with relatively small effort. On the other hand, the 
information on the “demand side conditions” is the OD demand Q, the schedule cost function w (t), 
the travel time pattern t and the value of time α. It is not easy for the road manager to obtain this 
information accurately. 
 
 It is therefore natural to think of the events that happen in the dynamic congestion pricing 
scheme if the demand side information is not perfect. As a simple example, suppose that the road 
manager estimates the users’ value of time as β, which is different from the true value of time α. 
Under this assumption, the road manager solves (14)-(22), and then obtains a toll pattern {p’(t)} 
that is different from the true optimal toll pattern {p*(t)}. It is obvious that the traffic pattern {y’(t)} 
arising under the incorrect toll pattern {p’(t)} does not minimize the objective function of [P-1] (i.e., 
the sum of the schedule cost and travel cost), which causes economic loss in the social 
transportation cost. Worse still, there is no guarantee that the capacity constraint in each link is 
satisfied in the traffic flow patterns {y’(t)}; that is, queuing congestion may occur in the network. 
The reason is as follows: the manager believes that a traffic flow pattern {y’’(t)} should arise 
assuming that the users’ value of time is β and the toll pattern is {p’(t)}, which is determined such 
that {y’’(t)} satisfies capacity constraint (22); but the flow pattern arising in reality is {y’(t)} (i.e., 
the flow pattern that arises when the users’ value of time is α and the toll pattern is {p’(t)}), and it 
follows that there is no necessity that {y’(t)} satisfies (22). Note here that the social transportation 
cost in the optimal assignment problem [P-1] is defined under the assumption that queuing 
congestion never occurs. Consequently, in the congestion pricing scheme, any incorrect toll pattern 
{p’(t)} not only minimizes the sum of the schedule cost and travel cost but also causes additional 
economic loss due to the occurrence of queuing congestion. 
 
 On the other hand, the tradable permit system never produces the above economic loss in 
theory, if the road manager just has correct information on the link capacities. Of course, there may 
be the possibility in reality that appropriate (theoretically correct) permit prices do not occur in the 
tradable permits market. This corresponds to the possibility of setting the incorrect toll pattern 
{p’(t)} in the congestion pricing scheme. It may be said from conventional wisdom that the degree 
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of mispricing in the markets is likely to be lower than that of the authority’s mispricing. 
Furthermore, even if the degrees of mispricing are at a comparable level, there is a significant 
difference in the resulting effects of “distorted prices” between the two schemes. The effect of the 
distorted prices in the tradable permit system is confined to the loss in only the permit trading 
markets. They are irrelevant to the occurrence of queuing in the network, unlike the congestion 
pricing scheme. This is because the definition of the permit system ensures that the traffic flow 
never exceeds the number of permits issued, no matter how “incorrect” the permit prices are; thus, 
the tradable permit system never produces additional economic losses due to the occurrence of 
queuing, as observed in the congestion pricing system. 
 
 Still, one might argue that there may be the possibility in reality that queuing congestion 
occurs in the tradable permit system if the users’ arrival times at each link are not accurate. 
However, the possibility that such a phenomenon occurs as well as the resulting losses are all the 
same in dynamic congestion pricing, too. Hence, this can be ignored from the standpoint of the 
relative comparison of these two schemes. Thus, the discussion above can be summarized by the 
following Proposition: 
 

Proposition 3: Consider any networks with a single OD pair in which [P-1] has feasible 
solutions, and further suppose that the road manager does not have perfect information about 
the transportation demands. Then, the equilibrium assignment under a system of dynamic 
congestion pricing incurs a larger total transportation cost than that in the equilibrium under a 
system of time-dependent tradable link permits. 

 

 

5. Self-financing Principle 
 
 In order for the “market selling scheme” of the tradabale network permits to be socially 
acceptable, it may be desirable to redistribute the revenue from selling the permits to the road users. 
As a benchmark scheme of the redistribution, it is significant to consider the case in which the 
revenue is used for financing the capacity expansion of the network. For this type of redistribution 
scheme in congenstion pricing, the “self-financing principle” has been well known since the 
pioneering work of Mohring and Harwitz (1962): for a congestible facility with a constant long-run 
average cost, the revenue from the optimal congestion pricing exactly covers the cost of the optimal 
capacity. A considerable number of studies have been made on whether or not this principle holds 
for a variety of assumptions (see, for example, Keeler and Small (1977), Arnott and Kraus (1995), 
Arnott and Kraus (1998), Yang and Meng (2002)). Accordingly, it is worthwhile to investigate 
whether this principle applies to the equilibrium revenue of tradable permits. As the first step of this 
investigation, Akamatsu (2007a) showed that the principle also applies for the tradable permit 
scheme for a single bottleneck. As we shall see below, this principle can be extended to the scheme 
of general networks. 
 
 Consider the following minimization problem [P-K]: 
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    subject to (24) , (25) and (26). 

This problem is almost the same as [P-1] except that a) the unknown (control) variables in [P-K] are 
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not only the flow pattern (q, y) but also the link capacity pattern μ that is assumed to be constant in 
[P-1], b) the investment cost K as a function of μ is added into the objective function Fp of [P-1], 
which means that the social cost we would like to minimize is defined as the sum of the total 
transportation cost and the investment costs required for the increases in network capacity. The 
investment cost function K is assumed to be homogeneous of degree 1 with respect to μ; that is, 
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 The optimality conditions of [P-K] are similar to those of [P-1]. The only difference is in 
the addition of the following condition for the optimality of link capacity μ: 
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where L is the Lagrangean function of [P-K], and the derivative with respect to μ is given as 
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Substituting (35) into (34), and summing the first equation of (34) for all links, we obtain 
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where we use the homogeneity property (33) of function K. The left-hand side of (36) is the 
investment cost required for achieving the optimal link capacity pattern. The right-hand side of (36) 
is the total market value of the link permits at equilibrium under the tradable network permit 
system; this can be seen from the fact that, for any capacity pattern, the optimal Lagrange multiplier 
{p*(t)} of [P-1] coincides with the equilibrium permit prices, as shown in Section 3. Therefore, (36) 
means that the “self-financing principle” holds for the tradable network permit scheme. This can be 
summarized as follows: 
 

Proposition 4: Consider any networks with a single OD pair in which [P-1] has feasible 
solutions, and further suppose that the investment cost function K(μ) is homogeneous of degree 
1 in link capacities μ. Let the optimal investment cost be the cost required for increasing the 
link capacities so as to minimize the social cost defined in (32). Then the optimal investment 
cost is equal to the total market value of bottleneck permits (i.e., total revenue of the road 
manager); that is, the “self-financing principle” holds for the tradable network permits system. 

 
 
6. Concluding Remarks 

 

 This paper considered a system of bottleneck tradable permits for general networks 
(“tradable network permits”) with a single OD pair. We first provided a model that describes time-
dependent flow patterns at equilibrium under the proposed system. We then revealed that the 
equilibrium coincides with the optimal assignment pattern that minimizes the social transportation 
cost (i.e., the equilibrium under the proposed system is efficient). We further showed the 
theoretical relationship between the tradable permit system and congestion pricing: we 
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demonstrated the definite advantages of the tradable permit system over the congestion pricing 
system when the demand information is not perfect, whereas they are equivalent for the perfect 
information case. Finally, we proved that the self-financing principle holds in the proposed scheme 
(i.e., the total market value of the permits is equal to the investment cost required for increasing the 
network capacity up to a socially optimal level). 
 
 We showed the efficiency of the tradable network permits system from the viewpoint of 
aggregated social costs (i.e., minimization of total transportation cost). This result, however, does 
not necessarily mean that the introduction of the proposed system always leads to Pareto 
improvement. In a single bottleneck case, the Pareto improvement can be proved since there is a 
one-to-one correspondence between the queuing delay (at equilibrium without the system) and the 
permit price (at equilibrium with the system). For networks with many bottlenecks, there are 
complex interactions among queuing delays at equilibrium without the system (see, for example, 
Kuwahara and Akamatsu (1993), Akamatsu (2001), Akamatsu and Heydecker (2003)); the 
correspondences between the equilibrium queuing delays and the permit prices are not 
straightforward. Futher exploration on the Pareto improvement property of tradable network 
permits is one of the important issues that should be addressed in future research. 
 
 The results of this paper can be extended in various directions. For instance, it is 
straightforward to generalize the model to allow for many-to-many OD patterns. In that case, we 
again find that the equilibrium is efficient in the sense that the total transportation cost in the 
network is minimized. Another straightforward extension is to consider elastic OD demands. It can 
be shown that the efficiency of the tradable network permit system applies to this case, too. In 
addition to the extensions on the “demand side,” we can also generalize the theory to include 
“supply side” conditions: the equilibrium permit prices can be exploited for obtaining dynamic 
capacity allocation policies (e.g., signal control policies) that minimize the total transportation cost. 
More discussion of these issues can be found in Akamatsu (2007b). 
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Appendix 

Proof of Proposition 1: 
 We will show that a necessary and sufficient condition for the optimality of the 
optimization problem [P-1] coincides with the equilibrium conditions (14)-(22). To derive the 
optimality conditions, we first define Lagrangean function L for the problem [P-1]: 
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where function FP is the objective function of [P-1] defined in (23); ρ, {p(t)}, and {π(t)} are 
Lagrange multipliers corresponding to constraints (24), (25), and (26), respectively. Then, the 
necessary and sufficient conditions for the optimality of [P-1] are given by the following Kuhn-
Tucker conditions: 
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 It can be easily seen that conditions (A.4), (A.5), and (A.6) reduce to the equilibrium 
conditions (20), (22), and (14), respectively. To examine conditions (A2) and (A.3), we calculate 
the partial derivatives of the Lagrangean function: 
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Substituting (A.7) into (A2), we have the same form of conditions as in equilibrium condition (21); 
similarly, we see that (A2) reduces to the equilibrium condition (18). Thus, Lagrange multipliers 
p*(t), π*(t), and ρ* in the optimality conditions (A.2)-(A.6) coincide with the equilibrium link permit 
prices, equilibrium minimum path costs, and the equilibrium generalized transportation costs in 
equilibrium conditions (14)-(22); the optimal flow patterns (q*(t), y*(t)) also coincide with the 
equilibrium flow patterns. Q.E.D. 
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