Spatio-Temporal Analysis of Gasoline Shortages in Tohoku Region After the Great East Japan Earthquake

International Workshop on Transportation Networks under Hazardous Conditions

2, March, 2013

Takashi AKAMATSU and Takeshi NAGAE

(Tohoku University, Japan)

Background (1)

- After 3.11, 2011, *Oil Shortage* spread over a wide area of the *Tohoku region*, and it *lasted for about a month*.
- The lack of automotive fuel

became a major constraints hindering relief efforts and delivery of emergency supplies in affected areas along the coast

> greatly suppressed economic activities such as commuter traffic and recovery efforts in *inland areas*

⇒ caused *Huge Economic Losses*

Background (2)

- The root cause of the oil shortage was the event that oil refinery in Sendai and port facilities in the Tohoku region were struck by the earthquake.
- The Ministry of Economy, Trade & Industry (METI) and the oil industry have not yet released sufficient information that allow systematic understanding of the problem:
 - *How the situation developed ?*
 - What measures were implemented ?
 - Why the oil shortage lasted for a month ? etc.

Many people attributed the main cause of the protracted oil shortage to "hoarding by consumers".

Purpose of the Study

 Provide a Quantitative & Systematic View of the Oil Shortage Problem following the Earthquake.

Basic Analysis for the entire Tohoku region

- What measures (oil transportation) were implemented ?
- What were the outcomes of those measures ?
- Why the oil shortage lasted nearly a month ?

Spatio-temporal Analysis based on Quantitative Models

 Estimate the development of "demand-supply gaps" by municipality in the Tohoku region.

Available Data for Estimating Oil Transportation

- Petroleum products: gasoline, diesel fuel, & heating oil
- Regions: 5 Prefectures in Tohoku, excluding of Fukushima (Aomori, Akita, Yamagata, Iwate & Miyagi)

Japan's Refineries and Supply Capacities

- Many of the refineries are concentrated around Kanto (Tokyo Bay) and West Japan (Seto Inland Sea).
- Only one Sendai refinery- is located in the Tohoku region

Damages to Japan's Refineries by Tsunami

• Three refineries, accounting for 10% of Japan's total crude capacity, suspended operations for a long time.

The damage to refineries was not the fundamental cause of the oil shortage in the Tohoku region.

Damages to Major Oil Terminals in Tohoku

3.11 – 3.13: all oil terminals (except Niigata) are inoperable

3.14 – 3.21: terminals on the Pacific Ocean are inoperable; only the terminals on the Japan Sea are operable.

3.21 - : the Pacific terminals gradually resume

What was the Fundamental Cause of the Oil Shortage in Tohoku after 3.11?

What Measures were Implemented?

Petroleum Product Sales in Tohoku (3/11~3/31)

to "hoarding by consumers" is evidently wrong !!

Shipments from Refineries to Tohoku

Comparison of the volumes of oil product shipments from other regions in **one month** before & after the earthquake

	Hokaido	Kanto	Tokai	West Japan	Others	Total
Before (10 ³ kl)	235	367	21	42	33	698
After (10 ³ kl)	303	137	31	56	4	530
Increase (10 ³ kl)	68	-230	10	14	-29	-168

METI declared (2011.3.17) "20 (10³ kl) per day of oil will be supplied from West Japan", but the actual transported volume was less than 1/10 of the declaration.

Inbound Shipments to the Ports in Tohoku

The supply to the entire Tohoku region remained insufficient until the recovery of the Pacific ports

Why the Oil Shortage Lasted nearly a Month? - Analysis of Demand-Supply Gap in Tohoku -

Daily Oil Products Shipment *flow* to Tohoku

On March 24, gasoline supply recovered to the level of 98% ⇒ Gasoline shortage resolved within two weeks ???

Cumulative Latent Demand & Supply in Tohoku

Cumulative Curves for Latent Demand & Supply

Cmltv latent demand continued to exceed cmltv supply

Consumers gave up getting a portion of the latent demand (i.e, "Unrealized Demand" arose).

"Unrealized Demand" in Tohoku

- The volume of unrealized demand was approximately 1/3 (1 week's worth) of the latent demand.
 - One week's worth of economic activities vanished.

Aggregate "Demand-Supply Gap" in Tohoku

- Supply shortage for the first two weeks caused building up a huge backlog of demand (*Pent-up Demand*).
- It took four weeks for the backlog to be cleared; this is why the oil shortage problem was protracted.

Conclusion of the Basic Analysis

- Fundamental cause of the gasoline shortage in Tohoku was insufficient supply due to the failure to adjust shipping volumes & patterns in response to disaster damages.
 - Attributing to "hoarding by consumers" is wrong.
 - The amount of gasoline *transported during the two week* after the earthquake was *only 1/3* of the normal demand.
 - The amount brought into the Pacific region from oil terminals along the Sea of Japan was also insufficient.
 - This two-week supply shortage caused the level of cumulative latent demand to substantially exceed cumulative supply, *building up a backlog of demand*.
 - The emergence of the a demand backlog that *lasted a month* resulted in *diminishing 1 week's worth of demand*.

Spatio-Temporal Analysis of Gasoline Shortage in Tohoku Region after the Great East Japan Earthquake

Takashi AKAMATSU and <u>Takeshi NAGAE</u> (Tohoku University, Japan)

2 March, 2013

International Workshop on Transport Networks under Hazardous Conditions

Outline

Spatial Distribution of D-S Gap

4 Conclusion

Outline

- Parameter Estimation
- Spatial Distribution of D-S Gap
- 4 Conclusion

5 Appendix

- $T = \{1, 2, \dots, T\}$: set of time periods with interval Δt ;
- $O = \{1, 2, \cdots, O\}$: set of oil terminals (fuel suppliers);
- $D = \{1, 2, \dots, D\}$: set of municipalities (fuel consumers).
- Time sequence

Appendix

Fuel Demand Dynamics (inter-temporal model)

The fuel demand queue at the end of period *t* follows the dynamics:

- X_j(t) : Unresolved demand stock (ie. "queue") at the end of period t of municipality j ∈ D
- $r_i(t)$: Latent fuel demand flow at period t;
- $x_{ij}(t)$: Fuel flow from oil terminal *i* to municipality *j*.
- β : Disappearance rate of fuel demand.

 \boldsymbol{x}

Fuel Assignment Model (intra-temporal model)

$$\min_{(t),\boldsymbol{X}(t)} \sum_{i \in O} \sum_{j \in D} c_{i,j} x_{i,j}(t)$$
 (min. total transptn. cost)
s.t.
$$\sum_{j \in D} x_{i,j}(t) \Delta t = p_i(t), \quad \forall i \in O,$$
 (flow reservation) (1)

$$\sum_{i \in O} x_{i,j}(t) \Delta t + X_j(t) = q_i(t), \quad \forall j \in D,$$
 (flow reservation) (2)

$$x_{i,j}(t) \ge 0, \quad \forall (i, j) \in O \times D,$$
 (flow non-negativity) (3)

$$X_j(t) \ge 0, \quad j \in D$$
 (stock non-negativity) (4)

- c_{ij} : transportation cost from *i* to *j*
- $p_i(t)$: fuel production
- $q_j(t) := (1 \beta \Delta t) X_j(t) + r_j(t) \Delta t$: revealed demand

Model Expansion to Take Fairness into Account

 Measurement of inequality: a weighted entropy of "unresolved rate" of revealed demand

$$\mathcal{H}(\boldsymbol{X}) \coloneqq -\sum_{j \in D} q_j(t) \left(\frac{X_j(t)}{q_j(t)}\right) \ln\left(\frac{X_j(t)}{q_j(t)}\right) = -\sum_{j \in D} X_j(t) \ln\left(\frac{X_j(t)}{q_j(t)}\right)$$

- $X_i(t)$: unresolved demand at t (carried over to t + 1)
- $q_i(t)$: revealed demand at t
- Fuel assignment model with fairness consideration

$$\min_{\boldsymbol{x}(t),\boldsymbol{X}(t)} \sum_{i,j} c_{i,j} x_{i,j}(t) - \theta \mathcal{H}(\boldsymbol{X}) \quad \text{s.t. (1)} \sim (4)$$

• θ : a weight parameter of the inequality against the total transportation cost

Outline

3 Spatial Distribution of D-S Gap

4 Conclusion

5 Appendix

Parameter Estimation I

- Relevant parameters
 Fuel distribution model is characterized by two parameters:
 - β : disappearance rate of fuel demand
 - θ : weight of the inequality against the transpotation cost
- Total sales in each prefecture

Denote the total sales in prefecture *k* under (β , θ) for a certain duration \check{T} by

$$\hat{S}_k(\beta,\theta) = \sum_{t \in \check{T}} \sum_{j \in D_k} \sum_{i \in O} x_{i,j}(t) \Delta t = \sum_{j \in D_k} s_j(t) \Delta t n$$

- $s_j(t) := \sum_{i \in O} x_{i,j}(t)$: fuel sales flow in *j* at period *t*;
- D_k : set of municipalities in prefecture k.

Parameter Estimation II

Best estimator
 Find the best parameter pair (β*, θ*) that explains the actual sales

$$(\beta^*, \theta^*) \coloneqq \arg\min_{\beta, \theta} \sum_{k \in K} |S_k - \hat{S}_k(\beta, \theta)|$$

- *K* : set of prefecture;
- S_k : actual fuel sales in prefecture k for the duration \check{T} .

Data

Model settings

set of period, T	03/12 (t = 1) to 04/14 (T = 35),2011
oil terminal set, O	Aomori, Hachinohe, Sakata, Sendai-Shiogama and Morioka
municipality set, D	165 municipalities in Tohoku area
target duration, \check{T}	03/01 to 03/31, 2011

Available data set

	data name	duration	precision
(a)	the total gasoline sales	March to April, 2010	monthly, by prefecture
(b)	the total gasoline sales	March to April, 2011	monthly, by prefecture
(c)	the amount of gasoline	03/12 to 04/14 2011	daily by oil terminal
	transported into oil terminals	03/12 10 04/14, 2011	daily, by on terminal
(d)	the population of municipality	2010	by municipality

Model inputs

model input	data source
oil production {p _i }	(C)
latent demand rate $\{r_i\}$	(a),(d)
actual sales S_k	(b)

Estimated Parameters

The best parameter is $(\beta^*, \theta^*) = (0.130, 44.0)$, under which the fuel sales of each prefecture is estimated as follows:

prefecture	actual sales	estimated sales	relative error
	(S_k)	(\hat{S}_k)	(ϵ_k)
Aomori	80,666	80,676	0.01%
Iwate	47,994	49,145	2.40%
Miyagi	62,877	63,215	0.54%
Akita	64,758	69,701	7.63%
Yamagata	39,074	32,636	-16.48%
		total error(ϵ)	4.36%

relative error:
$$\epsilon_k \coloneqq \frac{\hat{S}_k - S_k}{S_k}$$
, total error: $\epsilon \coloneqq \frac{\sum_k |\hat{S}_k - S_k|}{\sum_k S_k}$

Outline

- 2 Parameter Estimation
- Spatial Distribution of D-S Gap

4 Conclusion

5 Appendix

Spatial Distribution of Demand-Supply Gap

• Demand-supply (D-S) gap of gasoline in municipality j at τ :

$$G_j(\tau) \coloneqq \frac{\sum_{t=1}^{\tau} s_j(t) \Delta t}{\sum_{t=1}^{\tau} \left\{ r_j(t) - \beta X_j(t-1) \right\} \Delta t} = \frac{\text{Cmltv supply by } t}{\text{Cmltv realized demand by } t}$$

- $s_j(t) = \sum_{i \in O} x_{i,j}(t)$: fuel sales flow in *j* at *t*;
- $r_j(t)$: latent fuel demand flow in j at t;
- $\beta X_j(t-1)$: disappeared fuel demand during the end of t-1 to the beginning of t.

Spatio-Temporal Distribution of Demand-Supply Gap (summary)

- The subsequent 3 show:
 - It was hard to resolve the D-S gap in the areas along the Pacific Sea. Especially, even 3 weeks after the earthquake, the D-S gaps remained in Miyagi and Iwate, whereas those in other prefectures were almost resolved;
 - 2. At each day, the D-S gap was greater in the eastern-southern regions compared to the western-northern regions.

Spatial Distribution of Demand-Supply Gap (1st week)

March 18 (t = 7)

Spatial Distribution of Demand-Supply Gap (2nd wk)

March 25 (t = 14)

Spatial Distribution of Demand-Supply Gap (3rd week)

April 1 (t = 21)

Outline

- 2 Parameter Estimation
- Spatial Distribution of D-S Gap
- 4 Conclusion

5 Appendix

Conclusion

- We developed a model for estimating the spatio-temporal distribution of demand-supply (D-S) gap after Great East Japan Earthquake, taking into account the following aspects:
 - 1. Demand disappearance due to a huge backlog
 - 2. Fairness of the gasoline assignments between municipalities.
- Model parameters were estimated from available data
- Obtained spatio-temporal distributions of D-S gap, which show
 - 1. Even 3 weeks after the earthquake, the D-S gaps remained in Miyagi and Iwate, whereas those in other prefectures were almost resolved;
 - 2. At each day, the D-S gap was greater in the eastern-southern regions compared to the western-northern regions.

Outline

- 2 Parameter Estimation
- Spatial Distribution of D-S Gap

4 Conclusion

Cumulative Demand and Supply (Definitions)

- $R_j(\tau) = \sum_{t=1}^{\tau} r_j(t) \Delta t$: Cumulative latent demand by τ
- $E_j(\tau) = \sum_{t=1}^{\tau} \beta X_j(t-1) \Delta t$: Cumulative disappeared (pent-up) demand by τ
- $Q_j(\tau) = R_j(\tau) E_j(\tau)$: Cumulative realized demand

Appendix

Cumulative Demand and Supply

